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Abstract: In this paper, the CUSUM test statistic based on adaptive LASSO residuals is proposed and studied for
detecting in real time a change-point in a linear model with a large number of explanatory variables.
Under null hypothesis that the model does not change, the asymptotic distribution of the test statistic is determined.
Under alternative hypothesis that at some unknown observation there is a change in model, the proposed test statistic
converges in probability to ∞. These results allow to build an asymptotic critical region. Next, in order to improve the
test statistic performance a modified test statistic is proposed.
Simulation results, using Monte Carlo technique, illustrate the performance of the proposed test statistic. We also
compare it with the classical CUSUM test statistic.

Résumé : Dans ce papier, la statistique de test CUSUM basée sur les résidus LASSO adaptatifs est proposée et étudiée
pour détecter en temps réel si un changement a lieu dans un modèle linéaire qui a un nombre grand de variables
explicatives.
Sous l’hypothèse nulle que le modèle ne subit pas de changements, la distribution asymptotique de la statistique de
test est déterminée. Sous l’hypothèse alternative qu’un changement se produit dans le modèle à un instant inconnu,
la statistique de test proposée converge en probabilité vers ∞. Ces résultats permettent la construction d’une zone de
rejet asymptotique. Ensuite, pour améliorer la performance de la statistique de test on propose une statistique de test
modifiée.
Les résultats des simulations, par Monte Carlo, montrent la performance de la statistique de test proposée en la
comparant aussi avec la statistique de test CUSUM classique.

Mots-clés : sequential test, adaptive LASSO, CUSUM, asymptotic behaviour
Classification AMS 2000 : 62G10 , 62G20 , 62J05 , 62F35

1. Introduction

Often in practice, for example in genetics, we want to study the influence of a large number
of explanatory variables (regressors) X1, · · · ,Xp on a variable Y , with the possibility that a small
number among the p variables will effectively influence Y . On the other hand, we want to know
in real time if after the first m observations, the model changes. The most used technique is
the cumulative sum (CUSUM) method which provides a test statistic for testing if the model
changes in real time. The reference paper for this method is Horváth, L. et al., (2004), where
a monitoring scheme is proposed according to the least squares (LS) residuals and a boundary
function, but which has the disadvantage that the hypothesis test works only when the number of
model parameters is relatively small.
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In this paper, the real time change-point detection in a linear model with a large variable
number is studied. We can not conceive a hypothesis test for detecting whether change occur in
the model coefficients since existing test statistics were performed for p small. As we will see
in the simulations part of this paper, the CUSUM test corresponding to LS residuals gives poor
results for p large. In this case, a natural idea is to first select, on the segment without change
point, the significant variables. In order to select, by hypothesis tests, the significant regressors
which influence the variable Y we can use a stepwise selection method, for example Forward or
Backward. But all these methods have the disadvantage that they have a large variability, that the
final choice is not optimal and that the correlated explanatory variables remain in the final model
(see Breiman, L., , 1996). These disadvantages are accentuated when the number of regressors is
large. An important advance was made by Tibshirani, R., (1996), where, for a linear model, the
estimation and automatic variable selection were simultaneously treated as a single minimization
problem, by the least absolute shrinkage and selection operator (LASSO) method. Then, in order
to detect a change in real time in model, one would then find a test statistic based on LASSO type
residuals. This justifies the interest of this paper.

Since LASSO techniques are fairly recent, there are not many papers in the literature that
address the change-point problem in this framework. All existing works consider the case of
the a posteriori changes : the data are known at the end of the experiment and then, a posteriori
we consider the question if model has changed. If the model has changed, we must find the
number of changes, their location and then estimate the parameters of each segment (phase).
In the paper Harchaoui, Z. and Lévy-Leduc, C., (2010), the estimation of the change-points
location in one-dimensional piecewise constant for a white noise is reformulated as a variable
selection problem with a L1 penalty. In Ciuperca G., (2013), a quantile change-point model
with SCAD estimator and a median model with LASSO-type estimator are studied. For a linear
model with change-points, estimated by LS method with LASSO-type and adaptive LASSO
penalties, Ciuperca G., (2014) realize a study a posteriori proposing a model selection criterion
and estimating model parameters, change-points location simultaneously. Always for a LS model
with number of explanatory variables much larger than the number of observations, Lee S. et al.,
(2012) considers a LASSO penalty when the errors have gaussian distribution.
To the author’s knowledge, the sequential hypothesis test in a model with a large number of
explicative variables, has not yet been considered in literature.

The sequential change-point detection in high-volume was considered by Wang H. et al.,
(2002), Siris V.A. and Papagalou F., (2006), Lung-Yut-Fong A. et al., (2012) in network traffic
and not in linear model. More precisely, the CUSUM method is used in Wang H. et al., (2002),
Siris V.A. and Papagalou F., (2006) for detecting a change in a time series. For the same type of
problem in network traffic, another approach was proposed by Lung-Yut-Fong A. et al., (2012)
for detecting the change-points in doubly censored time series.

The paper is organized as follows. In Section 2, we first give the model under the null
and alternative hypothesis. Assumptions are also announced at the beginning of this section.
Then, we construct a CUSUM test statistic based on adaptive LASSO residuals and we study
its asymptotic behaviour under hypothesis H0 and H1. In order to improve the test statistic
performance, a modified statistic is proposed. For detecting the change location in model, we
propose a stopping time from which hypothesis H0 is rejected. In Section 3, simulation results
illustrate the performance of the proposed test statistic.
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Real time change-point detection by adaptive LASSO and CUSUM 115

2. CUSUM test with adaptive LASSO residuals

All throughout the paper, C denotes a positive generic constant which may take different
values in different formula or even in different parts of the same formula. All vectors are column
and vt denotes the transposed of v. All vectors and matrices are in bold. Concerning the used
norms, for a q-vector v = (v1, · · · ,vq), let us denote by ‖v‖1 = ∑

q
j=1 |v j| its L1-norm. For a

matrix M = (ai j)16i6q1
16 j6q2

, we denote by ‖M‖1 = max j=1,··· ,q2(∑
q1
i=1 |ai j|), the subordinate norm

to the vector norm ‖.‖1. Let L−→
m→∞

, IP−→
m→∞

represent convergence in distribution and in probability,
respectively, as m→ ∞.
We will also use the following notations : if Vn and Un are random variable sequences, Vn = oIP(Un)
means that limn→∞ IP[|Un/Vn|> e] = 0 for any e > 0, Vn = OIP(Un) means that there exists a finite
c > 0 such that IP[|Un/Vn| > c] < e for any n and e. If Vn and Un are deterministic sequences,
Vn = o(Un) means that the sequence Vn/Un→ 0 for n→ ∞, Vn = O(Un) means that the sequence
Vn/Un is bounded for sufficiently large n.

