
Journal de la Société Française de Statistique
Vol. 156 No. 4 (2015)

Sequential detection of transient changes in
stochastic-dynamical systems *

Titre: Détection séquentielle de changements transitoires dans des systèmes stochastiques - dynamiques

Van Long Do1 , Lionel Fillatre2 and Igor Nikiforov1

Abstract: This paper deals with the problem of detecting transient changes in stochastic-dynamical systems. A
statistical observation model which depends on unknown system states (often regarded as the nuisance parameter) is
developed. The negative impact of nuisance parameter is then eliminated from the observation model by utilizing the
invariant statistics. The Variable Threshold Window Limited CUmulative SUM (VTWL CUSUM) test, previously
developed for independent observations, is adapted to the novel observation model. Taking into account the transient
change detection criterion, minimizing the worst-case probability of missed detection subject to an acceptable level of
the worst-case probability of false alarm within a given time period, the thresholds of the VTWL CUSUM test are
optimized. It is shown that the optimized VTWL CUSUM algorithm is equivalent to the Finite Moving Average (FMA)
detection rule. A numerical method for estimating the probability of false alarm and missed detection is proposed. The
theoretical results are applied to the problem of cyber/physical attack (stealing water from a reservoir) detection on a
simple Supervisory Control and Data Acquisition (SCADA) water distribution system.

Résumé : Cet article s’intéresse au problème de détection de changements transitoires dans des systèmes stochastiques
et dynamiques. Le modèle d’observation statistique étudié dépend de l’état inconnu du système considéré comme un
paramètre de nuisance. Ce paramètre de nuisance est éliminé en utilisant la technique, bien connue dans la communauté
du diagnostic automatique, de la projection des observations dans l’espace de parité. L’algorithme de la Somme
Cumulée à Fenêtre Limitée et Seuils Variables (VTWL CUSUM) est adapté au modèle d’observation utilisé. Le
critère de détection de changement transitoire étudié vise à minimiser la pire probabilité de détection manquée sous la
contrainte que la pire probabilité de la fausse alarme soit bornée pendant une période de longueur donnée. Les seuils
de l’algorithme sont optimisés pour obtenir la meilleure performance. Il est montré que l’algorithme VTWL CUSUM
optimal est équivalent à l’algorithme de la Moyenne Glissante Finie (FMA). Une méthode numérique est proposée
pour estimer les probabilités de fausse alarme et de détection manquée. Enfin, les résultats théoriques sont appliqués à
la détection d’attaques cyber-physiques, dans un système de distribution d’eau potable, qui ont pour but de voler l’eau
d’un réservoir.
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Sequential detection of transient changes in stochastic-dynamical systems 61

1. Introduction

The problem of detecting abrupt changes in stochastic systems has many important applications,
including fault detection in complex technical systems, on-line monitoring of safety-critical
infrastructures, detection of signals with unknown arrival time in radar and sonar signal processing,
and segmentation of signals.

The sequential change detection problem, including the quickest change detection and the
transient change detection, consists in calculating the stopping time T at which the change is
detected, based on the sequence of observations. The traditional quickest change detection problem
deals with an abrupt change in dynamic-stochastic systems, where the post-change period is
assumed to be infinitely long. The average detection delay should be as small as possible subject
to an acceptable level of false alarms. There is an extensive literature in the theory of quickest
change detection: see, for example, Basseville and Nikiforov (1993); Lai (1995, 1998, 2001);
Poor and Hadjiliadis (2009); Tartakovsky and Moustakides (2010); Polunchenko and Tartakovsky
(2012); Tartakovsky et al. (2014). In the non-Bayesian framework, where the change time is
unknown but non-random, some optimal algorithms with respect to (w.r.t.) different criteria of
optimality have been introduced in Lorden (1971); Moustakides (1986); Lai (1998); Tartakovsky
(2005). On the other hand, some optimality criteria as well as optimal detection rules under the
Bayesian framework, where the change time is unknown and random, can be found in Shiryaev
(1963); Roberts (1966); Pollak (1985); Tartakovsky and Moustakides (2010).

In contrast to the quickest change detection problem, in the transient change detection, the
post-change period is usually short. The traditional quickest change detection criterion minimizing
the average detection delay subject to an acceptable level of false alarms is not suitable for a
short post-change period. Here, we wish to minimize the probability of missed detection subject
to an acceptable level of false alarms. The optimality criterion involving the minimization of
the worst-case (conditional) probability of missed detection subject to an upper bound on the
worst-case probability of false alarm within a given time period has been proposed in Bakhache
and Nikiforov (2000) and Guépié et al. (2012b). A sub-optimal solution w.r.t. this criterion in the
case of Gaussian independent observations has been introduced in Guépié et al. (2012b).

In safety-critical infrastructures such as the electric power systems, water distribution systems
or gas pipelines, it is desirable to detect the abnormal situations with the detection delay upper
bounded by a prescribed value. The above mentioned transient change detection criterion is
well-adapted to such situations. Examples of such safety-critical applications include, among
others, the radar and sonar detection Streit and Willett (1999), the navigation system integrity
monitoring Bakhache and Nikiforov (2000), the water distribution system monitoring Guépié
et al. (2012b), or cyber attacks on networked control systems Huang et al. (2009).

The majority of such complex technical systems can be modeled by stochastic-dynamical
systems. Often it can be a discrete-time state space model, where the transient changes are
modeled as additive signals of short duration. By pursuing the work of Guépié et al. (2012b,a),
the goal of this paper is to propose a sub-optimal algorithm for detecting the transient changes in
stochastic-dynamical systems. The contribution of this paper is threefold :

– The generalization of the previously developed Variable Threshold Window Limited CU-
mulative SUM (VTWL CUSUM) test to a discrete-time state space model with nuisance
parameters and additive transient changes.
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– The optimization of the proposed VTWL CUSUM test w.r.t. the above mentioned criterion.
It is shown that the optimized VTWL CUSUM test leads to the FMA detection rule. A
numerical method for evaluating the statistical performance of the proposed algorithm is
also provided.

– The application of the optimized VTWL CUSUM test to the detection of cyber/physical
attacks on a simple SCADA water distribution network.

This paper is organized as follows. The problem statement is given in Section 2. The design of
the VTWL CUSUM algorithm for detecting transient changes of known profiles in stochastic-
dynamical systems is described in Section 3. In Section 4, the statistical performance and the
optimization of the proposed algorithm are investigated. The theoretical findings are applied to
the detection of cyber/physical attacks on a simple SCADA water distribution network and they
are compared with the results of Monte Carlo simulation in Section 5. Some concluding remarks
and perspectives are given in Section 6.

2. Problem statement

Firstly, we shortly recall the problem of sequential detection of abrupt changes in random signals.
Then, we introduce the problem of transient change detection. Finally, the state space model with
nuisance parameters and additive transient changes is considered.

2.1. Quickest change detection

Let {yk}k≥1 be an independent random sequence observed sequentially. Under normal operation,
the observations y1, · · · ,yk0−1 follow a distribution P0 (resp. the cumulative distribution function
(c.d.f.) F0 and the probability density function (p.d.f.) p0). From an unknown change time k0, the
observations yk0 ,yk0+1, · · · ,y∞ follow another distribution P1 6= P0 (resp. the c.d.f. F1 and the
p.d.f. p1), corresponding to the abnormal behavior. The statistical model for the quickest change
detection problem is described as follows:

yk ∼

{
P0 if k < k0

P1 if k ≥ k0
, (1)

where k0 is the unknown change time.
A quickest change detection algorithm should calculate the stopping time T at which the

change is decided. The mean detection delay should be as small as possible subject to an ac-
ceptable level of false alarms. Let Pk0 be the joint distribution of the independent observations
y1,y2, . . . ,yk0−1,yk0 , . . . ,y∞ when yi ∼P0 for 1≤ i≤ k0−1 and yi ∼P1 for i≥ k0. Let Ek0 (resp.
E0) and Pk0 (resp. P0) be the mathematical expectation and probability w.r.t. the distribution Pk0

(resp. P0 = P∞).
The first optimality results in the non-Bayesian approach were obtained in Lorden (1971),

where the author proposed to minimize the worst-case (conditional) mean detection delay

E(T ) = sup
k0≥1

esssupEk0

[
(T − k0 +1)+ |y1,y2, · · · ,yk0−1

]
(2)
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Sequential detection of transient changes in stochastic-dynamical systems 63

among all stopping times T satisfying E0 (T )≥ γ , where (x)+ = max(0,x), E0 (T ) is the average
run length to false alarm (ARL2FA) and γ > 0 is the prescribed value for ARL2FA. The following
CUSUM detection rule, which was first introduced by Page (1954):

TCS = inf
{

k ≥ 1 : max
1≤i≤k

Sk
i ≥ h

}
; Sk

i ,
k

∑
t=i

log
p1 (yt)

p0 (yt)
(3)

was proved to be asymptotically optimal (as γ → ∞) w.r.t. the Lorden’s criterion, where h is the
chosen threshold. The non-asymptotic optimality of the CUSUM test has been established in
Moustakides (1986) and Ritov (1990).

However, as shown in Lai (1998), the requirement of having large values of the ARL2FA
E0 (T ) does not guarantee small values of the probability of false alarm P0 (l ≤ T ≤ l +mα −1)
within a fixed size of time window mα , for all l ≥ 1. As a result, Lai (1998) proposed to replace
traditional constraint on the ARL2FA E0 (T )≥ γ by the following constraint on the worst-case
probability of false alarm within any time window of length mα :

sup
l≥1

P0 (l ≤ T ≤ l +mα −1)≤ α, (4)

where liminfmα/| logα|> ρ
−1
10 but logmα = o(| logα|) as α→ 0 and ρ10 =E1 [log p1 (y)/p0 (y)]

stands for the Kullback-Leibler information number between p0 and p1. Moreover, Lai (1998) has
shown that the Window Limited CUSUM test, which was first introduced by Willsky and Jones
(1976), minimizes the average detection delay Ek0 (T − k0)

+ over all stopping times T satisfying
the criterion (4), uniformly in k0 ≥ 1.

