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Sequential change-point detection in Poisson
autoregressive models

Titre: Détection séquentielle de ruptures dans les models autorégressifs de Poisson

William Kengne1 *

Abstract: We consider the sequential change-point detection in a general class of Poisson autoregressive models. The
conditional mean of the process depends on a parameter θ∗0 ∈ Θ ⊂ IRd which may change over time as and when
data are observed. We propose a closed and open-end procedure based on the maximum likelihood estimator of the
parameter. Under the null hypothesis of no change, it is shown that the detector converges to a well know distribution.
The (empirical) power and the efficiency in terms of the detection delay are assessed through a simulation study and a
real data example is provided.

Résumé : Nous considérons la détection séquentielle de ruptures dans une classe assez générale de modèles de Poisson
autorégressifs de séries temporelles à valeurs entières. La moyenne conditionnelle du processus dépend d’un paramètre
θ∗0 ∈Θ⊂ IRd susceptible de changer dans le temps au fur et à mesure que les données sont observées. Nous proposons
une procédure séquentielle dont le temps de suivi peut être fini ou infini basée sur l’estimateur du maximum de
vraisemblance du paramètre. Sous l’hypothèse nulle selon laquelle aucun changement n’intervient dans le paramètre,
la statistique de test converge vers une distribution connue. Des résultats de simulations nous permettent d’évaluer la
puissance (empirique) ainsi que l’efficacité en terme du délai de détection et un exemple d’application aux données
réelles est fourni.
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1. Introduction

Detecting change in time series has become an important research topic in statistics in the last
three decades, since it has been known that many data often suffer from structural change. Before
any statistical inference, one must test if a change has not occurred in the model during the data
generating period. Two approaches are generally considered for solving this problem : the off-line
(or retrospective) detection and the on-line (or sequential) detection. The off-line detection is an
approach used when all data are available ; see the book of Csörgö and Horváth (1997) for a large
overview and Aue et al. (2009a); Bardet et al. (2012); Kengne (2012); Fryzlewicz and Subba Rao
(2013); Fokianos et al. (2014) among others, for some recent works that have been done in this
setting. The on-line (sequential) detection that we will focus here, refers to the change-point
detection as and when new data are observed.
* This work has been developed within the Labex MME-DII (ANR-11-LBX-0023-01) ; http://labex-mme-dii.

u-cergy.fr/.
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Numerous works have been devoted to the sequential change-point detection, we refer to the
book of Basseville et al. (1993) for a large surveys. But the important turning on this topic has been
done with the paper of Chu et al. (1996). They have pointed out that repeating the retrospective
test as new data are observed will increase the probability of type I error of the procedure. For
the regression model, they addressed the sequential change detection as a classical hypothesis
testing with a fixed probability of type I error and proposed two monitoring procedures based on
cumulative sum (CUSUM) of residuals and recursive parameter fluctuations. Their approach has
been generalized and extended in several directions. See Leisch et al. (2000); Horváth et al. (2004);
Zeileis et al. (2005); Aue et al. (2006); Horvath et al. (2007); Aue et al. (2009b) for some various
procedures for sequential change in linear models with independent and dependent innovations.
Berkes et al. (2004) and Gombay and Serban (2009) focussed respectively on the sequential
change-point detection in the parameters of GARCH and linear autoregressive processes ; whereas
Na et al. (2011) proposed fluctuation-type test procedure for sequential change detection in a
general class of time series models. Bardet and Kengne (2014) considered a large class of causal
models (that including AR(∞), ARCH(∞), TARCH(∞),... processes) and developed a sequential
procedure where the updated estimator is computed without the historical observations ; the
consistency of the procedure has been established.

In this paper, we focus on sequential change detection in a large class of Poisson autoregressive
models. More precisely, we consider a process Y = (Yt)t∈Z satisfying :