2.1. Variable selection in a model without change-points

We consider on the first m observations, a classical model of linear regression :

Yi = Xt
iβ + εi, i = 1, · · · ,m (1)

with β 0 = (β 0
,1, · · · ,β 0

,p) the true value (unknown) of β . The parameter β belongs to Rp, with
fixed dimension p (p doesn’t depend on m), but with the possibility that p is very close to m.
For model (1), Yi denotes the corresponding observation of response variable Y . The p-column
vector Xi is the i-th observation for the vector (X1, · · · ,Xp) of the explanatory variables (regres-
sors).
Let us denote by X the m× p matrix with the m observations of the variables X1, · · · ,Xp. The
following notations are used for the m-column vectors Y≡ (Y1, · · · ,Ym)

t and ε ≡ (ε1, · · · ,εm)
t .

In order to estimate the parameter β , we could use the ordinary least squares method

β̂ m ≡ argmin
β∈Rp

m

∑
i=1

(Yi−Xt
iβ )

2 = (XtX)−1XtY. (2)

We denote the components of this vector by β̂ m = (β̂m,1, · · · , β̂m,p), with β̂m, j the j-th component
of β̂ m.

In order to select the explanatory variables which have a significant influence on the explained
variable Y , classically, we can perform hypothesis tests, or apply criteria such as BIC or AIC. As
noted in Introduction, all these methods are very unstable when p is large. One could then use the
LASSO method, introduced by Tibshirani, R., (1996), whereby we can at the same time, under
some conditions on X, estimate the parameters and eliminate the irrelevant variables, without
using hypothesis tests. For automatically selecting the variables, Zou, H., (2006) provides an
adaptive LASSO method, without these conditions on the design matrix X :

β̂
∗
m ≡ argmin

β∈Rp
[

m

∑
i=1

(Yi−Xt
iβ )

2 +λm

p

∑
j=1

ω̂ j|β, j|], (3)
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with ω̂ j ≡ |β̂m, j|−g, β̂m, j the j-th component of the least squares estimator β̂ m, β, j the j-th com-
ponent of β and g a known positive parameter. The positive sequence (λm) is the tuning parameter,
a regularization parameter, such that λm→ ∞ as m→ ∞.
Let us denote by ε̂∗i ≡ Yi−Xt

iβ̂
∗
m, for i = 1, · · · ,m, the corresponding residual. To exemplify the

properties of the adaptive LASSO estimator β̂
∗
m, let us consider the following two sets of index :

A ≡ { j ∈ {1, · · · , p};β 0
, j 6= 0} the index set of nonzero components of the true parameter,

A ∗
m ≡ { j ∈ {1, · · · , p}; β̂ ∗m, j 6= 0} the set of index of nonzero components of the adaptive LASSO

estimator.
Generally, for a parameter β , we denote by βA the subvector of β containing the corresponding
components of A .

Let us consider the following assumptions.
First for errors εi :
(A1) ε1, · · · ,εm,εm+1, · · · , are i.i.d. IE[ε1] = 0, 0 < σ2 = Var(ε1) < ∞, IE[|ε1|ν ] < ∞ for some
ν > 2.
For the explanatory variables X1, · · · ,Xp, there exists a positive definite matrix C and a constant
η > 0 such that :
if they are deterministic :
(A2) ‖m−1

∑
m
i=1 XiXt

i−C‖1 = O(m−η),
and if they are random :
(A2bis) ‖m−1

∑
m
i=1 XiXt

i−C‖1 = OIP(m−η) a.s. Moreover, εi and Xi are independent.

Assumptions (A1), (A2) and (A2bis) are standard conditions which are used in large-dimensional
linear model or in sequential change-point test, see for example Zou, H., (2006), Horváth, L. et al.,
(2004), Ciuperca G., (2014).

Under the condition that, the errors εi are i.i.d. random variables with mean zero and bounded
variance σ2 (assumption (A1)), Card(A ) doesn’t depend on m, the design matrix is such that
m−1XtX converges to a positive definite matrix, and the tuning parameter (λm) is such that, as
m→ ∞,

m−1/2
λm→ 0, m(g−1)/2

λm→ ∞, (4)

we have that adaptive LASSO estimator satisfies the oracle properties (see Zou, H.,, 2006), i.e.,
that :
(i) asymptotic normality :

√
m(β̂

∗
m−β 0)A

L−→
m→∞

N (0,σ2(CA )−1).

(ii) sparsity property : limm→∞ IP[A ∗
m = A ] = 1.

The matrix CA contains the elements of the matrix C with the index in the set A .

Recall that for β̂ m, the least squares estimator, we have, IP[β̂ m,A = 0] = 0.

For σ2 error variance, we will consider the following estimator :

σ̂
∗2
m ≡

1
m−Card(A ∗

m)

m

∑
i=1

(Yi−Xt
iβ̂
∗
m)

2. (5)
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Real time change-point detection by adaptive LASSO and CUSUM 117

Since Card(A ) doesn’t depend on m, taking into account the oracle properties of the adaptive
LASSO estimator β̂

∗
m, we obtain that

σ̂
∗2
m =

1
m−Card(A ∗

m)

m

∑
i=1

(ε2
i −2εiXt

i(β̂
∗
m−β

0)+(β̂
∗
m−β

0)tXiXt
i(β̂
∗
m−β

0))

=

(
1

m−Card(A ∗
m)

m

∑
i=1

ε
2
i

)
(1+oIP(1))

IP−→
m→∞

σ
2.