2.2. Transient change detection

Unlike the quickest change detection problem, the post-change period in the transient change
detection problem is assumed to be short. The following statistical model is used for describing
transient changes in a stochastic system:

yk ∼


P0 if k < k0

P1 if k0 ≤ k < k0 +L
P0 if k ≥ k0 +L

, (5)

where L denotes the change duration. As discussed in Guépié et al. (2012b), there are two types
of transient change detection problem. The first type is the detection of suddenly arrived short
signal of random unknown duration L, say an acoustic signature. The second type involves the
safety-critical applications such as the integrity monitoring in navigation systems or the detection
of cyber/physical attacks on SCADA systems. In such circumstances, the maximum permitted
detection delay is a priori fixed to a prescribed value L. This value is calculated taking into
account the gravity of a fault/attack undetectable during L unit of time and the detection of a
change with the delay greater than L is then considered as missed. Therefore, the optimality
criteria for the transient detection problem should favor a small probability of missed detection
given an acceptable false alarm rate.
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Let us assume that starting from now Pk0 be the joint distribution of the observations
y1,y2, . . . ,yk0−1,yk0 , . . . ,y∞ when yk follows the transient change model described by (5). An
analysis of different methods for detection of transient changes can be found in Guépié et al.
(2012b). It is shown that the existing methods of transient change detection are mainly applicable
to finite observation intervals, i.e. to a posteriori transient change detection. The only exclusions
are Repin (1991); Han et al. (1999); Chen and Willett (2000); Bakhache and Nikiforov (2000);
Premkumar et al. (2010). The traditional quickest change detection criterion involving minimiza-
tion of the mean detection delay under constraint on the false alarm probability is used in Chen
and Willett (2000) and Premkumar et al. (2010). Another criterion of optimality involving the min-
imization of the worst-case probability of missed detection supk0≥1Pk0 (T − k0 +1 > L) subject
to the constraint (4) has been proposed in Bakhache and Nikiforov (2000) under a non-Bayesian
setting. The minimization of the probability of missed detection under constraint on the false
alarm probability is considered in Premkumar et al. (2010) under a Bayesian setting.

Motivated by safety-critical applications, we use through this paper the criterion of optimality
introduced in Guépié et al. (2012b), which involves the minimization of the worst-case conditional
probability of missed detection (under the assumption that the change does not occur during the
“preheating” period (i.e. k0 ≥ L))

inf
T∈Cα

{
Pmd (T ;L) = sup

k0≥L
Pk0 (T − k0 +1 > L|T ≥ k0)

}
(6)

among all stopping times T ∈Cα satisfying

Cα =

{
T : P f a (T ;m) = sup

l≥L
P0 (l ≤ T < l +m−1)≤ α

}
(7)

where Pmd denotes the worst-case probability of missed detection and P f a stands for the worst-case
probability of false alarm within any time window of length m.

Remark 1. Let us discuss the motivation of criterion (6) – (7). If the traditional quickest change
detection criterion, i.e., the (worst-case) mean detection delay, is used in the framework of
safety-critical applications, then this criterion evaluates the (worst-case) weighted sum of timely
detection delays (when T−k0+1≤ L) and latent detection delays (when T−k0+1> L). But, as it
follows from the previous paragraphs, we are interested in minimizing the proportion (probability)
of latent detections (when T − k0 +1 > L). Moreover, in the case of timely detections (resp. latent
detections) the true delay has no significance. For this reason the traditional (worst-case) mean
detection delay criterion is unacceptable for safety-critical applications and the minimization of
the worst-case probability of latent detection (when T − k0 +1 > L) (6) should be used instead.
Some difficulties in using the traditional quickest change detection criterion in the case of transient
change detection are also discussed in Bakhache and Nikiforov (2000). Concerning the definition
of the class Cα , see (7), the idea of Lai (1998) that the criterion involving the probability of false
alarm within any time window is more stringent than the traditional ARL2FA criterion is used
here, see Section 2.1.

To detect the transient change (5), a Variable Threshold (VT) modification of the WL CUSUM
test has been proposed in Guépié et al. (2012a); Guépié (2013). The stopping time of the VTWL
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CUSUM test is :

TV TWL = inf
{

k ≥ L : max
k−L+1≤i≤k

(
Sk

i −hk−i+1

)
≥ 0
}
, (8)

where TV TWL is the stopping time, the variable thresholds h1,h2, · · · ,hL are used as tuning parame-
ters to minimize the worst-case probability of missed detection supk0≥LPk0 (TV TWL− k0 +1 > L|TV TWL ≥ k0)
among all VTWL CUSUM tests TV TWL ∈Cα satisfying the constraint (7). It has been shown that
the optimization of the VTWL CUSUM test leads to the following Finite Moving Average (FMA)
test:

TFMA = inf

{
k ≥ L :

L

∑
i=k−L+1

yi ≥ h̃

}
, (9)

where h̃ is the chosen threshold. This paper generalizes the previous works Guépié et al. (2012b,a);
Guépié (2013) to the detection of transient changes in stochastic-dynamical systems.

2.3. Transient change in stochastic-dynamical systems

Let us consider a stochastic-dynamical system without process noise. Under normal operation,
the system model can be described by a discrete-time state space form as follows:{

xk+1 = Axk +Buk +Fdk

yk =Cxk +Duk +Gdk +ξk
; x0 = x0, (10)

where xk ∈ Rn is the vector of system states with unknown initial conditions x0 = x0, uk ∈ Rm is
the vector of control signals, dk ∈ Rq is the vector of disturbances, yk ∈ Rp is the vector of sensor
measurements, ξk ∈ Rp is the vector of sensor noises, which is assumed to be a multivariate zero-
mean Gaussian distribution ξk ∼N (0,R), where R ∈ Rp×p is a known constant positive-definite
matrix; the matrices A ∈ Rn×n, B ∈ Rn×m, F ∈ Rn×q, C ∈ Rp×n, D ∈ Rp×m, and G ∈ Rp×q are
assumed to be known.

Let us assume that a transient change occurs in the system, impacting, both, the state space
equation and the sensor measurement equation during a short period [k0,k0 +L−1], where k0 is
an unknown change point and L is the transient change period, assumed to be known. The system
model including the transient change is given by{

xk+1 = Axk +Buk +Fdk +Baak

yk =Cxk +Duk +Gdk +Daak +ξk
; x0 = x0, (11)

where the matrices Ba ∈ Rn×s and Da ∈ Rp×s are decided by the system architecture and the
transient change vector ak ∈ Rs can be modeled as follows:

ak =


0 if k < k0

θk−k0+1 if k0 ≤ k < k0 +L
0 if k ≥ k0 +L

, (12)
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where θk−k0+1 ∈ Rs for k0 ≤ k ≤ k0 +L− 1 is the change profile, which is assumed perfectly
known in the sequel.

To support our assumption about the known change profile, it is important to note that the
vectors θ1, . . . ,θL are defined by the dynamics of equipment and by the type of attack. For some
water (or gas) distribution systems, the dynamics of equipment (pumps, compressors, etc.) is a
priori known or can be pre-calculated (because it is defined by the pump characteristics, pressures,
pipeline diameters, volumes of reservoirs, etc.) The a priori information on the different types of
attack is certainly less reliable. But it can be assumed that each attack scenario leads to a particular
attack signature.

Let us consider the following example. It is assumed that the water distribution system is
equipped with constant speed pumps (it is a very typical equipment). Hence, a pump has only
two operational modes : “on” or “off”. If the attacker decides to switch the pump from “off” to
“on”, then the transient change profile can be calculated from the constructive parameters of pump
and from the parameters of the entire system. Hence, there are scenarios in which the transient
change “shape” is known, at least approximately. The sensitivity of the proposed algorithm w.r.t.
the change profile θ1, . . . ,θL will be examined in Subsections 4.4 and 5.3.

3. Detection algorithm

Unfortunately, we cannot establish the (asymptotic) optimality of the proposed VTWL CUSUM
test in the class Cα . Some mathematical problems with optimality arising in the case of transient
change detection are discussed in Bakhache and Nikiforov (2000). The only available result on
the optimality of transient change detection algorithms is obtained for the special case of L = 1
for a criterion slightly different from (6) – (7), see Moustakides (2014). It is the Shewhart test, i.e.,
the repeated Neyman-Pearson test applied to one observation (L = 1 !). The detection algorithm
proposed in this section coincides with the Shewhart test in the case of L = 1. Unfortunately, the
case of L = 1 has a very limited practical application.

On the contrary, Theorem 2 states that the VTWL CUSUM test is optimal for a sub-class of
the class Cα by using an upper bound for obtained for Pmd (TV TWL) in Theorem 1. This sub-class
is limited to the repeated one-sided truncated sequential tests (see Theorem 2). Therefore, starting
from now, we introduce a sub-optimal algorithm w.r.t. criteria (6) – (7) for detecting the transient
change in the stochastic-dynamical system modeled by (11) – (12).

The algorithm is designed in several steps. Firstly, the state space model is reduced to a
regression model with redundancy by using a block of last L measurements yk−L+1, . . . ,yk in
Section 3.1. Then, in Section 3.2, the nuisance parameters are eliminated from the observation
model by the technique of invariant tests introduced in Fouladirad and Nikiforov (2005). Finally,
the VTWL CUSUM test is proposed to detect the transient change in the stochastic-dynamical
system with nuisance parameters in Section 3.3.

3.1. Observation model

It is assumed that the change does not occur during the preheating period (1≤ k < L) and that the
detection algorithm is not operational during this period. By utilizing a block of last L observations
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yk−L+1, . . . ,yk, the vector of these observations is rewritten as


yk−L+1
yk−L+2

...
yk


︸ ︷︷ ︸

yk
k−L+1

=


C

CA
...

CAL−1


︸ ︷︷ ︸

C

xk−L+1 +


D 0 · · · 0

CB D · · · 0
...

...
. . .

...
CAL−2B CAL−3B · · · D


︸ ︷︷ ︸

D


uk−L+1
uk−L+2

...
uk


︸ ︷︷ ︸

uk
k−L+1

+


ξk−L+1
ξk−L+2

...
ξk


︸ ︷︷ ︸

ξ k
k−L+1

+


G 0 · · · 0

CF G · · · 0
...

...
. . .

...
CAL−2F CAL−3F · · · G


︸ ︷︷ ︸

G


dk−L+1
dk−L+2

...
dk


︸ ︷︷ ︸

dk
k−L+1

+


Da 0 · · · 0

CBa Da · · · 0
...

...
. . .

...
CAL−2Ba CAL−3Ba · · · Da


︸ ︷︷ ︸

M


ak−L+1
ak−L+2

...
ak


︸ ︷︷ ︸

θ k
k−L+1(k0)

, (13)

where xk−L+1 ∈ Rn is the vector of unknown system states at time k−L+1 and yk
k−L+1 ∈ RLp

is the vector of observations, uk
k−L+1 ∈ RLm is the vector of control signals, dk

k−L+1 ∈ RLq is the
vector of disturbances, θ k

k−L+1(k0) ∈ RLs is the vector of transient changes and ξ k
k−L+1 ∈ RLp is

the vector of sensor noises; the matrices C ∈RLp×n, D ∈RLp×Lm, G ∈RLp×Lq and M ∈RLp×Ls.
The observation model can be rewritten in a matrix form as

yk
k−L+1 = C xk−L+1 +Duk

k−L+1 +G dk
k−L+1 +M θ

k
k−L+1(k0)+ξ

k
k−L+1. (14)

Generally, the control signals uk are the outputs of the controller then they are known to system
operators. In safety-critical infrastructures such as electric power grids, water distribution networks
or gas pipelines, the disturbances dk correspond to the customers’ demands which can be estimated
by special-designed software. For this reason, let us suppose that the control signals uk and the
disturbances dk are known. Hence, the vectors Duk

k−L+1 and G dk
k−L+1 are eliminated from (14)

by subtraction :

rk
k−L+1 = yk

k−L+1−
(
Duk

k−L+1 +G dk
k−L+1

)
= C xk−L+1 +M θ

k
k−L+1(k0)+ξ

k
k−L+1, (15)

where rk
k−L+1 ∈ RLp is the vector of simplified observations, which depends on the unknown

system states xk−L+1, the vector of transient changes θ k
k−L+1(k0) and the vector of sensor noises

ξ k
k−L+1. The vector of transient changes θ k

k−L+1(k0) depends on the change time k0 by the following
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relation:

θ
k
k−L+1 (k0) =



[0] if k < k0
[0]
θ1
...