Yt/Ft−1 ∼ Poisson(λt) with λt = fθ ∗0
(Yt−1, . . .) (1)

where Ft = σ(Ys, s ≤ t) is the σ -field generated by the whole past of the process and f is a
measurable non-negative function assumed to be know up to some parameter θ ∗0 belonging to a
compact set Θ⊂ IRd .
Let {Nt(·) ; t = 1,2, · · ·} be a sequence of independent Poisson processes of unit intensity. Yt can
be seen as the number of events of Nt(·) in the time interval [0,λt ]. The feedback mechanism in
the conditional mean λt provides a large tool for modeling dependence structure in count events
(number of new infections, number of transactions per minute, number of defect products,· · · ).
The model with one order autoregression has been addressed by Fokianos et al. (2009); Fokianos
and Tjøstheim (2012). They investigated the asymptotic properties of the maximum likelihood
estimator by using a perturbation approach. Whereas Doukhan et al. (2012) use a weak depen-
dence approach to prove the existence of a stationary solution of a class of model larger than (1).
Neumann et al. (2011) focused on the absolute regularity and ergodicity of the model with one
order autoregression. For surveys on the change-point and outliers detection in integer-valued
autoregressive models and relate, we refer to Kang and Lee (2009, 2014); Fokianos and Fried
(2010, 2012); Doukhan and Kengne (2015).
The previous papers have worked out the retrospective change-point detection on variants of
the model (1) and related models. Sequential detection seems to be very important in finance,
economics or epidemiology. For example, in the real data application in finance (see below), it is
crucial to know early if the high variations in the number of transactions are noise effects or are
due to a structural change in the dynamic of the transaction process, before taking an appropriate
decision.
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100 W. Kengne

Now, assume that a trajectory (Y1, · · · ,Yn) of the process Y generated as in (1) with a parameter
θ ∗0 has been observed. In the setting of the sequential detection, these available observations
are called the historical data. New data Xn+1,Xn+2, · · · ,Xk, · · · will be observed and monitoring
scheme starts at time n+ 1. For each new observation, one would like to know if it has been
generated by the model depending on θ ∗0 or some other parameter θ ∗1 (with θ ∗1 6= θ ∗0 ). More
precisely, we consider the following test problem :

H0: θ ∗0 is constant over the observations Y1, · · · ,Yn,Yn+1, · · · i.e. (Yn)n∈IN satisfying (1) with the
parameter θ ∗0 ;

H1 : there exist k∗ > n, (θ ∗0 ,θ
∗
1 ) ∈ Θ2, with θ ∗0 6= θ ∗1 , such that (Y1, · · · ,Yk∗) satisfying (1) with

the parameter θ ∗0 and and (Yk∗+n)n∈IN satisfying (1) with θ ∗1 .

It is known that under H0, the maximum likelihood estimator (MLE in the sequel) of the
parameter θ ∗0 is consistent (see Doukhan and Kengne, 2015). Therefore, as the fluctuation pro-
cedure proposed by Chu et al. (1996), we define a detector based on the difference between the
historical and the updated parameter estimator. More precisely, at the time k > n, we compare the
estimator computed on the historical data to that computed with all the data up to the time k (i.e.
X1, · · · ,Xn,Xn+1, · · · ,Xk). Thus, under H0 these two quantities are consistent estimators of θ ∗0 , so
they will be close and the detector will not be large enough. We will show through simulation
study that the detector seems to be large enough under H1. Hence, if the detector is larger than
a suitable critical value, then H0 is rejected and a model with a new parameter is considered;
otherwise, the sequential monitoring scheme continues.

2. Assumptions and examples

2.1. Assumptions

We will use the following classical notations:

1. ‖y‖ :=
p∑

j=1
|y j| for any y ∈ IRp;

2. for any compact set K ⊆ IRd and for any function g : K −→ IRd′ , ‖g‖K = supθ∈K (‖g(θ)‖);

3. for any set K ⊆ IRd , ˚K denotes the interior of K .

Throughout the sequel, we will assume that the function θ 7→ fθ is twice continuously differen-
tiable on Θ. The following Lipschitz-type condition A0(Θ) is classical to ensure the existence of
solution of such model (see for instance Doukhan and Wintenberger, 2008) and the assumptions
A1(Θ), A2(Θ) as well as D(Θ), Id(Θ) and Var(Θ) are needed for inference on the model see
Doukhan and Kengne (2015).
For i = 0, 1, 2 and for any compact set K ⊆Θ, define
Assumption Ai(K ): ‖∂ i fθ (0)/∂θ i‖Θ < ∞ and there exists a sequence of non-negative real

numbers (α
(i)
k (K ))k≥1 satisfying

∞∑
j=1

α
(0)
k (K ) < 1 (when i = 0) and

∞∑
j=1

α
(i)
k (K ) < ∞ (when
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i = 1,2) such that∥∥∥∥∂ i fθ (y)
∂θ i −

∂ i fθ (y′)
∂θ i

∥∥∥∥
K
≤

∞∑
k=1

α
(i)
k (K )|yk− y′k| for all y,y′ ∈ (IR+)IN .