2.2. Sequential test for change detection in model

Once the significant explanatory variables were selected, we continue to observe the variables
Y,X1, · · · ,Xp after observation m, with the dependent variable Y also modeled by a linear model :

Yi = Xt
iβ i + εi, i = m+1,m+2, · · ·

At each time i, we test if we have the same model as the m first observations :
H0 : β i = β 0 for all i = m+1,m+2, · · ·
against the alternative hypothesis, that at some (unknown) observation k0 there is a change, called
also change-point, in model :

H1 : ∃k0 ≥ 1 such that
{

β i = β 0, i = m+1, · · · ,m+ k0

β i = β
0
2, i = m+ k0 +1, · · ·

with β 0 6= β
0
2.

The parameters β 0, β
0
2 and the change-point k0 are unknown.

We denote the components of β
0
2 by (β 0

2,1, · · · ,β 0
2,p). Recall that the components of β 0 are β 0

, j for
j ∈ {1, · · · , p}.
We assume that model (1) is significant, i.e. at least one of the regressors affects significantly to
the response variable Y :

∃ j ∈ {1, · · · , p} such that β
0
, j 6= 0. (6)

In order to find a test statistic, we will consider the CUSUM test method of Horváth, L. et al.,
(2004), first for adaptive LASSO residuals. Then, we propose another test statistic which improves
the type I error probability (size of test). The principle is to assume that there is the same model
in each observation m+ k, with k ≥ 1, and to calculate the sum of the corresponding residuals
ε̂∗i = Yi−Xiβ̂

∗
m, for i = m+1, · · · ,m+ k.

The cumulative sum (CUSUM) of ε̂∗i , for some k ≥ 1, is ∑
m+k
i=m+1 ε̂∗i .

For a given constant γ ∈ [0,1/2), let us consider the following normalisation function (boundary
function) :

g(m,k,γ)≡ m1/2
(

1+
k
m

)(
k

k+m

)γ

.

Let us denote by X j the m-column vector with the observations X j1, · · · ,X jm of the variable X j for
the first m observations. We use the notation sgn(.) for the sign function.
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118 Gabriela Ciuperca

Theorem 1. Under assumptions (A1), (A2) or (A2bis), (4) and (6), we have :
1) If hypothesis H0 holds, then we have for any real c > 0 :

lim
m→∞

IP

[
1

σ̂∗m
sup

1≤k<∞

|
m+k

∑
i=m+1

ε̂
∗
i |/g(m,k,γ)≤ c

]
= IP

[
sup

0≤t≤1

|W (t)|
tγ
≤ c
]
,

with {W (t);0≤ t < ∞} a Wiener process.
2) If hypothesis H1 holds, then

1
σ̂∗m

sup
1≤k<∞

|
m+k

∑
i=m+1

ε̂
∗
i |/g(m,k,γ) IP−→

m→∞
∞.

Proof of Theorem 1. 1) We have the obvious relation

m+k

∑
i=m+1

ε̂
∗
i =

m+k

∑
i=m+1

εi−
m+k

∑
i=m+1

Xt
i(β̂
∗
m−β

0). (7)

On the other hand, taking into account assumption (6) and KKT optimality conditions, we have
for every j ∈A ∩A ∗

m , with probability one, that :

2X jt(ε−X(β̂
∗
m−β

0)) = λmω̂ jsgn(β̂ ∗m, j),

We denote by J ≡ A ∩A ∗
m . Then, the last relation can be written under the form, for every

j ∈J

2X jt(
ε−XF (β̂

∗
m−β

0)F−XA c∩A ∗
m
(β̂
∗
m−β

0)A c∩A ∗
m
−XA ∩A ∗c

m
(β̂
∗
m−β

0)A c∩A ∗c
m

)
= λmω̂ jsgn(β̂ ∗m, j),

(8)
with A c, A ∗c

m the complementaries of the sets A , A ∗
m , respectively. Relation (8) can be written

in matrix form as

Xt
J

(
ε−XJ (β̂

∗
m−β

0)J −XA c∩A ∗
m
(β̂
∗
m−β

0)A c∩A ∗
m
−XA ∩A ∗c

m
(β̂
∗
m−β

0)A ∩A ∗c
m

)
= λmWF ,

(9)
with WF a column vector of dimension Card(F ), defined by :

WF ≡
1
2

(
ω̂ jsgn(β̂ ∗m, j)

)
j∈F

.

and XF the submatrix m×Card(F ) of X, (β̂
∗
m−β 0)F the Card(F )-subvector of (β̂

∗
m−β 0)

containing the corresponding components of F . Similar notation is used for the index sets
A c∩A ∗

m , A ∩A ∗c
m .

By sparsity property (ii) for β̂
∗
m, given in subsection 2.1, we have that limm→∞ IP[A c∩A ∗

m = /0] = 1.
Then, for all e > 0, there exists me ∈ N such that for any m≥ me, we have IP[(β̂

∗
m−β 0)A c∩A ∗

m
=

0] > 1− e. Thus, for any e > 0 and enough large m, we have IP[XA c∩A ∗
m
(β̂
∗
m− β 0)A c∩A ∗

m
=

0]> 1− e. We prove similarly that for any e > 0 and enough large m, we have IP[XA ∩A ∗c
m
(β̂
∗
m−

β 0)A ∩A ∗c
m
= 0]> 1− e. Then, for any e > 0 and enough large m, we have

IP[X(β̂
∗
m−β

0) = XF (β̂
∗
m−β

0)F ]> 1−2e (10)
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Real time change-point detection by adaptive LASSO and CUSUM 119

and relation (9) becomes, for any e > 0,

IP
[
Xt

J

(
ε−XJ (β̂

∗
m−β

0)J

)
= λmWF

]
> 1−2e. (11)

By assumption (A2), respectively (A2bis), we have that Xt
JXJ is of rank Card(J ), then it is

invertible. Thus, relation (11) implies that, for any e > 0 and enough large m,

IP
[
(β̂
∗
m−β

0)F = (Xt
FXF )−1Xt

F ε−λm(Xt
FXF )−1WF

]
> 1−2e. (12)