θk−k0+1

 if k0 ≤ k < k0 +L


θk−k0−L+2

...
θL

[0]

 if k0 +L≤ k < k0 +2L−1

[0] if k ≥ k0 +2L−1

, (16)

where [0] is the null vector of appropriate dimension and the attack profile vector θ1,θ2, · · · ,θL

are completely known. Our problem is to detect the presence of transient changes θ k
k−L+1(k0)

based on observation model (15) – (16) and considering the initial state xk−L+1 as unknown (and
non-random) parameter.

Remark 2. Let us discuss the vector of transient change θ k
k−L+1 (k0) in (16). During the pre-

change mode (i.e., k < k0), it is a null vector. During the period of transient change (i.e., k0 ≤ k≤
k0 +L−1), it depends only on the relative position of the change point k0 inside the time window
[k−L+1,k]. In other words, θ k

k−L+1 (k0) = θ L
1 (k0− k+L) for k−L+1≤ k0 ≤ k. For example,

when k0 = k−L+1 then θ k
k−L+1 (k−L+1) = θ L

1 (1) and when k0 = k then θ k
k−L+1 (k) = θ L

1 (L),
for all k ≥ L. The post-transient change vector θ k

k−L+1 (k0), where k ≥ k0 +L, can be potentially
used for latent detection mode but it will not be used in this paper since the maximum allowable
detection delay is L and all detections with delay greater than L are considered as missed.

3.2. Nuisance parameter rejection

As it follows from equations (10) – (11), the considered state-space model is only partially
stochastic. The process noise is absent and only the measurement (sensor) noise is included.
Hence, the state equation is non-random and it is “driven” by the initial state vectors x0, which is
unknown and non-random, and by the known vectors of control signals uk and disturbances dk.
For the SCADA systems, the known vectors uk and dk have a clear significance : the output of
controllers and the customers’ demands. The impact of these vectors can be easily eliminated (see
equation (15)), but the concatenated vector of measurements rk

k−L+1 also depends on the unknown
system state xk−L+1.

The goal of the detection algorithm is to detect the presence of transient change θ k
k−L+1 (k0)

completely ignoring the initial state xk−L+1, which does not represent any interest for the transient
change detection problem. Unfortunately, the negative impact of the vector xk−L+1 on the vector
of measurements rk

k−L+1 represents a serious obstacle. Following the statistical tradition, such
parameter xk−L+1 is called “nuisance”. Hence, to solve the problem of transient change detection,
the unknown nuisance parameter xk−L+1 has to be rejected from the observations (15) – (16) in
order to avoid its negative impact on the VTWL CUSUM test.
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The application of invariant hypothesis testing theory to the state space model (10) is discussed
in Fouladirad and Nikiforov (2005). The main idea is the following : the observation vector
rk

k−L+1 is projected on the orthogonal complement R(C )⊥ of the column space R(C ) of matrix
C . This projection is the residual vector r̃k

k−L+1 = W rk
k−L+1, where the rows of the matrix

W of size (Lp− rank(C ))× Lp are composed of the eigenvectors of the projection matrix
PC = I −C

(
C T C

)−
C T corresponding to eigenvalue 1,

(
C T C

)− is the generalized inverse
of C T C , rank(C ) denotes the rank of C and I is the identity matrix of appropriate dimension.
The matrix W satisfies the following conditions W C = 0, W T W = PC and W W T = I . If the
matrix C is of full column rank, then PC = I −C

(
C T C

)−1
C T but this is the worst-case. The

smaller is the rank(C ), the less significant is the negative impact of xk−L+1.
Let us assume that the matrix C is of full column rank n in the rest of the paper. Hence, the

residual vector
r̃k

k−L+1 = W rk
k−L+1 = W M θ

k
k−L+1 (k0)+W ξ

k
k−L+1 (17)

is independent of the nuisance parameter xk−L+1. It has been shown that the residual vector r̃k
k−L+1

is the maximal invariant statistics (see details in Fouladirad and Nikiforov, 2005). Therefore, any
invariant statistics is a function of the maximal invariant r̃k

k−L+1.
Let us investigate now the distribution of the residual vector r̃k

k−L+1. Let R and Σ be the co-
variance matrix of the random noise vector ξ k

k−L+1 and the residual vector W rk
k−L+1, respectively.

Then,

R =

 R · · · 0
...

. . .
...

0 · · · R

 ∈ RLp×Lp; Σ = W RW T ∈ R(Lp−n)×(Lp−n) (18)

since matrix C is assumed to be full column rank. Hence, the residual vector r̃k
k−L+1 follows the

following Gaussian distribution

r̃k
k−L+1 ∼N

(
W M θ

k
k−L+1 (k0) ,Σ

)
, k ≥ L, (19)

where the parameter vector θ k
k−L+1 (k0) is described in (16). Let us denote by P̃k0 the joint

distribution of the random vectors r̃L
1 , r̃

L+1
2 , . . . , r̃k0

k0−L+1, . . . when r̃k
k−L+1 follows the transient

change model defined by (16) – (19). This nuisance-free model will be used in the following
subsection for designing the detection algorithm.

3.3. VTWL CUSUM test

Let us denote the probability measures of the vector r̃k
k−L+1 by P̃i under the hypothesis of

the presence of transient change θ k
k−L+1(i) at position i in the time window [k−L+ 1,k] (see

Remark 2 for details) and by P̃0 under the hypothesis that there is no change in the time window
[k−L+1,k]. Let us define the VTWL CUSUM test (8) adapted to the state-space model with
nuisance parameters. It utilizes the last L observations at each time instant k ≥ L:

TV TWL = inf
{

k ≥ L : max
k−L+1≤i≤k

(
Sk

i −hk−i+1

)
≥ 0
}
, (20)
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where Sk
i is the log-likelihood ratio (LLR) between the probability measures P̃i and P̃0 written

for the vector r̃k
k−L+1. It is expressed by

Sk
i = log

p̃
θ k

k−L+1(i)

(
r̃k

k−L+1

)
p̃0
(
r̃k

k−L+1

) = log
p̃

θ k
k−L+1(i)

(
W rk

k−L+1

)
p̃0
(
W rk

k−L+1

) , (21)

where p̃
θ k

k−L+1(i)
(·) (resp. p̃0 (·)) is the p.d.f. of the probability measure P̃i (resp. P̃0). In the

Gaussian case, the LLR Sk
i is calculated as follows

Sk
i =

[
M θ

k
k−L+1 (i)

]T [
W T

Σ
−1W

][
rk

k−L+1−
1
2
M θ

k
k−L+1 (i)

]
, (22)

where the vector θ k
k−L+1 (i) is calculated by (16), for k−L+1≤ i≤ k.

The VTWL CUSUM test proceeds as follows. For each time instant k≥ L, the VTWL CUSUM
test uses a block of L last observations yk−L+1, . . . ,yk for decision making. First, the simplified
observation vector rk

k−L+1 is computed by (15). Next, for each time instant i from k−L+1 to k,
the LLR Sk

i is calculated by (22) and (16). Then, the VTWL CUSUM test compares the LLR Sk
i

to the threshold hk−i+1 and the alarm TV TWL is declared if one of the LLRs is greater than or equal
to its corresponding threshold. The thresholds h1,h2, · · · ,hL are considered as tuning parameters
of the VTWL CUSUM test.

4. Statistical performance of the VTWL CUSUM test

The goal of this section is to investigate the statistical performance of the proposed VTWL
CUSUM test. First, we show that the worst-case probability of false alarm corresponds to the
first time window of size L and we introduce the upper bound on the worst-case probability of
missed detection instead of its exact value in Section 4.1. Second, the optimization problem
for the VTWL CUSUM test is proposed and solved in Section 4.2. The goal is to minimize
the upper bound of the worst-case probability of missed detection Pmd provided that the worst-
case probability of false alarm P f a is upper bounded by a given constant α . It will be shown
that the optimized VTWL CUSUM test is equivalent to the FMA test. A numerical method for
estimating the worst-case probability of false alarm P f a and the probability of missed detection
Pk0 (T − k0 +1 > L|T ≥ k0) is proposed in Section 4.3. Finally, the sensitivity analysis of the
FMA test is available in Section 4.4.

Let φ k
k−L+1 (i) ∈ RLp, for k ≥ L and k−L+1≤ i≤ k, be coefficient vectors calculated from

the profile vectors θ k
k−L+1 (i) and system parameters M , W and Σ as follows:

φ
k
k−L+1 (i) =

[
W T

Σ
−1W

][
M θ

k
k−L+1 (i)

]
, (23)

where the coefficient vectors φ k
k−L+1 (i) can be described as (see Remark 3)

φ
k
k−L+1 (i) =

 φ1 (i)
...

φL (i)

 , φ j (i) ∈ Rp, k−L+1≤ i≤ k, 1≤ j ≤ L. (24)
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As shown in Appendix A, the LLR Sk
i , for k−L+1≤ i≤ k can be represented as a function of the

coefficient vectors φ k
k−L+1 (i), the random noise vector ξ k

k−L+1 and its mathematical expectation
Ek0

[
Sk

i
]

as follows :

Sk
i =

[
φ

k
k−L+1 (i)

]T
ξ

k
k−L+1 +Ek0

[
Sk

i

]
, (25)

where Ek0

[
Sk

i
]

is the mathematical expectation of Sk
i w.r.t. the distribution P̃k0 .

Remark 3. The coefficient vector φ k
k−L+1 (i), where k−L+1≤ i≤ k, is independent of the time

k ≥ L, i.e., φ k
k−L+1 (i) = φ m

m−L+1 (i+m− k), where m ≥ L, and it depends only on the relative
position of the change point index i inside the time window [k−L+1,k]. It will be seen that the
coefficient vector φ k

k−L+1 (i) plays a central role in studying the statistical properties of the VTWL
CUSUM test.

4.1. Properties of the error probabilities

Theorem 1 is inspired by Lemma 2.1 and Theorem 2.2, part 1, from Guépié (2013) for the
independent observation model (5). In Theorem 1, the results on the probability of false alarm and
the probability of missed detection obtained in Guépié (2013) are adapted to the new observation
model (15) – (17).