Assumption D(Θ): ∃c > 0 such that inf
θ∈Θ

( fθ (y))≥ c for all y ∈ (IR+)IN .

Assumption Id(Θ): For all (θ ,θ ′) ∈ Θ2,
(

fθ (Yt−1, . . .) = fθ ′(Yt−1, . . .) a.s. for some t ∈ Z
)
⇒

θ = θ ′.

Assumption Var(Θ): For all θ ∈Θ and t ∈ Z, the components of the vector
∂ fθ

∂θ i (Yt−1,...) are a.s.
linearly independent.

2.2. Examples

2.2.1. Linear Poisson autoregression

We consider an integer-valued time series (Yt)t∈Z satisfying for any t ∈ Z

Yt/Ft−1 ∼ Poisson(λt) with λt = φ0(θ
∗
0 )+

∑
k≥1

φk(θ
∗
0 )Yt−k (2)

where θ ∗0 ∈ Θ ⊂ IRd , the functions θ 7→ φk(θ) are positive and satisfying
∑

k≥1 ‖φk(θ)‖Θ
< 1.

This model is also called an INARCH(∞), due to its similarity with the classical ARCH(∞) model.
Assumptions A0(Θ) holds automatically. If the function φk are twice continuous differentiable such
that

∑
k≥1 ‖φ ′k(θ)‖Θ

< ∞ and
∑

k≥1 ‖φ ′′k (θ)‖Θ
< ∞, then A1(Θ) and A2(Θ) hold. If inf

θ∈Θ
φ0(θ)> 0

then D(Θ) holds. Moreover, if there exists a finite subset I ⊂ IN−{0} such that the function
θ 7→ (φk(θ))k∈I is injective, then assumption Id(Θ) holds and the model (2) is identifiable.
Note that the classical Poisson INGARCH(p,q) (see Ferland et al., 2006 or Weiß, 2009) obtained
with

λt = α0(θ
∗
0 )+

p∑
k=1

αk(θ0)λt−k +
q∑

k=1

βk(θ
∗
0 )Yt−k

is a special case of the model (2) if the condition
∑p

k=1 ‖αk(θ)‖Θ
+
∑q

k=1 ‖βk(θ)‖Θ
< 1 is satisfied.

Fokianos and Fried (2010) focussed on the intervention effects (that can generated sudden mean
shift or outliers see Fokianos and Fried, 2010) in this model whereas the diagnostic checking
when p = 0 has been addressed by Zhu and Wang (2010). The INGARCH(1,1) is known to
describe adequately the number of transactions in the stock Ericsson B (see Fokianos et al., 2009,
2013; Doukhan and Kengne, 2015).

2.2.2. Poisson exponential autoregressive model

This model, proposed by Fokianos et al. (2009) is defined by

Yt/Ft−1 ∼ Poisson(λt) with λt =
Ä
α0 +α1 exp(−γλ

2
t−1)
ä
λt−1 +βYt−1 (3)

where α0,α1,β ,γ > 0 are the parameters of the model. If α0+α1+β < 1, then the Lipschitz-type
conditions above hold. Moreover, the assumptions D(Θ), Id(Θ) and Var(Θ) hold. See Fokianos
et al. (2009) for an application of this model to transactions data.
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102 W. Kengne

3. The sequential procedure and the main results

3.1. Likelihood estimation

For any integer `≥ 1, denote
T` = {1,2, · · · , `}.

Let k ≥ n ≥ 1. If (X1, · · · ,Xk) is generated according to (1) with the parameter θ , then for any
`≤ k, the conditional (log)-likelihood (up to a constant) computed on T`, is given by

L(T`,θ) =
∑̀
t=1

Ä
Yt logλt(θ)−λt(θ)

ä
=
∑̀
t=1

`t(θ) with `t(θ) = Yt logλt(θ)−λt(θ)

where λt(θ) = fθ (Yt−1, . . .). In the sequel, we use the notation f t
θ

:= fθ (Yt−1, . . .). This (log)-
likelihood can be approximated by (see also Doukhan and Kengne, 2015)

L̂(T`,θ) =
∑̀
t=1

Ä
Yt log λ̂t(θ)− λ̂t(θ)