Using assumptions (A1) and (A2), respectively (A2bis), by the central limit theorem, we have for
all j ∈F , that X jtε = OIP(m1/2). Then

(Xt
FXF )−1Xt

F ε = OIP(m−1/2). (13)

By assumption (A2) (or (A2bis)), the sparsity property IP[F = A ]→ 1, as m→ ∞, we have that
(Xt

JXJ )−1 = 1
m C−1

J (1+oIP(1)).
Since j ∈A , we have that the random variable ω̂ j is bounded with probability converging to 1 as
m→ ∞. Moreover, since λm = o(m1/2), we have that

λm
WF

m
= oIP(m−1/2). (14)

But, since A 6= /0 and by property oracle (i), given in subsection 2.1, we have that (β̂
∗
m−β 0)F

converges to zero with the rate m−1/2. Thus, taking into account of (12), (13) and (14), we have

(β̂
∗
m−β

0)F = (Xt
FXF )−1Xt

F ε(1+oIP(1)). (15)

We prove similar to (10) that, for any e > 0, k ≥ 1, we have

IP[
m+k

∑
i=m+1

Xt
i(β̂
∗
m−β

0) =
m+k

∑
i=m+1

Xt
i,F (β̂

∗
m−β

0)F ]> 1−2e. (16)

Then, taking into account (15), (16), we obtain that relation (7) becomes

m+k

∑
i=m+1

ε̂
∗
i =

m+k

∑
i=m+1

εi−

(
m+k

∑
i=m+1

Xt
i,F

)
(Xt

FXF )−1Xt
F ε(1+oIP(1)). (17)

Since the CUSUM of ε̂∗i can be written under form (17) and the CUSUM of LS residuals on F

is ∑
m+k
i=m+1 εi−

(
∑

m+k
i=m+1 Xt

i,F

)
(Xt

FXF )−1Xt
F ε , we can then apply Theorem 2.1 of Horváth, L.

et al., (2004).
2) Taking into account 1), we argue exactly as in Horváth, L. et al., (2004). �

The result of Theorem 1 allows us to determine the asymptotic distribution of the test statistic
under the hypothesis H0, using adaptive LASSO residuals ε̂∗i for CUSUM technique. Under
hypothesis H1, the test statistic converges in probability to ∞. Then it can be used for testing H0
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against H1, asymptotic reject region being sup0≤t≤1
|W (t)|

tγ ≥ cα(γ), with cα(γ), the (1−α) of the
distribution

sup
0≤t≤1

|W (t)|
tγ

, (18)

for a size α ∈ (0,1) and fixed parameter γ ∈ [0,1/2).

Corollary 1. Theorem 1 implies that the hypothesis H0 is rejected, for a fixed size α ∈ (0,1),
in the point, called stopping time,

k̂∗m ≡

{
inf{k ≥ 1; (σ̂∗m)

−1
∣∣∣∑m+k

i=m+1
ε̂∗i

g(m,k,γ)

∣∣∣> cα(γ),

∞, otherwise.
(19)

Remark 1. Assumption (A1) is essential to find by Theorem 1 the asymptotic distribution
of CUSUM test statistic. Then, it makes no sense to estimate parameters β by another adaptive
LASSO method making the variable selection, for example of type quantile, for which this
assumption is not required. Thus, since we need assumption (A1), the better it is to estimate β by
LS framework with an adaptive LASSO penalty.

The order oIP(1) in relation (14) can be quite large, moreover, the adaptive LASSO estimator
(β̂
∗
m)A can be biased (it is asymptotically unbiased), then, the direct application of this theorem

for the hypothesis tests can lead to bad practical results (as we will see by simulations), especially
under hypothesis H0. Then, in order to improve the test statistic performance we will take into
account the properties of the least-squares method and of the adaptive LASSO. The new technique,
which we’ll call modified adaptive LASSO be carried out in two steps.

BEGIN
Step I. The adaptive LASSO technique is realized on the observations 1, · · · ,m. Following this

step, since the adaptive LASSO performs consistent variable selection (sparsity property), we will
consider the index set A ∗

m for which the adaptive LASSO estimators are different from zero.

Step II. In this step we will re-estimate the nonzero parameters obtained to Step I. For this
purpose, consider the set of parameters :

Γ
∗
m ≡

{
β ∈ Rp;β j 6∈A ∗

m
= 0
}
.

Let us estimate β ∈ Γ∗m by least squares method :

β̃
∗
m ≡ argmin

β∈Γ∗m

m

∑
i=1

(Yi−Xt
iβ )

2

and there will be LS residual :

ε̃
∗
i ≡ Yi−Xt

iβ̃
∗
m, i = 1, · · · ,m.

Journal de la Société Française de Statistique, Vol. 156 No. 4 113-132
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



Real time change-point detection by adaptive LASSO and CUSUM 121

Let us consider a convergent estimator for the variance σ2

(σ̃∗m)
2 ≡ 1

m−Card(A ∗
m)

m

∑
i=1

(ε̃∗i )
2.

Taking into account sparsity property (ii), we obtain that this procedure provides, with probability
converging to 1, unbiased estimators for βA and the estimators directly equal to zero for βA c . On
the other hand, Theorem 1 remains valid considering ε̃∗i = Yi−Xt

iβ̃
∗
m, for i = m+1, · · · ,m+ k, as

residuals and σ̃∗m as estimator of error standard-deviation σ . The asymptotic distribution of the
test statistic is that given by (18). The stopping time in this case is

k̃∗m ≡

{
inf{k ≥ 1; (σ̃∗m)

−1
∣∣∣∑m+k

i=m+1
ε̃∗i

g(m,k,γ)

∣∣∣> cα(γ),

∞, otherwise.
(20)

END

Obviously, we have for k̃∗m, for a fixed size α ∈ (0,1), under hypothesis H0 :

lim
m→∞

IP[k̃∗m < ∞] = α

and under hypothesis H1, the asymptotic power is one :

lim
m→∞

IP[k̃∗m < ∞] = 1.