Theorem 1. Consider the VTWL CUSUM test (20) – (22). Then,

1. Let Ul = P0 (l ≤ TV TWL ≤ l +m−1) be the probability of false alarm within the time
window [l, l +m−1], then {Ul}l≥L is a non-increasing sequence. Hence, the worst-case
probability of false alarm within any time window of length m follows

P f a (TV TWL;m;h1,h2, · · · ,hL) = sup
l≥L

P0 (l ≤ TV TWL ≤ l +m−1) =UL. (26)

2. The worst-case probability of missed detection is upper bounded by

Pmd (TV TWL;h1,h2, · · · ,hL)≤ P̃md (TV TWL;hL),Φ

(
hL−µSL

1

σSL
1

)
, (27)

where Φ(x) =
∫ x
−∞

1√
2π

exp
{
−1

2 t2
}

dt is the c.d.f. of the standard normal distribution,

P̃md (TV TWL;hL) is the upper bound on the worst-case probability of missed detection, and
µSL

1
and σSL

1
are calculated by

µSL
1

=
1
2
[
M θ

L
1 (1)

]T [
W T

Σ
−1W

][
M θ

L
1 (1)

]
, (28)

σ
2
SL

1
=

[
M θ

L
1 (1)

]T [
W T

Σ
−1W

][
M θ

L
1 (1)

]
. (29)

Proof. The proof of Theorem 1 is given in Appendix B.

Remark 4. Let us discuss the results of Theorem 1. First, it has been shown that the worst-
case probability of false alarm P f a (TV TWL;m;h1,h2, · · · ,hL) corresponds to the time window
[L,L+m−1]. This information is necessary to proceed the optimization problem for selecting
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the thresholds of the VTWL CUSUM test. Second, it has been shown that the upper bound
P̃md (TV TWL;hL) for the probability of missed detection is a function of only hL. It will be seen
in Theorem 2 that this fact is also very useful to solve the problem of the VTWL CUSUM test
optimization.

4.2. Optimization of the VTWL CUSUM test

To optimize the VTWL CUSUM test it is necessary to minimize the worst-case probability of
missed detection Pmd (TV TWL;h1,h2, · · · ,hL) provided that the worst-case probability of false
alarm P f a (TV TWL;m;h1,h2, · · · ,hL) is upper bounded by α . It appears that the exact expression of
Pmd (TV TWL;h1,h2, · · · ,hL) is complicated due to some mathematical difficulties. For this reason,
it is proposed to minimize its upper bound P̃md (TV TWL;hL) given by (27) instead of the worst-case
probability of missed detection. An empirical evaluation of the upper bound sharpness can be
done by using the comparison between the exact value of missed detection probability and its
upper bound P̃md (TFMA;hL) proposed in Section 5.2.

Let us impose the following constraints on the coefficient vector φ L
1 (1) :

Assumption 1. As it follows from (23) and Remark 3, it is sufficient to define the properties
of the coefficient vectors φ k

k−L+1 (i) for k = L. Let us consider the coefficient vector φ L
1 (1) =[

φ T
1 (1) · · ·φ T

L (1)
]T . It is assumed that there exists at least one vector φ T

j (1) 6= 0 for 1≤ j ≤ L.

Remark 5. Sometimes, the change profile θ k
k−L+1 (i) can be undetectable due to the mutual

properties of the matrices C and M , see (14). If the subspace spanned by the columns of the
matrix M belongs to the subspace spanned by the columns of the matrix C , then the product
W M is equal to zero (see details in Fouladirad and Nikiforov, 2005). Such undetectable transient
changes are out of the scope of this paper. Some additional discussion on the detectability in
the case of nuisance parameters can be found in Fouladirad and Nikiforov (2005); Fillatre and
Nikiforov (2007).

Lemma 1. Let S ∈Rm be a Gaussian random vector consisting of m LLRs SL
1 ,S

L+1
2 , · · · ,SL+m−1

m .
If Assumption 1 is satisfied, then the covariance matrix ΣS ∈ Rm×m of the Gaussian random
vector S is positive definite.

Proof. The proof of Lemma 1 is given in Appendix C.

The positive definiteness of the covariance matrix ΣS ∈Rm×m is used in the following theorem.

Theorem 2. Consider the VTWL CUSUM test (20) – (22). Then,

1. The optimal choice of the thresholds h1,h2, · · · ,hL leads to the following optimization
problem: {

infh1,h2,··· ,hL P̃md (TV TWL;hL)

subject to P f a (TV TWL;m;h1,h2, · · · ,hL)≤ α
, (30)

where α is the acceptable level for the worst-case probability of false alarm within any time
window of length m. The optimization problem (30) has the unique solution (h∗1,h

∗
2, · · · ,h∗L)
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for a given α ∈ (0,1), where h∗1,h
∗
2, · · · ,h∗L−1→+∞ and h∗L is calculated from the following

equation:

P0

(
L+m−1⋂

k=L

{
Sk

k−L+1 < h∗L
})

= 1−α. (31)

2. The optimized VTWL CUSUM test is equivalent to the following FMA test:

TFMA

(
h̃L

)
= inf

{
k ≥ L :

[
M θ

L
1 (1)

]T [
W T

Σ
−1W

]
rk

k−L+1 ≥ h̃L

}
, (32)

where the threshold h̃L of the FMA test is calculated from the optimal threshold h∗L of the
VTWL CUSUM test by

h̃L = h∗L +µSL
1
. (33)

The upper bound on the worst-case probability of missed detection of the FMA test as a
function of the threshold h̃L is given by

Pmd

(
TFMA; h̃L

)
≤ P̃md

(
TFMA; h̃L

)
,Φ

(
h̃L−2µSL

1

σSL
1

)
. (34)

Proof. The proof of Theorem 2 is given in Appendix D.

4.3. Numerical computation of the error probabilities

A numerical method for estimating the worst-case probability of false alarm and the probability of
missed detection for the general VTWL CUSUM test and for a particular case, i.e., the FMA test,
is proposed. The obtained results are also applicable to the the WL CUSUM test which is another
particular case of the VTWL CUSUM test. It will be necessary for the comparison between the
WL CUSUM and FMA tests in Section 5.

Proposition 1. The worst-case probability of false alarm and the probability of missed detection
for the VTWL CUSUM test in (20) – (22) and the FMA detection rule in (32) are calculated
numerically by the following formulas:

1. The worst-case probability of false alarm is computed as

P f a (TV TWL;m;h1,h2, · · · ,hL) = 1−P0

(
L+m−1⋂

k=L

k⋂
i=k−L+1

{
Sk

i < hk−i+1

})
, (35)

P f a

(
TFMA;m; h̃L

)
= 1−P0

(
L+m−1⋂

k=L

{
Sk

k−L+1 < h̃L−µSL
1

})
. (36)

2. The conditional probability of missed detection is calculated as a function of k0 is given as
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follows

Pk0 (TV TWL ≥ k0 +L|TV TWL ≥ k0) =

Pk0

(
k0+L−1⋂

k=L

k⋂
i=k−L+1

{
Sk

i < hk−i+1

})

Pk0

(
k0−1⋂
k=L

k⋂
i=k−L+1

{
Sk

i < hk−i+1

}) , (37)

Pk0 (TFMA ≥ k0 +L|TFMA ≥ k0) =

Pk0

(
k0+L−1⋂

k=L

{
Sk

k−L+1 < h̃L−µSL
1

})

Pk0

(
k0−1⋂
k=L

{
Sk

k−L+1 < h̃L−µSL
1

}) . (38)

Proof. The proof of equations (35) – (38) is given in Appendix E.

The numerical realisation of Proposition 1 is based on the calculation of the multivariate normal
c.d.f. introduced in Genz and Bretz (2002). This algorithm has been implemented in Matlab’s
Statistics Toolbox by the function mvncdf.

4.4. Sensitivity analysis of the FMA test

The goal of this subsection is to analyze the sensitivity of the FMA test w.r.t. the operational
parameters, including the attack duration, the attack profiles, and the sensor noise covariance
matrix. Since the operational parameters are rarely exactly known, it is important for practical
applications.

Let L and L be, respectively, the putative and true values of the attack duration. Let also
θ1,θ2, · · · ,θL and θ 1,θ 2, · · · ,θ L denote the putative and true values of the attack profiles, respec-
tively. Finally, let R and R stand for the putative and true values of the sensor noise covariance ma-
trix, respectively. It is worth noting that the putative operational parameters (i.e., L, θ1,θ2, · · · ,θL,
and R) remain unchanged and they are considered as the designed parameters. The variation of
true values (i.e., L, θ 1,θ 2, · · · ,θ L, and R) leads to some change in parameters of the statistical
model. However, the proposed numerical method can also be used to analyze the sensitivity of the
FMA test w.r.t. these parameters.

The formulas for estimating the worst-case probability of false alarm P f a

(
TFMA;m; h̃L

)
and

the probability of missed detection Pmd

(
TFMA; h̃L

)
remain unchanged. It is necessary to modify

the mathematical expectations E0
[
Sk

i
]

and Ek0

[
Sk

i
]

and the covariance cov
(

Sk1
i1 ,S

k2
i2

)
.

As it follows from Appendix A.1 (see equations (44) – (46)), the mathematical expectation
E0
[
Sk

i
]
, given by (46), remains unchanged and the modified mathematical expectation Ek0

[
Sk

i
]

is
given by the following expression

Ek0

[
Sk

i

]
=
[
M θ

k
k−L+1 (i)

][
W T

Σ
−1W

][
M θ

k
k−L+1 (k0)−

1
2
M θ

k
k−L+1 (i)

]
, (39)
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where θ
k
k−L+1 (k0) is the vector of true transient profiles, formulated in the same manner as

θ k
k−L+1 (k0) by replacing the putative attack profiles θ1,θ2, · · · ,θL by the true attack profiles

θ 1,θ 2, · · · ,θ L.
The calculation of cov

(
Sk1

i1 ,S
k2
i2

)
is performed in exactly the same way as it has been done in

Appendix A.2. The modifications are included in the final formula. Hence, the modified covariance
cov
(

Sk1
i1 ,S

k2
i2

)
is given by

cov
(

Sk1
i1 ,S

k2
i2

)
=

kmin

∑
t0=imax

[
φ

T
t0−k1+L (i1)Rφt0−k2+L (i2)

]
, (40)

where the putative covariance matrix R in equation (52) is replaced by its true value R.
The application of these modified equations (39) – (40) to a simple SCADA system monitoring

and to numerical examples will be discussed in the following section.

5. Application and numerical examples

Nowadays, the majority of safety-critical infrastructures, for example nuclear facilities, electric
power grids, drinking water distribution networks or gas pipelines, are controlled and monitored
by the SCADA systems. Along with the development in communication technology, these
communication-based systems become more and more vulnerable to cyber/physical attacks.
Needless to say that the greater concern should be paid for ensuring the security of SCADA
systems so as to avoid physical destruction, economic losses, or even human life.

The problem of detecting and identifying cyber/physical attacks on networked control systems
has attracted increasing attention from research community, see Amin et al. (2012a,b); Pasqualetti
et al. (2013); Cárdenas et al. (2011), especially after the Stuxnet virus incident Brunner et al.
(2010). Generally, the attack detection problem is transformed into the problem of detecting
abrupt changes in both state evolution and sensor measurement equations.

In this section, we utilize the proposed algorithms for detecting cyber/physical attacks on a
simple SCADA water distribution system. First, we introduce the architecture and the model
of the water distribution system under normal operation as well as under cyber/physical attacks
in Section 5.1. We consider the scenario where the attack is designed for stealing water from
the reservoir, turning off the pump and compromising the sensor measurements. Next, the WL
CUSUM and FMA tests are applied to detect the attack in Section 5.2. Their statistical properties
are investigated and compared by using the proposed numerical method and the Monte Carlo
simulation also in Section 5.2. Finally, the numerical analysis of the FMA test sensitivity is given
in Section 5.3.