ä
(4)

where λ̂t(θ) := f̂ t
θ

:= fθ (Yt−1, . . . ,Y1,0, . . .) and λ̂1(θ) = fθ (0, . . .). The maximum likelihood
estimator of the parameter computed on T` is defined by

θ̂(T`) = argmaxθ∈Θ(L̂(T`,θ)). (5)

The two following results have been established by Doukhan and Kengne (2015). Under H0, if
θ ∗0 ∈ Θ̊ and D(Θ), Id(Θ), Var(Θ) and Ai(Θ) i = 0,1,2 hold with

∑
j≥1

√
j×α

(i)
j (Θ)< ∞ (6)

then
θ̂(Tn)

a.s.−−−−→
n→+∞

θ
∗
0

and
√

n(θ̂(Tn)−θ
∗
0 )

D−−−−→
n→+∞

N (0,Σ−1) (7)

where Σ = E
Ä

1
f 0
θ∗0

( ∂

∂θ
f 0
θ ∗0
)( ∂

∂θ
f 0
θ ∗0
)′
ä

and where ′ denotes the transpose. Under the above conditions,

the matrix

Σ̂n =
(1

n

n∑
t=1

1
f̂ t
θ

Ä ∂

∂θ
f̂ t
θ

äÄ ∂

∂θ
f̂ t
θ

ä′)∣∣∣∣
θ=θ̂(Tn)

is a consistent estimator of Σ. These results will be the main tools for the following sequential
procedure.

Journal de la Société Française de Statistique, Vol. 156 No. 4 98-112
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



Sequential change in Poisson autoregression 103

3.2. The sequential procedure

In the sequel, (Y1, · · · ,Yn) is supposed to be the historical available observations generated accord-
ing to (1) with the parameter θ ∗0 . At a monitoring instant k, we will assess the difference between
the two estimators θ̂(Tk) and θ̂(Tn). More precisely, according to (7), we define for any k > n the
statistic “Dk, called the detector by“Dk :=

√
n
∥∥∥Σ̂

1/2
n

Ä
θ̂(Tk)− θ̂(Tn)

ä∥∥∥.
This detector is well defined since the matrix Σ̂n is asymptotically symmetric and positive definite
(see Doukhan and Kengne, 2015). Note that, if change does not occur at time k > n, both the
estimators θ̂(Tk) and θ̂(Tn) are close and the detector “Dk is not too large.
Let T > 1 (T can be equal to infinity). The sequential monitoring scheme rejects H0 at the first
time k satisfying n < k ≤ [T n]+1 such that “Dk > c for a suitably chosen constant c > 0, where
[x] denote the integer part of x. The procedure is called closed-end method when T < ∞ and
open-end method when T = ∞. The set {n+1,n+2, · · · , [T n]} is called the monitoring period.
The choice of T depends on the time that we when to monitor the procedure. Note that, this choice
will not affect the efficiency of the procedure ; as we will see below, the critical value of the test
takes into account the choice of T . But in practice, we cannot monitor until infinity thus, we have
to choose T < ∞.
To build a detector that is sensitive to detect changes that occur at the beginning of the monitoring
and those occur a long time after the beginning of the monitoring, we use the so-called boundary
function b : [1,∞) 7→ (0,∞), assumed to be continuous and satisfying :

Inf
1≤t<∞

b(t)> 0.

Unlike Bardet and Kengne (2014), the decreasing assumption is not imposed to b.

The monitoring scheme rejects H0 at the first time k (with n < k≤ [T n]+1 ) such as “Dk > b(k/n).
Hence define the stopping time:

τ(n) := Inf
{

n < k ≤ [T n]+1
¿ “Dk > b(k/n)

}
with the convention that Inf{ /0}= ∞. Therefore, we have

P{τ(n)< ∞}= P
{ “Dk,`

b(k/n)
> 1 for some k between n and [T n]+1

}
= P

{
sup

n<k≤[T n]+1

“Dk

b(k/n)
> 1

}
. (8)

The main aim is to choose a suitable boundary function b(·) such as for some given α ∈ (0,1),

lim
n→∞

PH0{τ(n)< ∞}= α (9)

and PH1{τ(n)< ∞} is asymptotically close to one ; where the hypothesis H0 and H1 are specified
in Section 1.
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104 W. Kengne

If the break is suspected to occur soon after the beginning of the monitoring, a boundary function
b with the smallest values in the neighborhood of 1 is appropriate. Otherwise, choose a function b
that takes its largest values in the neighborhood of 1. But, in practice, we do not often know the
instant of the break. So, one will choose a constant boundary function b≡ c with c > 0, this leads
to compute a threshold c = cα that satisfying (9).
Moreover, if a change-point is detected under H1 i.e. τ(n)< ∞ and τ(n)> k∗, then the detection
delay is defined by

d̂n = τ(n)− k∗. (10)

d̂n is used to assess the efficiency of the procedure to early detect changes in the model. The
smaller is the detection delay, the better is the efficiency under the alternative.