Recall that the CUSUM test statistic of Horváth, L. et al., (2004) is

1
σ̂m

sup
1≤k<∞

|
m+k

∑
i=m+1

ε̂i|/g(m,k,γ), (21)

with the residuals ε̂i = Yi−Xt
iβ̂ m, the LS estimator β̂ m given by (2) and the consistent estimator

of σ2 :

σ̂
2
m =

1
m− p

m

∑
i=1

(Yi−Xt
iβ̂ m)

2.

This test statistic satisfies an equivalent result of Theorem 1, i.e. that, under H0 it converges in
distribution to (18) and under H1 converges in probability to ∞.
The stopping time for this test statistic is :

k̂m ≡

{
inf{k ≥ 1; (σ̂m)

−1
∣∣∣∑m+k

i=m+1
ε̂i

g(m,k,γ)

∣∣∣> cα(γ),

∞, otherwise.
(22)

3. Numerical study

In this section, Monte Carlo simulation studies are carried out to assess the performance of the
proposed test statistics. Three CUSUM statistic tests are compared, corresponding to residuals :
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– of least squares :

(σ̂m)
−1 sup

k≥1

∣∣∣∣∣ m+k

∑
i=m+1

ε̂i

g(m,k,γ)

∣∣∣∣∣ ,
– of adaptive LASSO

(σ̂∗m)
−1 sup

k≥1

∣∣∣∣∣ m+k

∑
i=m+1

ε̂∗i
g(m,k,γ)

∣∣∣∣∣ ,
– of modified adaptive LASSO

(σ̃∗m)
−1 sup

k≥1

∣∣∣∣∣ m+k

∑
i=m+1

ε̃∗i
g(m,k,γ)

∣∣∣∣∣ .
The asymptotic distributions of the three test statistics follow same law (18).

All simulations were performed using the R language, packages sde, lqa, MASS.

As was noted in subsection 2.1, so that adaptive LASSO estimator (3) satisfies the oracle
properties it is necessary that, tuning parameter λm and power g which are involved in weight
ω̂ j satisfy conditions : m−1/2λm→ 0, m(g−1)/2λm→ ∞, as m→ ∞. Then, in all simulations, we
consider the following values for g and λm : g = 1/5 and λm = m9/20. The model errors are Gaus-
sian εi ∼N (0,1). For the explanatory variables X1, · · · ,Xp we will consider two distributions.
We denote by T the number of observations considered after the observation m.
For each model we generated 500 Monte Carlo random samples of size m+T .

3.1. Empirical size and power

Concerning number p of explanatory variables, we first consider a small number and we
compare the results obtained by the three CUSUM methods. Based on these results, we will
consider the two CUSUM best methods in order to detect a change in models with a large number
of variables.

3.1.1. Small number of variables

In this subsection, we consider that the number of explanatory variables is 10 (p=10).
For model (1), the true values of the components of β 0 are β 0

,3 = 5 and all others are 0 : A = {3}.
Under the hypothesis H1, the vector parameter β

0
2 has the fourth component β 0

2,4 = 15 and the
other components are 0.
For the regressors X1, · · · ,X10 we consider two distributions. The first law, denoted L1, is such that,
all X j, for j ∈ {1, · · · ,10}\{3}, have standard normal distribution N (0,1) and X3 ∼N (2,1). A
second distribution for the regressors, denoted L2, is obtained as follows : for all j ∈ {1, · · · ,10}
the j-th regressor is X2

j + j2/m, with X j random variables of distribution L1, for all j 6= 3 and
X3 ∼N (2,1).

On the parameter γ of the normalization function g(m,k,γ), the simulations of Horváth, L.
et al., (2004) for detection of parameter changes in linear regression, showed that if the change
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occurs shortly after observation m, then γ must be chosen as close to 1/2. But, if γ is too close
to 1/2, the CUSUM method could lead to false detection. That is why, we will vary the value
of γ : considering γ ∈ {0,0.25,0.49}. We also vary the number of observations m, considering
m ∈ {25,100}, and the size α ∈ {0.025,0.05,0.10}, for studying the CUSUM test statistic cor-
responding to residuals of least squares, adaptive LASSO and modified adaptive LASSO.

Under hypothesis H1, we also vary the position of the change-point k0 after m : k0 ∈ {10,25}.

TABLE 1. Empirical test size α̂ and power π̂ for p = 10.

Law k0 (m,T ) method α̂, π̂ γ = 0 γ = 0.25 γ = 0.49
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

LS α̂ 0.02 0.03 0.07 0.05 0.08 0.14 0.10 0.13 0.20
π̂ 0.99 1 1 1 1 1 1 1 1

10 (25,25) aLASSO α̂ 0.60 0.70 0.78 0.70 0.78 0.84 0.68 0.73 0.78
π̂ 0.99 1 1 1 1 1 1 1 1

L1 modif aLASSO α̂ 0.08 0.09 0.1 0.09 0.1 0.12 0.10 0.11 0.13
π̂ 0.99 1 1 1 1 1 1 1 1

LS α̂ 0.002 0.006 0.01 0.005 0.01 0.03 0.01 0.03 0.06
π̂ 1 1 1 1 1 1 1 1 1

25 (100,100) aLASSO α̂ 0.99 1 1 0.99 1 1 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

modif aLASSO α̂ 0.001 0.002 0.009 0.003 0.007 0.026 0.008 0.01 0.03
π̂ 1 1 1 1 1 1 1 1 1

LS α̂ 0.05 0.07 0.12 0.09 0.12 0.18 0.14 0.18 0.23
π̂ 1 1 1 1 1 1 1 1 1

10 (25,25) aLASSO α̂ 0.60 0.69 0.79 0.71 0.78 0.82 0.69 0.74 0.78
π̂ 1 1 1 1 1 1 1 1 1

L2 modif aLASSO α̂ 0.05 0.06 0.06 0.07 0.08 0.11 0.07 0.08 0.10
π̂ 1 1 1 1 1 1 1 1 1