5.1. SCADA water distribution system

Let us consider a simple SCADA water distribution system which is shown in Figure 1. The
system is composed of a treatment plant W1, a reservoir R1, a pump P1, 3 junctions N2, N3 and N4,
4 pipelines C01, C12, C23, and C24 and 2 consumers d1 and d2. Two pressure sensors S1 and S2 are
equipped for measuring pressure heads h1 at the reservoir and h2 at the node N2, respectively.
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FIGURE 1. A simple SCADA water distribution system : the case study.

A linearized model of a water distribution network is obtained by using the mass balance
equation and the energy balance equation (see the detailed description in Pasqualetti, 2012, pages
35–36). The system can be described by the discrete-time state space model{

xk+1 = Axk +Buk +Fdk

yk =Cxk +Duk +Gdk
; x0 = x0, (41)

where xk ∈ R is the pressure head h1 at the reservoir with initial value x0, uk ∈ R is the control
signal sent from the control center to the local controller which regulates the flow rate Q01 through
the pump (supplying water to the reservoir), dk ∈ R2 is the disturbances which correspond to the
consummation of customers at nodes N3 and N4, yk ∈ R2 is the measurements of sensors S1 and
S2 with the sensor noises ξk ∼N (0,R); the matrices A ∈ R1×1, B ∈ R1×1, F ∈ R1×2, C ∈ R2×1,
D ∈ R2×1, G ∈ R2×2 and R ∈ R2×2.

Let us consider the scenario of a coordinated attack, where the attacker simultaneously performs
three actions : 1) stealing water from the reservoir with a constant flow rate Q0; 2) turning off
the pump and 3) compromising the measurements of sensors S1 and S2 during the attack period
τa = [k0,k0 +L−1], where the attack instant k0 is unknown (for the attack detection algorithm).
This attack scenario is motivated by a real attack on city water utility where the pump was burned
out after being turned on and off, as reported in Zetter (2011). The system model under attack is
described as {

xk+1 = Axk +Buk +Fdk +Baak

yk =Cxk +Duk +Gdk +Daak
; x0 = x0, (42)

where the attack vector ak ∈ R4 is designed by the adversary and the matrices Ba ∈ R1×4 and
Da ∈ R2×4.
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5.2. Numerical results for exactly known parameters

The goal of this subsection is to use the above mentioned example to compare the proposed
numerical method of the error probabilities computation for the FMA and WL CUSUM tests
against the results of Monte Carlo simulation.

Remark 6. The only way to verify our numerical algorithm, in the absence of analytical expres-
sions for the probabilities of errors, is to compare the probabilities of errors with the results of a
106-repetition Monte Carlo simulation, which is very time consuming but can be realized for a
limited number of numerical experiments. Obviously, the proposed numerical method dramatically
reduces the computational time w.r.t. the Monte Carlo simulation. It is also worth noting that
the computational time for the calculation of P f a (TFMA) and Pmd (TFMA) for the FMA test by the
proposed numerical method is much smaller than the computational time of the general VTWL
CUSUM test.

The system parameters are chosen as follows. The sampling period TS = 100 s and the initial
pressure head x0 = 100 m. The system matrices A = 1, B = 0.5, F =

[
−0.5 −0.5

]
, C =[

1
1

]
, D =

[
0
0

]
, G =

[
0 0
−10 −10

]
, R =

[
1 0
0 1

]
, Ba =

[
0.5 0.5 0 0

]
and Da =[

0 0 0 0
0 0 0 1

]
. The parameters of the statistical model C , D , G , W , R, Σ can be calculated

from the system parameters A, B, F , C, D, G, Ba, Da and R. Without loss of generality, it is
assumed that uk = u0 = 1 for supplying the reservoir with Q01 = 1 m3/s and the customers’
demands fluctuate around the value d1,k ≈ d2,k ≈ 0.5 m3/s.

13 14 15 16 17 18 19 20 21 22 23

10−3

10−2

10−1

FIGURE 2. The worst-case probability of false alarm P f a

(
TFMA;m; h̃L

)
of the FMA test as a function of the threshold

h̃L, calculated by 106-repetition Monte Carlo simulation and by the numerical method.

The attack parameters are chosen as follows. The stolen flow rate is Q0 = 0.2 m3/s. The attack
duration L = 8 observations, corresponding to a period of 13.3 min. The false alarm rate is
measured by the time window of length m = 3L = 24 observations, being equivalent to a duration
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13 14 15 16 17 18 19 20 21 22 23
10−4

10−3

10−2

10−1

FIGURE 3. The probability of missed detection Pmd

(
TFMA; h̃L

)
of the FMA detection rule, calculated by a 106-

repetition Monte Carlo simulation and by the numerical method and its upper bound Φ

[
(h̃L−2µSL

1
)/σSL

1

]
as functions

of the threshold h̃L.

10−3 10−2 10−1
10−4

10−3

10−2

FIGURE 4. Comparison between the FMA and WL CUSUM tests. The probability of missed detection against the
worst-case probability of false alarm calculated by 106-repetition Monte Carlo simulation and by the numerical
method.
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of 40 min. The attack vector ak can be designed by the covert attack strategy, which was first
introduced in Smith (2011), as follows:

ak =



[0] if k < k0
−0.2
−1

0.6(k− k0)

0.6(k− k0)

 if k0 ≤ k < k0 +L

[0] if k ≥ k0 +L

. (43)

where [0] = (0, . . . ,0)T is the null vector of appropriate dimension.
The attack vector ak ∈ R4 contains all information about the attack. The first element reflects

the physical attack to withdraw water from the reservoir with the flow rate Q0 = 0.2 m3/s. The
second element reflects the cyber attack on the control signal for turning off the pump. The
modification of the sensor measurements is reflected by the two last elements.

The worst-case probability of false alarm P f a

(
TFMA;m; h̃L

)
, calculated by the proposed nu-

merical method, is compared against a 106-repetition Monte Carlo simulation of the FMA test.
The results for both methods as functions of h̃L : h̃L 7→ P f a

(
TFMA;m; h̃L

)
are shown in Figure 2.

As it follows from Figure 2, two curves (numerical and Monte Carlo) perfectly coincide, thus
confirming the precision of the proposed numerical method.

The probability of missed detection Pmd

(
TFMA; h̃L

)
, calculated twice, by the proposed nu-

merical method and by a 106-repetition Monte Carlo simulation, is compared against its upper
bound P̃md

(
TFMA; h̃L

)
given by (34). Three curves (upper bound, numerical and Monte Carlo)

are shown in Figure 3. The change point has been chosen as k0 = L+ 1. As it follows from
Figure 3, the proposed upper bound is relatively sharp. Again, the numerical and Monte Carlo
curves perfectly coincide, thus confirming the precision of the numerical method.

The conventional CUSUM test (optimal for the classical non-Bayesian change detection) has
been also proposed and studied for transient change detection (see for example Bakhache and
Nikiforov, 2000; Han et al., 1999). Motivated by this fact, it has been shown in Guépié et al.
(2012a), by Monte Carlo simulation, that the FMA test performs much better than the conventional
CUSUM test (see Figure 4 in Guépié et al., 2012a). Let us now compare the FMA test against
the WL CUSUM test, which is another popular and asymptotically optimal test for the classical
non-Bayesian change detection, introduced in Willsky and Jones (1976) and studied in Lai (1995,
1998). It follows from (8) that the WL CUSUM test is a particular case of the VTWL CUSUM test,
where the thresholds are selected as h1 = h2 = · · ·= hL (see details in Lai, 1995, 1998. The results
of comparison are shown in Figure 4, where the probability of missed detection is represented as
a function of the worst-case probability of false alarm. The change time is chosen as k0 = L+1.
It can be concluded from the Figure 4 that the FMA test also outperforms the WL CUSUM test.
Again, the numerical and Monte Carlo curves perfectly coincide, thus confirming the precision of
the proposed numerical method.
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10−3

10−2

10−1

FIGURE 5. The probability of missed detection Pmd (·) as a function of the worst-case probability of false alarm P f a (·)
calculated for different values of the true attack duration L = {6,7,8} by the numerical method.
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10−4

10−3

10−2

10−1

FIGURE 6. The probability of missed detection Pmd (·) as a function of the worst-case probability of false alarm P f a (·)
calculated for different values of η = {0.90,0.95,1.00,1.05,1.10} by the numerical method. The true attack profile is
chosen as θ j = ηθ j for 1≤ j ≤ L.

5.3. Numerical results for the sensitivity analysis

In Section 4.4, we have proposed a numerical method for evaluating the sensitivity of the FMA
test w.r.t. several operational parameters, including the attack duration, the attack profiles and
the sensor noise covariance matrix. In the following, the results of Section 4.4 are applied to the
above defined numerical example.

The sensitivity of the FMA test w.r.t. the attack duration is shown in Figure 5, where the
putative attack duration is chosen as L = 8 and the its true value is L = {6,7,8} ≤ L. If the true
attack duration is greater than the putative value (i.e., L > L), the probability of missed detection
Pmd remains unchanged since any detection with the detection delay greater than L is considered
as missed. For L = {6,7,8} ≤ L, the probability of missed detection Pmd depends heavily on the

Journal de la Société Française de Statistique, Vol. 156 No. 4 60-97
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



Sequential detection of transient changes in stochastic-dynamical systems 81

true attack duration L. The smaller the true attack duration L, the higher the probability of missed
detection Pmd . This phenomenon can be explained by the fact that small attack duration L causes
little changes in the distribution of the observations, thus increasing the probability of missed
detection Pmd . It is clear that the probability of false alarm P f a remains unchanged since all the
observations are generated from P̃0. Therefore, the interpretation of Figure 5 is very simple:
each value of the probability of false alarm P f a corresponds to a certain value of the threshold h̃L

(see Figure 2), which is a tuning parameter of the FMA test. Hence, by drawing a vertical line,
someone can estimate the variation of the probability of missed detection Pmd due to the true
attack duration smaller than its putative value for a given tuning of the FMA test.

10−3 10−2 10−1

10−4

10−3

10−2

FIGURE 7. The probability of missed detection Pmd (·) as a function of the worst-case probability of false alarm
P f a (·) calculated for different values of η = {0.90,0.95,1.00,1.05,1.10} by the numerical method. The true sensor
covariance matrix is chosen as R = ηR.

The sensitivity of the FMA test w.r.t. the attack profile is shown in Figure 6. The putative
attack profile is given by θ1,θ2, · · · ,θL and the true attack profile θ 1,θ 2, · · · ,θ L is chosen such as
θ j = ηθ j for 1≤ j≤ L, where η = {0.90,0.95,1.00,1.05,1.10}. In other words, the “magnitude”
of the change varies from 90% to 110% but the “shape” of the change remains constant. Similar
to the attack duration case, the probability of false alarm P f a is independent of the true attack
profiles θ 1,θ 2, · · · ,θ L. In contrast, the probability of missed detection Pmd depends heavily on the
true attack profiles θ 1,θ 2, · · · ,θ L. The higher the true attack profiles θ 1,θ 2, · · · ,θ L, the smaller
the probability of missed detection Pmd . The interpretation of Figure 6 w.r.t. the tuning parameter
h̃L is exactly the same as in the previous case.