3.3. Main results

Under H0, the parameter θ ∗0 does not change over the new observations. The following theorem
displays the asymptotic behavior under the null hypothesis of the detector “Dk for the open and
closed-end procedure.

Theorem 3.1. Assume D(Θ), Id(Θ), Var(Θ) and Ai(Θ) i = 0,1,2 hold with∑
j≥1

√
j×α

(i)
j (Θ)< ∞.

Under H0 with θ ∗0 ∈ Θ̊, for the open-end (T = ∞) and closed-end (T < ∞) procedure it holds that

lim
n→∞

P{τ(n)< ∞}= P
{

sup
1≤s≤T

‖Wd(s)− sWd(1))‖
s b(s)

> 1
}
,

where Wd is a d-dimensional standard Brownian motion.

In the case of using the most "natural" boundary function b(·) = c with c > 0, the following
corollary is a direct application of Theorem 3.1.

Corollary 3.1. Assume b(t) = c > 0 for all t ≥ 0. Under the assumptions of Theorem 3.1, and
with T ∈ (1,∞),

lim
n→∞

P{τ(n)< ∞}= P{Ud,T > c}

where
Ud,T =

»
(T −1)/T sup

0≤s≤1
‖Wd(s)‖ when 1 < T < ∞ (11)

and
Ud,∞ = sup

0≤s≤1
‖Wd(s)‖. (12)

So that, at a nominal level α ∈ (0,1), the critical value of interest is c = cα the (1−α)-quantile
of the distribution of Ud,T . Note that, the distribution of sup0<s≤1 ‖Wd(s)‖ is known see for
instance Berkes et al. (2004). The quantiles of this distribution can also be computed through a
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Monte Carlo simulation ; see the values display in Table 1 of Na et al. (2011) for d = 1,2, · · · ,5.
Under the alternative, one would like to show that

sup
n<k≤[T n]+1

“Dk

b(k/n)
P−−−−→

n→+∞
∞ (13)

which is enough for the consistency under H1. But this seems to be not easy, since the convergence
of θ̂(Tk) is not ensured under H1. But we believe that (13) can be obtained with an adapted version
of the procedure proposed by Bardet and Kengne (2014). This problem is the topic of a different
research project. Nevertheless, the following simulation study shows that the procedure based on“Dk still works well under the alternative.

4. Some numerical results

We present some numerical results for sequential change-point detection in Poisson autoregressive
models. These results are based on the application of the INGARCH(1,1) model that satisfying

Yt/Ft−1 ∼ Poisson(λt) with λt = α0 +α1λt−1 +β1Yt−1 (14)

where α0 > 0 and α1,β1 ≥ 0. Denote θ ∗ = (α0,α1,β1) the parameter of the model. As we men-
tioned above, this model is known to describe adequately the number of transactions in the stock
Ericsson B on that we will focus in the real data example. In the sequel, we take b(s) ≡ c is
constant and deal with the closed-end procedure with T = 2 ; hence the procedure is monitored
from k = n+1 to k = 2n. The nominal level used is α = 0.05. According to Corollary 3.1, the
critical value of the test satisfies cα =

»
(T −1)/T c′α where c′α is the (1−α)-quantile of the

distribution of sup0<s≤1 ‖Wd(s)‖ (d = 3 in this section). From Table 1 of Na et al. (2011), we get
cα = 2.130.

In the sequel, the historical data X1, · · · ,Xn are generated by the model (14) depending on the
parameter θ ∗0 . Under the null hypothesis, the new observations Xn+1, · · · ,X[T n] are also generated
according to θ ∗0 . Under the alternative, the new observations Xn+1, · · · ,Xk∗ are derived from the
model that depends on θ ∗0 while Xk∗+1, · · · ,X[T n] depend on θ ∗1 .