LS α̂ 0 0.006 0.1 0.004 0.01 0.04 0.02 0.03 0.07
π̂ 1 1 1 1 1 1 1 1 1

25 (100,100) aLASSO α̂ 0.99 0.99 1 0.99 1 1 0.99 1 1
π̂ 1 1 1 1 1 1 1 1 1

modif aLASSO α̂ 0 0.001 0.006 0.003 0.01 0.02 0.01 0.02 0.04
π̂ 1 1 1 1 1 1 1 1 1

In Table 3.1.1 we give the empirical size of tests (under H0), denoted α̂ , and the empirical
power (under H1), denoted π̂ , for the three methods. Recall that for the linear model of Horváth,
L. et al., (2004), when p was much smaller (p = 1) in respect to m (m≥ 25), and for nonlinear
model of Ciuperca, G., (2013), always by the CUSUM method for least squares residuals, there
was no difference in the empirical size and power results for different values of γ . In our case,
for p = 10 and m = 25, the LS framework gives worse results for γ = 0.49 : empirical type I
error probability α̂ is larger than the theoretical value α . For LS and modified adaptive LASSO
frameworks, the empirical size decreases when the number of observations m increases. Due to
the fact that the nonzero estimators by adaptive LASSO may be biased, the empirical size of the
associated CUSUM test statistic is largely greater than α . The law of the explanatory variables
has no influence on the results.

In all cases, by the three methods, for different values of m or of k0, the empirical power is
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either 1 or very close to 1.

Taking into account all these elements, for the following simulations we no consider the
adaptive LASSO method.

3.1.2. Large number of variables

In this subsection, two values for number of variables are considered : p = 400 and p = 1000.
The index set of the true nonzero values is A = {3,30,90}, for the both values of p. The nonzero
components of β 0 have the values β 0

,3 = 5, β 0
,30 = 2, β 0

,90 =−1. Under hypothesis H1 only com-
ponents 90 and 91 change : β 0

2,90 = 0, β 0
2,91 =−1, after k0 = 25.

Always two possible distributions are considered for X j : L1 or L2. The distribution L1 is so :
X j ∼N (0,1) for ∀ j ∈ {1, · · · , p}\{3,40,75}, X3 ∼N (2,1), X40 ∼N (4,1), X75 ∼N (−1,1).
The distribution L2 is X2

j + j2/m, for ∀ j ∈ {1, · · · , p} \ {3,40,75}, with X j of law L1 and
X3 ∼N (2,1), X40 ∼N (4,1), X75 ∼N (−1,1).

The empirical sizes and powers of the CUSUM test statistics corresponding to LS and modified
adaptive LASSO residuals, are given in Table 2 when X j ∼L1 and in Table 3 when X j ∼L2.

In all cases (see Tables 2 and 3), the empirical test size corresponding to the modified adaptive
LASSO method is smaller than the corresponding theoretical value α . On the other hand, the
CUSUM test with LS residuals gives many false alarms (α̂LS� α). This shows that when the
number of variables is very large, this test does not work well.

We analyse more closely the results of Table 2 when X j ∼ L1. For testing hypotheses by
modified adaptive LASSO method, the presence of the change-point is not always detected in
the case γ = 0 (the empirical power is smaller than 0.95), (see also Figure 7) : if k0 draws away
from m then π̂ decreases. The same trend is observed for the two CUSUM methods in the cases
γ ∈ {0.25,0.49} : when k0 draws away from m thus π̂ decreases, but, with larger values for π̂ .
In order to study if this decreasing is not due to the close values of p and m, we considered for
k0 = 5, m = 1000, T = 80 a model with p = 1000 regressors and another with p = 400 regressors.
For CUSUM method with LS residuals, we obtain in the case p = 400 and m = 1010, that the
empirical sizes are lower than the theoretical size (excepted for γ = 0.49). For CUSUM method
with modified adaptive LASSO, the empirical powers are the same in the two cases : p = 400 or
p = 1000. We obtain the same conclusions for k0 = 250, m = 1010 and p ∈ {400,1000}.

We analyse now the results of Table 3, when X j ∼L2. We observe that the empirical powers
are always equal to 1. For modified adaptive LASSO method, the empirical sizes do not exceed
the theoretical sizes. On the other hand, as for X j ∼L1, the LS method gives many false alarms.

The difference in results between the two laws L1 and L2 comes from the conditioning of the
matrix Cm = m−1

∑
m
i=1 XiXt

i of assumptions (A2) or (A2bis). Effectively, in the case m = 1010
and p = 1000, the maximum to 500 Monte Carlo replications of the largest eigenvalue of Cm

is 23.69 when X j ∼L1, while the minimum of the largest eigenvalue of Cm is 19.72 ·107 when
X j ∼L2. The smallest eigenvalues of Cm, for the two laws L1, L2, are of the order of 10−5.
In the case m = 410 and p = 400, the maximum to 500 Monte Carlo replications of the largest
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eigenvalue of Cm is 24.13 when X j ∼L1, while the minimum of the largest eigenvalue of Cm is
12.36 ·106 when X j ∼L2. The smallest eigenvalues of Cm, for the two laws L1, L2, are of the
order of 10−4.

TABLE 2. Empirical test size α̂ and power π̂ , for p = 400 or 1000, k0 = 5,25,100,250, γ = 0,0.25,0.49, three sizes
α = 0.025,0.05,0.10, X j ∼L1.

k0 (m,T ) p method α̂, π̂ γ = 0 γ = 0.25 γ = 0.49
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

LS α̂ 0.62 0.69 0.80 0.94 0.96 0.97 0.99 0.99 1
π̂ 0.83 0.89 0.92 0.98 0.99 0.99 1 1 1

(410,80) 400 modif aLASSO α̂ 0 0 0 0.002 0.002 0.002 0.004 0.01 0.03
π̂ 0.77 0.86 0.92 0.97 0.98 0.99 0.99 0.99 0.99

5 LS α̂ 0.65 0.73 0.80 0.97 0.98 0.99 1 1 1
π̂ 0.77 0.84 0.89 0.99 0.99 0.99 1 1 1

(1010,80) 1000 modif aLASSO α̂ 0 0 0 0 0 0 0 0.01 0.02
π̂ 0.31 0.46 0.67 0.93 0.95 0.97 1 1 1