Finally, the sensitivity of the FMA test w.r.t. the sensor noises is shown in Figure 7. The
putative value of sensor noise covariance matrix is R and its true value R is such chosen as
R = ηR, where η = {0.90,0.95,1.00,1.05,1.10}. Here, the difference R−R impacts both, the
probability of false alarm P f a and the probability of missed detection Pmd . Roughly speaking,
the bigger the sensor noises, the higher the error probabilities, i.e., P f a and Pmd . For this reason,
the interpretation of Figure 7 w.r.t. the threshold (tuning parameter) h̃L is more complicated. To
simplify the interpretation of Figure 7, three isolines of constant threshold h̃L are shown in Figure
7. Therefore, by choosing the curve corresponding to η = 1 and by using Figure 2, someone fixes
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the tuning value of threshold h̃L. Next, by using the isoline intersecting the curve corresponding to
η = 1, someone estimates the variations of error probabilities P f a and Pmd due to the true sensor
noise covariance matrix R different from its putative value. This situation is illustrated in Figure 7
for the isoline of h̃L = 17.88 by vertical and horizontal dotted lines showing the variation of the
error probabilities, i.e., P f a and Pmd . This analysis could help in finding a tradeoff between the
performance of the detection algorithms and the price of high-precision sensors.

6. Conclusion

The sequential detection of transient changes in stochastic-dynamical systems with nuisance
parameters has been addressed in the paper. To eliminate the nuisance parameters from the
observation model, the maximal invariant statistics is used. The Variable Threshold Window
Limited CUmulative SUM (VTWL CUSUM) test has been designed. In contrast to the previ-
ously published case of independent observations Guépié et al. (2012a,b); Guépié (2013), the
considered stochastic-dynamical systems with nuisance parameters do not allow us to assume
that cov

(
Sk1

i1 ,S
k2
i2

)
≥ 0. For this reason, an analytical expression for the worst-case probability

of false alarm has been replaced by a numerical method for computing the probability of false
alarm and the probability of missed detection. It has been shown that the VTWL CUSUM test
optimization w.r.t. the optimality criterion (6) – (7) leads to the Finite Moving Average (FMA)
test. The proposed numerical method has been applied to study and to compare the statistical
properties of the VTWL CUSUM and FMA tests. The theoretical results have been verified by
Monte Carlo simulation in the context of detecting cyber/physical attacks on a simple SCADA
water distribution system, targeting at disrupting the system operation.

Appendix A: Calculation of Ek0

[
Sk

i
]
, E0

[
Sk

i
]

and cov
(

Sk1
i1 ,S

k2
i2

)
Before investigating the statistical performance of the VTWL CUSUM test, let us calculate the
mathematical expectation of the Gaussian random variable Sk

i for any positive integers k ≥ L and
k−L+1≤ i≤ k and the covariance between two Gaussian random variables Sk1

i1 and Sk2
i2 , for any

positive integers i1,k1, i2,k2 satisfying k1,k2 ≥ L and k1−L+1≤ i1 ≤ k1, k2−L+1≤ i2 ≤ k2.

A.1. Calculation of Ek0

[
Sk

i
]

and E0
[
Sk

i
]

It follows from (15), (17) and (22) that

Sk
i =

[
M θ

k
k−L+1 (i)

]T [
W T

Σ
−1W

][
M θ

k
k−L+1 (k0)−

1
2
M θ

k
k−L+1 (i)+ξ

k
k−L+1

]
, (44)

where the random noise vector ξ k
k−L+1 ∼N (0,R) and the matrices M , W , R, Σ are calculated

from system parameters, leading to

Ek0

[
Sk

i

]
=
[
M θ

k
k−L+1 (i)

]T [
W T

Σ
−1W

][
M θ

k
k−L+1 (k0)−

1
2
M θ

k
k−L+1 (i)

]
, (45)
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where Ek0

[
Sk

i
]

is the mathematical expectation of Sk
i w.r.t. the distribution P̃k0 . Let us consider

the pre-change measure P̃0 = P̃∞. It follows from (16) that the profile vectors θ k
k−L+1 (∞) = 0,

resulting in

E0

[
Sk

i

]
=−1

2

[
M θ

k
k−L+1 (i)

]T [
W T

Σ
−1W

][
M θ

k
k−L+1 (i)

]
, (46)

where E0
[
Sk

i
]

denotes the mathematical expectation of Sk
i w.r.t. the distribution P̃0.

A.2. Calculation of cov
(

Sk1
i1 ,S

k2
i2

)
Under the measure P̃k0 , the LLR Sk

i , for k ≥ L and k−L+ 1 ≤ i ≤ k, can be described as a
function of the coefficient vector φ k

k−L+1 (i), the random noise vector ξ k
k−L+1 and the mathematical

expectation Ek0

[
Sk

i
]

as follows :

Sk
i =

[
φ

k
k−L+1 (i)

]T
ξ

k
k−L+1 +Ek0

[
Sk

i

]
. (47)

Under the pre-change measure P̃0, the LLR Sk
i is described as

Sk
i =

[
φ

k
k−L+1 (i)

]T
ξ

k
k−L+1 +E0

[
Sk

i

]
. (48)

Let us consider two Gaussian random variables Sk1
i1 and Sk2

i2 , for k1,k2 ≥ L and k1−L+1≤ i1 ≤ k1,

k2−L+1≤ i2 ≤ k2. It can be seen clearly from (47) – (48) that cov
(

Sk1
i1 ,S

k2
i2

)
under the measure

P̃k0 is the same as cov
(

Sk1
i1 ,S

k2
i2

)
under the measure P̃0. Under the measure P̃k0 , we have

Sk1
i1 =

[
φ

k1
k1−L+1 (i1)

]T
ξ

k1
k1−L+1 +Ek0

[
Sk1

i1

]
Sk2

i2 =
[
φ

k2
k2−L+1 (i2)

]T
ξ

k2
k2−L+1 +Ek0

[
Sk2

i2

] . (49)

It is clear that

Ek0

[[
φ

k1
k1−L+1 (i1)

]T
ξ

k1
k1−L+1

]
= Ek0

[[
φ

k2
k2−L+1 (i2)

]T
ξ

k2
k2−L+1

]
= 0.

Then, the covariance is given by

cov
(

Sk1
i1 ,S

k2
i2

)
= cov

([
φ

k1
k1−L+1 (i1)

]T
ξ

k1
k1−L+1,

[
φ

k2
k2−L+1 (i2)

]T
ξ

k2
k2−L+1

)
= Ek0

[([
φ

k1
k1−L+1 (i1)

]T
ξ

k1
k1−L+1

)([
φ

k2
k2−L+1 (i2)

]T
ξ

k2
k2−L+1

)]
= Ek0

[(
k1

∑
t1=k1−L+1

φ
T
t1−k1+L (i1)ξt1

)(
k2

∑
t2=k2−L+1

φ
T
t2−k2+L (i2)ξt2

)]
. (50)

Let imax = max(k1−L+1,k2−L+1) and kmin = min(k1,k2), there are two cases :
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– If imax > kmin, then it is clear that cov
(

Sk1
i1 ,S

k2
i2

)
= 0.

– If imax ≤ kmin, then

cov
(

Sk1
i1 ,S

k2
i2

)
= Ek0

[(
kmin

∑
t1=imax

φ
T
t1−k1+L (i1)ξt1

)(
kmin

∑
t2=imax

φ
T
t2−k2+L (i2)ξt2

)]

= Ek0

[
kmin

∑
t1=imax

kmin

∑
t2=imax

(
φ

T
t1−k1+L (i1)ξt1

)(
φ

T
t2−k2+L (i2)ξt2

)]

= Ek0

[
kmin

∑
t0=imax

(
φ

T
t0−k1+L (i1)ξt0

)(
φ

T
t0−k2+L (i2)ξt0

)]
(51)

since two random noise vectors ξt1 and ξt2 are independent for t1 6= t2, leading to E
[
ξtiξt j

]
= 0,

∀i 6= j. Then,

cov
(

Sk1
i1 ,S

k2
i2

)
=

kmin

∑
t0=imax

Ek0

[(
φ

T
t0−k1+L (i1)ξt0

)(
φ

T
t0−k2+L (i2)ξt0

)]
=

kmin

∑
t0=imax

Ek0

[
φ

T
t0−k1+L (i1)ξt0ξ

T
t0 φt0−k2+L (i2)

]
=

kmin

∑
t0=imax

(
φ

T
t0−k1+L (i1)Ek0

[
ξt0ξ

T
t0

]
φt0−k2+L (i2)

)
=

kmin

∑
t0=imax

(
φ

T
t0−k1+L (i1)Rφt0−k2+L (i2)

)
. (52)

The calculation of Ek0

[
Sk

i
]
, E0

[
Sk

i
]

and cov
(

Sk1
i1 ,S

k2
i2

)
is completed. �.

Appendix B: Proof of Theorem 1

The proof of Theorem 1 is inspired by Guépié et al. (2012b) and Guépié (2013, pages 51-54). In
this paper, we generalize the results of Guépié et al. (2012b); Guépié (2013) to a more sophisticated
observation model with nuisance parameters (15) – (17). The proof is divided into two parts. In
the first part, we investigate the property of the probability of false alarm given in (26). In the
second part, we introduce an upper bound for the worst-case probability of missed detection given
in (27).
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B.1. Proof of part 1

Let us assume the pre-change mode. Let ul = P0 (TV TWL = l), we will show that ul+1 ≤ ul for all
l ≥ L. For l = L, we have

uL+1 = P0 (TV TWL = L+1)

= P0

({
max

1≤i≤L

(
SL

i −hL−i+1
)
< 0
}⋂{

max
2≤i≤L+1

(
SL+1

i −hL−i+2
)
≥ 0
})

≤ P0

({
max

2≤i≤L+1

(
SL+1

i −hL−i+2
)
≥ 0
})

. (53)

As it follows from Appendix A, the Gaussian random variables SL
1 ,S

L
2 , · · · ,SL

L and SL+1
2 ,SL+1

3 , · · · ,SL+1
L+1

are generated, respectively, from the random vector ξ L
1 =(ξ T

1 ,ξ T
2 , · · · ,ξ T

L )T and ξ
L+1
2 =(ξ T

2 ,ξ T
3 , · · · ,ξ T

L+1)
T

by (48). It follows from Remark 2 that θ L
1 (i) = θ

L+1
2 (i+1), then E0

(
SL

i
)
= E0

(
SL+1

i+1

)
, for all

1≤ i≤ L. The random noises ξ1,ξ2, · · · ,ξL+1 are independent identically distributed variables
following a zero-mean Gaussian law. Hence, the Gaussian random variables SL