4.1. An illustration

We consider the above INGARCH(1,1) model and generate the historical data of length n =
500 according to the parameter θ ∗0 = (0.5,0.7,0.15). Figure 1(a) and (b) displays the statistics
(“Dk)501≤k≤1000 for a scenario without change and a scenario with break at k∗ = 1.25n = 625.
Figure 1 a-) shows that the detector “Dk is under the horizontal line which represents the critical
value of the test. In Figure 1 b-), before change occurs, “Dk is under the horizontal line and
increases with a high speed after change. Such growth over a long period indicates that something
happening in the model.
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 a-) Dk  for INGARCH(1,1) without change
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 b-) Dk  for INGARCH(1,1) with a break at k*=625 
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FIGURE 1. Typical realization of the statistics (D̂k)501≤k≤1000 for INGARCH(1,1) with n = 500. a-) The parameter
θ∗0 = (0.5,0.7,0.15) is constant; b-) the parameter θ∗0 = (0.5,0.7,0.15) changes to θ∗1 = (0.5,0.4,0.3) at k∗ = 625.
The horizontal solid line represents the limit of the critical region, the vertical dotted line indicates where the change
occurs and the vertical solid line indicates the time where the sequential procedure points a presence of break in the
data.

4.2. Sequential change-points detection in INGARCH(1,1) processes

For the problem of the sequential change-points detection in the INGARCH(1,1) model (14), we
consider the following scenarios.

– Scenario A : under H0, θ ∗0 = (0.5,0.7,0.15). Under H1, θ ∗0 changes to θ ∗1 = (0.5,0.4,0.3)
at k∗ = 1.25n.

– Scenario B : under H0, θ ∗0 = (1,0.2,0.3). Under H1, θ ∗0 changes to θ ∗1 = (0.4,0.2,0.3) at
k∗ = 1.25n.

Note that, the scenario A is close to the fitted model obtained from the number of transactions
per minute for the stock Ericsson B, which is known to exhibit α1 +β1 ≈ 0.9 (see for instance
Fokianos et al., 2009).
Table 1 reports the empirical levels and powers based on 200 replications for n = 150,300,500.
Some elementary statistics of the empirical detection delay (see (10)) are summarized in Table 2.

TABLE 1. Empirical levels and powers for sequential change-point detection in INGARCH(1,1) processes according
to the scenarios A and B.

n = 150 n = 300 n = 500

Empirical levels : Scenario A 0.090 0.085 0.060
Scenario B 0.085 0.075 0.055

Empirical powers : Scenario A 0.650 0.840 0.980
Scenario B 0.630 0.945 0.995
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TABLE 2. Elementary statistics of the empirical detection delay for sequential change-point detection in
INGARCH(1,1) processes according to the scenarios A and B.

d̂n Mean SD Min Q1 Med Q3 Max

Scenario A n = 150 ; k∗ = 187 53.96 27.25 4 34 55 78 109
n = 300 ; k∗ = 375 98.30 48.57 11 59 95 133 218
n = 500 ; k∗ = 625 102.90 53.67 13 65 94 126 351

Scenario B n = 150 ; k∗ = 187 65.77 21.64 17 49 68 84 112
n = 300 ; k∗ = 375 90.13 33.33 19 65 87 109 215
n = 500 ; k∗ = 625 94.60 29.03 32 74 91 112 206

The results of Table 1 show some distortion in the empirical levels. But it decreases as n
increases for approaching the nominal level according to Corollary 3.1. The empirical powers
increases with n and approaching one when n = 500 for both scenarios A and B. Even if the
asymptotic power one has not yet been proved, these results show the efficiency of the procedure
to detect change-points under the alternative.
Moreover, recall that the detection delay d̂n is the random distance between the break time and
the stopping time of the procedure. For example, when n = 150 with the break occurred at the
time k∗ = 187 ; from Table 2, this break is detected on average after a delay of 54 for the scenario
A. Note that, even if it appears to be symmetric (from Table 2 and some other simulations not
reported here) the distribution of d̂n is unknown. As pointed out by Bardet and Kengne (2014),
such procedure (that take into account all the historical data in the updated parameter estimate)
leads to a detection delay which increases with n ; but one can see that the standard deviation is
stabilized for n ≥ 300. According to the dependence structure of the model and the numerical
difficulties to compute the estimate of the parameter (a minimum sample size of 50 is needed to
expect the convergence of the numerical algorithm), the results of Table 2 are quite satisfactory.