LS α̂ 0 0 0 0 0 0.002 0.08 0.12 0.19
π̂ 0.33 0.48 0.66 0.92 0.93 0.95 0.99 1 1

400 modif aLASSO α̂ 0 0 0 0 0 0 0.01 0.01 0.05
π̂ 0.32 0.46 0.66 0.94 0.96 0.97 0.99 0.99 0.99

LS α̂ 0.69 0.73 0.78 0.97 0.98 0.99 1 1 1
π̂ 0.84 0.88 0.93 0.98 0.99 0.99 1 1 1

(410,100) 400 modif aLASSO α̂ 0 0 0 0 0 0 0.01 0.02 0.04
π̂ 0.74 0.82 0.90 0.96 0.98 0.98 0.96 0.97 0.98

25 LS α̂ 0.66 0.75 0.83 0.99 1 1 1 1 1
π̂ 0.81 0.88 0.92 0.99 0.99 1 1 1 1

(1010,100) 1000 modif aLASSO α̂ 0 0 0 0 0 0 0 0.01 0.07
π̂ 0.29 0.47 0.66 0.91 0.93 0.96 1 1 1

LS α̂ 0.82 0.89 0.94 0.97 0.98 0.99 0.94 0.95 0.96
π̂ 0.91 0.94 0.96 0.98 0.99 0.99 1 1 1

(410,175) 400 modif aLASSO α̂ 0 0.002 0.002 0.002 0.002 0.01 0.02 0.03 0.06
π̂ 0.59 0.70 0.81 0.81 0.86 0.91 0.85 0.88 0.92

100 LS α̂ 0.87 0.91 0.95 0.99 0.99 1 1 1 1
π̂ 0.92 0.95 0.98 0.99 0.99 1 1 1 1

(1010,175) 1000 modif aLASSO α̂ 0 0 0 0 0 0.001 0.01 0.03 0.05
π̂ 0.23 0.39 0.56 0.75 0.83 0.89 0.90 0.93 0.95

LS α̂ 0.92 0.93 0.94 0.94 0.95 0.96 0.94 0.95 0.95
π̂ 0.97 0.97 0.98 0.99 0.99 0.99 1 1 1

(410,325) 400 modif aLASSO α̂ 0 0.004 0.004 0.004 0.006 0.02 0.02 0.04 0.05
π̂ 0.33 0.45 0.56 0.48 0.58 0.68 0.48 0.54 0.63

250 LS α̂ 0.94 0.96 0.97 0.97 0.98 0.99 0.98 0.99 0.99
π̂ 0.97 0.98 0.99 0.99 1 1 1 1 1

(1010,325) 1000 modif aLASSO α̂ 0 0 0 0 0 0 0.006 0.04 0.06
π̂ 0.15 0.26 0.42 0.48 0.61 0.72 0.63 0.71 0.77

LS α̂ 0 0 0.005 0.01 0.02 0.07 0.15 0.18 0.26
π̂ 0.26 0.37 0.50 0.54 0.61 0.68 0.65 0.70 0.81

400 modif aLASSO α̂ 0 0 0 0 0 0 0.01 0.03 0.05
π̂ 0.19 0.28 0.48 0.54 0.60 0.73 0.64 0.71 0.77
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TABLE 3. Empirical test size α̂ and power π̂ , for p = 400 or 1000, k0 = 5,25,100,250, γ = 0,0.25,0.49, three sizes
α = 0.025,0.05,0.10, X j ∼L2.

k0 (m,T ) p method α̂, π̂ γ = 0 γ = 0.25 γ = 0.49
0.025 0.05 0.10 0.025 0.05 0.10 0.025 0.05 0.10

LS α̂ 0.64 0.72 0.82 0.91 0.94 0.98 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(410,80) 400 modif aLASSO α̂ 0 0 0 0 0 0 0.004 0.01 0.05
π̂ 1 1 1 1 1 1 1 1 1

5 LS α̂ 0.64 0.74 0.82 0.97 0.98 0.99 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(1010,80) 1000 modif aLASSO α̂ 0 0 0 0 0 0 0.01 0.02 0.04
π̂ 1 1 1 1 1 1 1 1 1

LS α̂ 0.67 0.75 0.82 0.97 0.99 1 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(410,100) 400 modif aLASSO α̂ 0 0 0 0 0 0 0.02 0.05 0.09
π̂ 1 1 1 1 1 1 1 1 1

25 LS α̂ 0.6 0.7 0.7 0.99 0.99 0.99 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(1010,100) 1000 modif aLASSO α̂ 0 0 0 0 0 0 0.01 0.02 0.02
π̂ 1 1 1 1 1 1 1 1 1

LS α̂ 0.80 0.86 0.91 0.97 0.98 0.99 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(410,175) 400 modif aLASSO α̂ 0 0 0 0.002 0.002 0.01 0.01 0.03 0.03
π̂ 1 1 1 1 1 1 1 1 1

100 LS α̂ 0.86 0.90 0.94 0.99 0.99 0.99 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(1010,175) 1000 modif aLASSO α̂ 0 0 0 0 0 0 0.01 0.02 0.02
π̂ 1 1 1 1 1 1 1 1 1

LS α̂ 0.9 0.93 0.96 0.98 0.99 0.99 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(410,325) 400 modif aLASSO α̂ 0.002 0.002 0.006 0.002 0.002 0.02 0.01 0.03 0.07
π̂ 1 1 1 1 1 1 1 1 1

250 LS α̂ 0.92 0.95 0.98 0.99 0.99 0.99 1 1 1
π̂ 1 1 1 1 1 1 1 1 1

(1010,325) 1000 modif aLASSO α̂ 0 0 0 0 0 0.002 0.006 0.02 0.05
π̂ 1 1 1 1 1 1 1 1 1
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FIGURE 1. Estimated density of the stopping time, corresponding to LS and modified adaptive LASSO residuals, for
p=400, k0 = 5, γ = 0.25, three sizes α = 0.025,0.05,0.10, X j ∼L2.