1 ,S
L
2 , · · · ,SL

L and
SL+1

2 ,SL+1
3 , · · · ,SL+1

L+1 have the same distributions, leading to

P0

(
max

2≤i≤L+1

(
SL+1

i −hL−i+2
)
≥ 0
)
= P0

(
max

1≤i≤L

(
SL

i −hL−i+1
)
≥ 0
)
= uL. (54)

Then, it is clear that uL+1 ≤ uL. By the same argument, we have for the case l > L that

ul+1 = P0 (TV TWL = l +1)

= P0

(
l⋂

k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
}⋂{

max
l−L+2≤i≤l+1

(
Sl+1

i −hl−i+2

)
≥ 0
})

≤ P0

(
l⋂

k=L+1

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
}⋂{

max
l−L+2≤i≤l+1

(
Sl+1

i −hl−i+2

)
≥ 0
})

≤ P0

(
l−1⋂
k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
}⋂{

max
l−L+1≤i≤l

(
Sl

i−hl−i+1

)
≥ 0
})

≤ P0 (TV TWL = l) = ul. (55)

Moreover, we obtain from the definition of Ul that

Ul−Ul+1 =

(
l+m−1

∑
k=l

uk

)
−

(
l+m

∑
k=l+1

uk

)
= ul−ul+m ≥ 0. (56)

Hence, {Ul}l≥L is a non-increasing sequence, leading to

P f a (TV TWL;m;h1,h2, · · · ,hL) = sup
l≥L

P0 (l ≤ TV TWL ≤ l +m−1) =UL. (57)

The proof of part 1 is completed. �.
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B.2. Proof of part 2

The worst-case probability of missed detection is described as

Pmd (TV TWL;h1,h2, · · · ,hL) = sup
k0≥L

Pk0 (TV TWL ≥ k0 +L|TV TWL ≥ k0)

= sup
k0≥L

Pk0 (TV TWL ≥ k0 +L)
Pk0 (TV TWL ≥ k0)

. (58)

For the change time k0 > L, the probability of missed detection is given by

Pk0 (TV TWL ≥ k0 +L|TV TWL ≥ k0) =

Pk0

(
k0+L−1⋂

k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
})

Pk0

(
k0−1⋂
k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
}) . (59)

Let us define three events A1, A2 and A3 as follows:

A1 =
k0−1⋂
k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
}
,

A2 =
k0+L−2⋂

k=k0

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
}
,

A3 =

{
max

k0≤i≤k0+L−1

(
Sk0+L−1

i −hk0+L−i

)
< 0
}
.

It follows from (47) that the event A1 depends on the random vectors ξ L
1 ,ξ

L+1
2 , · · · ,ξ k0−1

k0−L , the
event A2 depends on the random vectors ξ

k0
k0−L+1,ξ

k0+1
k0−L+2, · · · ,ξ

k0+L−2
k0−1 and the event A3 depends

on the random vector ξ
k0+L−1
k0

. Moreover, there is no common elements between the random
vectors ξ L

1 ,ξ
L+1
2 , · · · ,ξ k0−1

k0−L and the random vector ξ
k0+L−1
k0

. Therefore, the events A1 and A3 are
independent, leading to

Pk0 (TV TWL ≥ k0 +L|TV TWL ≥ k0) =
Pk0 (A1∩A2∩A3)

Pk0 (A1)

≤ Pk0 (A1∩A3)

Pk0 (A1)
= Pk0 (A3) . (60)

For the change time k0 = L, it is clear that

Pk0 (TV TWL ≥ k0 +L|TV TWL ≥ k0) = Pk0 (TV TWL ≥ k0 +L)

= Pk0

(
k0+L−1⋂

k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
})

≤ Pk0

(
max

k0≤i≤k0+L−1

(
Sk0+L−1

i −hk0+L−i

)
< 0
)

≤ Pk0 (A3) . (61)
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By replacing the event A3 with its definition, we get

Pmd (TV TWL;h1,h2, · · · ,hL) ≤ Pk0

(
max

k0≤i≤k0+L−1

(
Sk0+L−1

i −hk0+L−i

)
< 0
)

≤ Pk0

(
k0+L−1⋂

i=k0

{
Sk0+L−1

i < hk0+L−i

})
≤ Pk0

(
Sk0+L−1

k0
< hL

)
= P1

(
SL

1 < hL
)
= P̃md (TV TWL;hL) ,(62)

where the LLR SL
1 is a Gaussian random variable SL

1 ∼N
(

µSL
1
,σ2

SL
1

)
with

µSL
1

= E1
[
SL

1
]
=

1
2
[
M θ

L
1 (1)

]T [
W T

Σ
−1W

][
M θ

L
1 (1)

]
(63)

σ
2
SL

1
= var

(
SL

1
)
=
[
M θ

L
1 (1)

]T [
W T

Σ
−1W

][
M θ

L
1 (1)

]
. (64)

Finally, the worst-case probability of missed detection is upper bounded by

Pmd (TV TWL;h1,h2, · · · ,hL)≤ P̃md (TV TWL;hL),Φ

(
hL−µSL

1

σSL
1

)
. (65)

The proof of part 2 is completed. �.

Appendix C: Proof of Lemma 1

Let us suppose that Assumption 1 is satisfied. The goal of this lemma is to show that the covariance
matrix ΣS ∈ Rm×m of the Gaussian random vector S ∈ Rm, which is composed of m Gaussian
random variables SL

1 ,S
L+1
2 , · · · ,SL+m−1

m , is positive definite. Seeking for simplicity, we eliminate
the index “(1)” from φ L

1 (1) and φ j (1) for all 1≤ j≤ L. As a result, the coefficient vector φ L
1 ∈RLp

can be rewritten as

φ
L
1 =

 φ1
...

φL

 ; φ j ∈ Rp, (66)

where p is the dimension of the observation vector yk in model (11) (corresponding to the
dimension of the sensor noises {ξk}k≥1). Then, the LLRs SL

1 ,S
L+1
2 , · · · ,SL+m−1

m can be rewritten
as

SL
1 = φ

T
1 ξ1 +φ

T
2 ξ2 + · · ·+φ

T
L ξL +E0

[
SL

1
]

SL+1
2 = φ

T
1 ξ2 +φ

T
2 ξ3 + · · ·+φ

T
L ξL+1 +E0

[
SL+1

2

]
...

...
...

SL+m−1
m = φ

T
1 ξm +φ

T
2 ξm+1 + · · ·+φ

T
L ξL+m−1 +E0

[
SL+m−1

m
]
.
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By rewriting the above equation in matrix form, we obtain


SL

1
SL+1

2
...

SL+m−1
m


︸ ︷︷ ︸

S∈Rm

=


φ T

1 φ T
2 · · · φ T

L 0 · · · 0
0 φ T

1 · · · φ T
L−1 φ T

L · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · · · · · · · · · · φ T
L


︸ ︷︷ ︸

Q∈Rm×(L+m−1)p



ξ1
ξ2
...

ξL
...

ξL+m−1


︸ ︷︷ ︸

ξ
L+m−1
1 ∈R(L+m−1)p

+


E0
[
SL

1
]

E0
[
SL+1

2

]
...

E0
[
SL+m−1

m
]


︸ ︷︷ ︸
µS ∈Rm

.

(67)
It is worth noting that the random noise vector ξ

L+m−1
1 ∼N

(
0, Σ̃
)

, where Σ̃∈R(L+m−1)p×(L+m−1)p

is a positive definite matrix since the sensor noises ξ1,ξ2, · · · ,ξL+m−1 are independent identically
distributed zero-mean normal variables. Then, the covariance matrix ΣS of the normal random
vector S is calculated by

ΣS = QΣ̃QT (68)

In the following, we will show that the matrix ΣS defined in (68) is positive definite. By Assump-
tion 1, there exists at least one vector φ T

j 6= 0, for 1≤ j ≤ L.
Firstly, if the coefficient vector φ T

1 =
[
φ 1

1 , · · · ,φ
p
1

]
6= 0, then there exists at least one element

φ i
1 6= 0, for 1≤ i≤ p. Let M1 ∈ Rm×m be a square matrix formulated by m columns containing

the element φ i
1 6= 0 from the matrix Q. Then, the matrix M1 can be described as

M1 =


φ i

1 − ·· · −
0 φ i

1 · · · −
...

...
. . .

...
0 0 · · · φ i

1

 (69)

where the notation “–” stands for any real number. Matrix M1 is an upper triangular one with
non-zero elements in the diagonal (i.e., φ i

1 6= 0), then rank(M1) = m. Since the columns of matrix
M1 are contained in matrix Q and matrix Q has m rows, we have rank(Q) = m.

Secondly, if the coefficient vector φ T
1 = 0 and the coefficient vector φ T

2 6= 0. Then, there exists
at least one element φ i

2 6= 0, for 1≤ i≤ p. Let M2 ∈ Rm×m be a square matrix formulated by m
columns containing the element φ i

2 6= 0 from the matrix Q. By the same argument as above, we
obtain rank(Q) = m.

By the same procedure, it can be concluded that matrix Q is full row rank (i.e., rank(Q) = m)
if Assumption 1 is satisfied. As it follows from (Koch, 1999, page 47) that, if matrix Q is full row
rank, the covariance matrix ΣS in (68) is positive definite. �.

Appendix D: Proof of Theorem 2

The proof of Theorem 2 consists of two parts. The optimization problem is formulated and solved
in the first part. It is shown in the second part that the optimized VTWL CUSUM test is equivalent
to the FMA test.
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D.1. Proof of part 1

Since we wish to minimize the upper bound P̃md (TV TWL;hL) on the worst-case probability of
missed detection Pmd (TV TWL;h1,h2, · · · ,hL) subject to an acceptable level α ∈ (0,1) on the
worst-case probability of false alarm, the optimization problem can be defined as

 inf
h1,h2,...,hL

{
P̃md (TV TWL;hL)

}
subject to P f a (TV TWL;m;h1,h2, · · · ,hL)≤ α,

(70)

where the worst-case probability of false alarm P f a (TV TWL;m;h1,h2, · · · ,hL) is given by

P f a (TV TWL;m;h1,h2, · · · ,hL) = P0 (L≤ TV TWL ≤ L+m−1)

= 1−P0 (TV TWL ≥ L+m)

= 1−P0

(
L+m−1⋂

k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
})

= 1−P0

(
L+m−1⋂

k=L

k⋂
i=k−L+1

{
Sk

i < hk−i+1

})
. (71)

Seeking for simplicity, let us define a function F0 (h1,h2, · · · ,hL−1,hL) as follows:

F0 (h1,h2, · · · ,hL−1,hL) = P0

(
L+m−1⋂

k=L

k⋂
i=k−L+1

{
Sk

i < hk−i+1

})
. (72)

The optimization problem (70) becomes

 inf
h1,h2,...,hL

{
P̃md (TV TWL;hL)

}
subject to F0 (h1,h2, · · · ,hL−1,hL)≥ 1−α,

(73)

where the objective function P̃md (TV TWL;hL) = Φ

(
hL−µSL

1
σSL

1

)
is monotonically non-decreasing

w.r.t. the threshold hL.