4.3. Real data example

We consider the number of transactions per minute for the stock Ericsson B during July 16,
2002. There are 460 observations which represent trading from 09 : 35 to 17 : 14. These data are
displayed in Figure 2. Note that, the number of transactions per minute during July 2, 2002 has
been studied by Fokianos et al. (2009, 2013) and are known to be described adequately by the
INGARCH(1,1) model.
The INGARCH(1,1) model describes the first 130 observations(from 09 : 35 to 11 : 45) ade-
quately according to the goodness-of-fit test proposed by Fokianos et al. (2013). Therefore, these
observations are considered as the historical data and we assume that the parameter of the model
does not change during this period. Hence, the monitoring starts at the time t = 131 and the
detector “Dk is computed at each time where a new observation is supposed to be available. “Dk is
displayed in Figure 3.
Figure 3 shows that the procedure works well for this real data example, according to the detection
delay which is reasonably good. Note that, in practice, once the sequential procedure stops and
indicates a break in the observations, a retrospective procedure has to be applied to estimate the

Journal de la Société Française de Statistique, Vol. 156 No. 4 98-112
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



108 W. Kengne

Number of transactions per minute in stock Ericsson B on July 16, 2002
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FIGURE 2. Number of transactions per minute for the stock Ericsson B during July 16, 2002. The vertical line
represents the break detected using the retrospective procedure proposed by Doukhan and Kengne (2015).

real time of change. To end this subsection, let us point out that the sequential procedure could be
a good tool for off-line multiple change-points detection, see Bardet and Kengne (2014) for an
example of causal time series.

5. Proofs of the main results

In the sequel, C denotes a positive constant which the value may differ from one inequality to
another.
Under H0, the asymptotic covariance matrix of θ̂(Tn) is Σ−1. For any k > n, denote

Dk :=
√

n
∥∥∥Σ

1/2
Ä
θ̂(Tk)− θ̂(Tn)

ä∥∥∥.
The following lemma will be useful.

Lemma 5.1. Let T > 1 (can be equal to ∞). Under the assumptions of Theorem 3.1,

sup
n<k<[T n]+1

1
b(k/n)

‖“Dk−Dk‖= oP(1) as n→ ∞.

Proof. From Doukhan and Kengne (2015), it hold that Σ̂n
a.s.−−−→

n→∞
Σ, ‖θ̂(Tn)−θ ∗0 ‖= OP(1/

√
n)
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Dk  for the number of transactions
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FIGURE 3. Realizations of the statistics (D̂k)131≤k≤235 for number of transactions per minute in the stock Ericsson B
during July 16, 2002 ; the historical data considered are the first 130 observations. The horizontal solid line represents
the limit of the critical region, the vertical dotted line indicates the break that has been detected using the retrospective
procedure of Doukhan and Kengne (2015) and the vertical solid line indicates the stopping time of the sequential
procedure.

and for k > n, ‖θ̂(Tk)−θ ∗0 ‖= OP(1/
√

k) as n→ ∞. Hence

sup
n<k<[T n]+1

1
b(k/n)

‖“Dk−Dk‖=
1

Inf
1≤s≤T

b(s)
sup

n<k<[T n]+1

√
n
∥∥∥ÄΣ̂1/2

n −Σ
1/2
äÄ

θ̂(Tk)− θ̂(Tn)
ä∥∥∥

≤C sup
n<k<[T n]+1

√
n‖Σ̂1/2

n −Σ
1/2‖‖θ̂(Tk)−θ

∗
0 ‖

+C
√

n‖Σ̂1/2
n −Σ

1/2‖‖θ̂(Tn)−θ
∗
0 ‖

= oP(1)+oP(1) = oP(1).

Proof of Theorem 3.1
The following proof is for the closed-end procedure (T < ∞). The result for open-end (T = ∞)
procedure is established along similar lines.
According to (8) and Lemma 5.1, it suffices to show that

sup
n<k≤[T n]+1

Dk

b(k/n)
D−−−−→

n→+∞
sup

1≤s≤T

‖Wd(s)− sWd(1))‖
s b(s)

.
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For k > n, from the proof of Theorem 4.1 of Doukhan and Kengne (2015), it hold that

Σ(θ̂(Tk)−θ
∗
0 ) =

1
k

∂

∂θ
L(Tk,θ

∗
0 )+oP(

1√
k
) and Σ(θ̂(Tn)−θ

∗
0 ) =

1
n

∂

∂θ
L(Tn,θ

∗
0 )+oP(

1√
n
).