FIGURE 2. Estimated density of the stopping time, corresponding to LS and modified adaptive LASSO residuals, for
p=400, k0 = 5, γ = 0, three sizes α = 0.025,0.05,0.10, X j ∼L2.

3.2. Stopping time estimations

In this subsection, we estimate the stopping times k̃∗m and k̂m using (20) for the modified
adaptive LASSO residuals and (22) for the LS residuals (the stopping time proposed by Horváth,
L. et al., , 2004). Two positions for k0, under hypothesis H1, are studied : k0 = 5 (just after m) and
k0 = 25.
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FIGURE 3. Estimated density of the stopping time, corresponding to LS and modified adaptive LASSO residuals, for
p=400, k0 = 25, γ = 0.25, three sizes α = 0.025,0.05,0.10, X j ∼L2.

FIGURE 4. Estimated density of the stopping time, corresponding to LS and modified adaptive LASSO residuals, for
p=400, k0 = 25, γ = 0, three sizes α = 0.025,0.05,0.10, X j ∼L2.

In Figures 1-7 we represent the empirical density of the stopping times corresponding to the
two estimation methods : solid line for the density corresponding to LS framework and dotted
line for the density corresponding to modified adaptive LASSO framework.

Outside the seven empirical densities for the stopping times, represented in Figures 1-7, we
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FIGURE 5. Estimated density of the stopping time, corresponding to LS and modified adaptive LASSO residuals, for
p=1000, k0 = 25, γ = 0.25, three sizes α = 0.025,0.05,0.10, X j ∼L2.

FIGURE 6. Estimated density of the stopping time, corresponding to LS ans adaptive LASSO modified residuals, for
p=1000, k0 = 25, γ = 0, three sizes α = 0.025,0.05,0.10, X j ∼L2.

give some elements of descriptive statistics for the stopping times estimations, for γ = 0.25
in Table 4 and for γ = 0 in Table 5. In Tables 4 and 5 we consider p ∈ {100,400,1000}, α ∈
{0.025,0.05,0.10} and X j ∼L2.

The estimation of k0 by modified adaptive LASSO is very accurate and unbiased, for γ ∈
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FIGURE 7. Estimated density of the stopping time, corresponding to LS and modified adaptive LASSO residuals, for
p=400, k0 = 25, γ = 0, three sizes α = 0.025,0.05,0.10, X j ∼L1.

{0,0.25}, if X j ∼L2, whether for k0 = 5 or 25 and for the number of regressors equal to 400 or
1000, . Seen the empirical densities and Table 4,we deduce that the estimation of k0 by stopping
time corresponding to the LS residuals is biased and above all detects the change before it occurs
(false change). These results are consistent with those previously found in Table 3 for the empirical
sizes. The empirical density shape of the stopping times corresponding to the LS residuals also
indicates that the variability k̂m is very high.

TABLE 4. Some summary statistics for stopping times : k̂m by LS and k̃∗m adaptive LASSO modified methods, for
T = 100, k0 = 25, γ = 0.25, three sizes α = 0.025,0.05,0.10, X j ∼L2.

p m method α = 0.025 α = 0.05 α = 0.10
median(k̂) mean(k̂) median(k̂) mean(k̂) median(k̂) mean(k̂)

1000 1010 LS 4 6 3 6 3 4
modif aLASSO 29 29 29 28 28 28

400 410 LS 7 11 6 9 5 8
modif aLASSO 27 26 27 26 26 26

100 110 LS 13 14 10 13 7 11
modif aLASSO 26 26 26 26 26 26
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TABLE 5. Some summary statistics for stopping times : k̂m by LS and k̃∗m adaptive LASSO modified methods, for
T = 100, k0 = 25, γ = 0, three sizes α = 0.025,0.05,0.10, X j ∼L2.

p m method α = 0.025 α = 0.05 α = 0.10
median(k̂) mean(k̂) median(k̂) mean(k̂) median(k̂) mean(k̂)

1000 1010 LS 32 28 29 26 27 23
modif aLASSO 33 33 33 32 32 31

400 410 LS 27 25 27 24 26 21
modif aLASSO 28 28 28 27 27 27

100 110 LS 26 22 26 22 26 20
modif aLASSO 26 26 26 26 26 26

TABLE 6. Computation times of the empirical sizes α̂ , for k0 ∈ {5,10,250}, m ∈ {25,400,1010}, T = k0 +75,
p ∈ {10,400,1000} for 500 Monte Carlo replications.

k0 m p Computation time

10 25 10 4 sec
5 410 400 3 min

250 1010 1000 25 min

3.3. Conclusions of simulations

We presented the numerical results for three CUSUM test statistics corresponding to the model
residuals, obtained, respectively, by three parametric estimation methods : LS, adaptive LASSO
and modified adaptive LASSO.

Regardless of the number of variables in the model, the CUSUM statistic with adaptive LASSO
residuals gives false alarms when H0 is true and then the empirical size is greater than the theore-
tical size.

If the number of explanatory variables is large, by the CUSUM method with LS residuals,
we get many false alarms (≥ 60%) under hypothesis H0, regardless of the distribution of the
regressors, of the design matrix or of the parameter values γ . Under hypothesis H1, for γ = 0, the
stopping time given by (22) is not accurate.

For the CUSUM test with modified adaptive LASSO residuals, if matrix Cm = m−1
∑

m
i=1 XiXt

i
of assumptions (A2) or (A2bis) is well-conditioned matrix, empirical type I error probability
(size) is smaller than the theoretical (except for p = 10). The empirical test power is 1, for any
required value of γ , α m, p and of k0. The stopping time gives very similar estimates to the true
value of change-point k0.

Concerning the computation time, we give in Table 6 some examples of computation times of
the empirical sizes, each model being generated for 500 Monte Carlo replications and T = k0+75.
Obviously, the computation time depends on the observation number m and on the regressor
number p. These simulations were performed on a cluster computer with CPU : 800 MHz, cache
size : 512 KB and RAM : 32 GB.
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