Hence,

Σ(θ̂(Tk)− θ̂(Tn)) =
1
k

Ä ∂

∂θ
L(Tk,θ

∗
0 )−

k
n

∂

∂θ
L(Tn,θ

∗
0 )
ä
+oP(

1√
n
).

The latter inequality holds uniformly in k > n by using oP(
1√
k
)+oP(

1√
n) = oP(

1√
n). Therefore,

√
nΣ

1/2(θ̂(Tk)− θ̂(Tn)) =
n
k

1√
n

Σ
−1/2
Ä ∂

∂θ
L(Tk,θ

∗
0 )−

k
n

∂

∂θ
L(Tn,θ

∗
0 )
ä
+oP(1)

=
n
k

1√
n

Σ
−1/2

( k∑
t=1

∂

∂θ
`t(θ

∗
0 )−

k
n

n∑
t=1

∂

∂θ
`t(θ

∗
0 )
)
+oP(1). (15)

According to Doukhan and Kengne (2015),
Ä
`t(θ

∗
0 ),Ft

ä
t∈Z

is a stationary ergodic square in-
tegrable martingale difference sequence with covariance matrix Σ. Hence, from Cramér-Wold
device (cf. Billingsley, 1968), it holds that, for any T > 1,

1√
n

[ns]∑
t=1

∂

∂θ
`t(θ

∗
0 )

D [1,T ]−−−−→
n→+∞

Wd,Σ

where Wd,Σ is a zero mean d-dimensional Gaussian process satisfying E
Ä
Wd,Σ(s)′Wd,Σ(τ)

ä
=

min(s,τ)Σ. Hence

n
[ns]

1√
n

Σ
−1/2

( [ns]∑
t=1

∂

∂θ
`t(θ

∗
0 )−

[ns]
n

n∑
t=1

∂

∂θ
`t(θ

∗
0 )
)

D [1,T ]−−−−→
n→+∞

Wd(s)− sWd(1)
s

(16)

where Wd is a d-dimensional standard Brownian motion. Thus, from (15) and (16), it follows that

sup
n<k≤[T n]+1

Dk

b(k/n)
= sup

n<k≤[T n]+1

1
b(k/n)

n
k

∥∥∥∥ 1√
n

Σ
−1/2

( k∑
t=1

∂

∂θ
`t(θ

∗
0 )−

k
n

n∑
t=1

∂

∂θ
`t(θ

∗
0 )
)∥∥∥∥+oP(1)

= sup
1<s≤T

1
b([ns]/n)

n
[ns]

∥∥∥∥ 1√
n

Σ
−1/2

( [ns]∑
t=1

∂

∂θ
`t(θ

∗
0 )−

[ns]
n

n∑
t=1

∂

∂θ
`t(θ

∗
0 )
)∥∥∥∥+oP(1)

D−−−−→
n→+∞

sup
1≤s≤T

‖Wd(s)− sWd(1)‖
sb(s)

.

Proof of Corollary 3.1
The following proof is for the closed-end procedure (T < ∞). The result for open-end (T = ∞)
procedure is established along similar lines.
If b(s)≡ c is constant, then from Theorem 3.1 it follows that

lim
n→∞

P{τ(n)< ∞}= P
{

sup
1≤s≤T

‖Wd(s)− sWd(1))‖
s

> c
}
.
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Hence, it suffices to show that

sup
1≤s≤T

‖Wd(s)− sWd(1))‖
s

D
=
»
(T −1)/T sup

0≤s≤1
‖Wd(s)‖.

By computing the covariance matrix, one can verify that¶Wd(s)− sWd(1))
s

, s≥ 1
© D
=
¶

Wd(
s−1

s
), s≥ 1

©
.

Thus,

sup
1≤s≤T

‖Wd(s)− sWd(1))‖
s

D
= sup

1≤s≤T

∥∥∥Wd(
s−1

s
)
∥∥∥

= sup
0≤τ≤1

∥∥∥Wd
ÄT −1

T
τ
ä∥∥∥

D
= sup

0≤τ≤1

»
(T −1)/T‖Wd(τ)‖.
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