Before solving the optimization problem (73), let us prove that the function F0 (h1,h2, · · · ,hL−1,hL)
is monotonically non-decreasing w.r.t. each threshold h1,h2, · · · ,hL−1,hL. Let

{
δh j
}

1≤ j≤L be
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positive real numbers, then

F0 (h1, · · · ,h j +δh j, · · · ,hL) = P0

L+m−1⋂
k=L

 k⋂
i=k−L+1
i 6=k− j+1

{
Sk

i < hk−i+1

}
and

{
Sk

k− j+1 < h j +δh j

}


= P0

L+m−1⋂
k=L




k⋂
i=k−L+1
i6=k− j+1

{
Sk

i < hk−i+1

}
and

{
Sk

k− j+1 < h j

}⋃


k⋂
i=k−L+1
i 6=k− j+1

{
Sk

i < hk−i+1

}
and

{
h j ≤ Sk

k− j+1 < h j +δh j

}



≥ P0

L+m−1⋂
k=L

 k⋂
i=k−L+1
i 6=k− j+1

{
Sk

i < hk−i+1

}
and

{
Sk

k− j+1 < h j

}


≥ P0

(
L+m−1⋂

k=L

[
k⋂

i=k−L+1

{
Sk

i < hk−i+1

}])
≥ F0 (h1, · · · ,h j, · · · ,hL) . (74)

Hence, the function F0 (h1,h2, · · · ,hL−1,hL) is monotonically non-decreasing w.r.t. each thresh-
old h1,h2, · · · ,hL−1,hL. By using this property, we prove in the following that the thresholds
h∗1,h

∗
2, · · · ,h∗L−1→+∞ and the threshold h∗L satisfying

F0 (+∞,+∞, · · · ,+∞,h∗L) = P0

(
L+m−1⋂

k=L

{
Sk

k−L+1 < h∗L
})

= 1−α (75)

are the solution to the optimization problem (73). The proof consists of two following steps:

1. As it follows from Lemma 1, the covariance matrix ΣS of the Gaussian random variables
SL

1 ,S
L+1
2 , · · · ,SL+m−1

m is positive definite. The function F0 (+∞,+∞, · · · ,+∞,h∗L) is mono-
tonically non-decreasing w.r.t. the threshold h∗L. Its codomain is [0,1]. Hence, equation (75)
has a unique solution h∗L for a given value α ∈ (0,1).

2. Let us suppose that a set of thresholds h1,h2, · · · ,hL−1,hL, satisfying the constraint

F0 (h1,h2, · · · ,hL−1,hL)≥ 1−α, (76)

defines any alternative solution of optimization problem (73). The goal is to show that
P̃md (TV TWL;hL)≥ P̃md (TV TWL;h∗L).
It follows from the monotonically non-decreasing property of the function F0 (·) that

1−α = F0 (+∞,+∞, · · · ,+∞,h∗L)≥ F0 (h1,h2, · · · ,hL−1,h∗L) . (77)

Putting together (76) and (77), we get the following

F0 (h1,h2, · · · ,hL−1,hL)≥ F0 (h1,h2, · · · ,hL−1,h∗L) . (78)
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Hence, hL ≥ h∗L. It follows from (27) that the objective function hL 7→ P̃md (TV TWL;hL) is
monotonically non-decreasing. Therefore, P̃md (TV TWL;hL)≥ P̃md (TV TWL;h∗L).

The proof of part 1 is completed. �.

D.2. Proof of part 2

The VTWL CUSUM test with optimal thresholds h∗1,h
∗
2, · · · ,h∗L is given by

T ∗V TWL = inf
{

k ≥ L : max
k−L+1≤i≤k

(
Sk

i −h∗k−i+1

)
≥ 0
}

= inf
{

k ≥ L : Sk
k−L+1 ≥ h∗L

}
(79)

since the optimal thresholds h∗1,h
∗
2, · · · ,h∗L−1→+∞. In addition, the LLR Sk

k−L+1 can be rewritten
as

Sk
k−L+1 =

[
M θ

L
1 (1)

]T [
W T

Σ
−1W

][
rk

k−L+1−
1
2
M θ

L
1 (1)

]
. (80)

Then, optimized VTWL CUSUM test

T ∗V TWL = inf
{

k ≥ L :
[
M θ

L
1 (1)

]T [
W T

Σ
−1W

][
rk

k−L+1−
1
2
M θ

L
1 (1)

]
≥ h∗L

}
= inf

{
k ≥ L :

[
M θ

L
1 (1)

]T [
W T

Σ
−1W

]
rk

k−L+1 ≥ h̃L

}
, (81)

where the threshold
h̃L = h∗L +µSL

1
. (82)

It is clear that the VTWL CUSUM test with optimal thresholds h∗1,h
∗
2, · · · ,h∗L is equivalent to the

following FMA test:

TFMA

(
h̃L

)
= inf

{
k ≥ L :

[
M θ

L
1 (1)

]T [
W T

Σ
−1W

]
rk

k−L+1 ≥ h̃L

}
(83)

and the upper bound on the worst-case probability of missed detection of the FMA test can be
expressed as a function of the threshold h̃L by

Pmd

(
TFMA; h̃L

)
= Pmd (T ∗V TWL;h∗L)≤ P̃md (T ∗V TWL;h∗L) = P̃md

(
TFMA; h̃L

)
= Φ

(
h̃L−2µSL

1

σSL
1

)
.

(84)
The proof of part 2 is completed. �.

Appendix E: Proof of Proposition 1

The proof of Proposition 1 is divided into four parts. In each part, we formulate the threshold
vector, the mean vector, the covariance matrix for calculating the probability of false alarm and
the probability of missed detection for the VTWL CUSUM and the FMA tests.
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E.1. Numerical calculation of P f a (TV TWL;m;h1,h2, · · · ,hL)

The worst-case probability of false alarm of the VTWL CUSUM test is given by

P f a (TV TWL;m;h1,h2, · · · ,hL) = 1−P0

(
L+m−1⋂

k=L

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
})

= 1−P0


L+m−1⋂

k=L

k⋂
i=k−L+1

{
Sk

i < hk−i+1

}
︸ ︷︷ ︸

E1

 , (85)

where the event E1 can be rewritten as follows:

E1 =


{

SL
1 < hL

} ⋂ {
SL

2 < hL−1
} ⋂

· · ·
⋂ {

SL
L < h1

} ⋂{
SL+1

2 < hL
} ⋂ {

SL+1
3 < hL−1

} ⋂
· · ·

⋂ {
SL+1

L+1 < h1
} ⋂

...
...

...
...

. . .
...

...
...{

SL+m−1
m < hL

} ⋂ {
SL+m−1

m+1 < hL−1
} ⋂

· · ·
⋂ {

SL+m−1
L+m−1 < h1

}


is composed of m rows and L columns. By organizing the event E1 in column-by-column manner,
the multivariate Gaussian random variable S1 ∈ RmL with the mean vector µS1 ∈ RmL and the
covariance matrix ΣS1 ∈RmL×mL and the corresponding threshold vector hS1 ∈RmL are described
as follows:

S1 =


SL

1
SL+1

2
...

SL+m−1
L+m−1

 ; hS1 =


hL

hL
...

h1

 ; µS1 =


E0
[
SL

1
]

E0
[
SL+1

2

]
...

E0
[
SL+m−1

L+m−1

]


ΣS1 =


cov
(
SL

1 ,S
L
1
)

cov
(
SL

1 ,S
L+1
2

)
· · · cov

(
SL

1 ,S
L+m−1
L+m−1

)
cov
(
SL+1

2 ,SL
1
)

cov
(
SL+1

2 ,SL+1
2

)
· · · cov

(
SL+1

2 ,SL+m−1
L+m−1

)
...

...
. . .

...
cov
(
SL+m−1

L+m−1,S
L
1
)

cov
(
SL+m−1

L+m−1,S
L+1
2

)
· · · cov

(
SL+m−1

L+m−1,S
L+m−1
L+m−1

)
 ,

where E0
[
Sk

i
]

and cov
(

Sk1
i1 ,S

k2
i2

)
have been calculated in Appendix A. Then, the worst-case

probability of false alarm for the VTWL CUSUM test is calculated as

P f a (TV TWL;m;h1,h2, · · · ,hL) = P

(
mL⋂
j=1

{
S1 ( j)< hS1 ( j)

})
(86)

The proof of part 1 is completed. �.
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E.2. Numerical calculation of P f a

(
TFMA;m; h̃L

)
The worst-case probability of false alarm of the FMA test

P f a

(
TFMA;m; h̃L

)
= P f a

(
TV TWL;m;+∞,+∞, · · · ,+∞, h̃L−µSL

1

)

= 1−P0


L+m−1⋂

k=L

{
Sk

k−L+1 < h̃L−µSL
1

}
︸ ︷︷ ︸

E2

 , (87)

where the event E2 is defined by m Gaussian random variables SL
1 ,S

L+1
2 , · · · ,SL+m−1

m . The Gaussian
vector S2 ∈ Rm has the mean vector µS2 ∈ Rm and the covariance matrix ΣS2 ∈ Rm×m. The
vector hS2 ∈ Rm denotes corresponding thresholds. Hence, we get

S2 =


SL

1
SL+1

2
...

SL+m−1
m

 ; hS2 =


h̃L−µSL

1

h̃L−µSL
1

...
h̃L−µSL

1

 ; µS2 =


E0
[
SL

1
]

E0
[
SL+1

2

]
...

E0
[
SL+m−1

m
]


ΣS2 =


cov
(
SL

1 ,S
L
1
)

cov
(
SL

1 ,S
L+1
2

)
· · · cov

(
SL

1 ,S
L+m−1
m

)
cov
(
SL+1

2 ,SL
1
)

cov
(
SL+1

2 ,SL+1
2

)
· · · cov

(
SL+1

2 ,SL+m−1
m

)
...

...
. . .

...
cov
(
SL+m−1

m ,SL
1
)

cov
(
SL+m−1

m ,SL+1
2

)
· · · cov

(
SL+m−1

m ,SL+m−1
m

)
 .

Then, the worst-case probability of false alarm of the FMA test is calculated numerically as

P f a

(
TFMA;m; h̃L

)
= P

(
m⋂

j=1

{
S2 ( j)< hS2 ( j)

})
(88)

The proof of part 2 is completed. �.

E.3. Numerical calculation of Pk0 (TV TWL ≥ k0 +L|TV TWL ≥ k0)

Let us define the following function Fk0 (a;b;h1,h2, · · · ,hL) with b≥ a≥ L, a,b ∈ N :

Fk0 (a;b;h1,h2, · · · ,hL) = Pk0

(
b⋂

k=a

{
max

k−L+1≤i≤k

(
Sk

i −hk−i+1

)
< 0
})

= Pk0


b⋂

k=a

k⋂
i=k−L+1

{
Sk

i < hk−i+1

}
︸ ︷︷ ︸

E3

 , (89)
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where the event E3 can be rewritten as follows

E3 =


{

Sa
a−L+1 < hL

} ⋂ {
Sa

a−L+2 < hL−1
} ⋂

· · ·
⋂

{Sa
a < h1}

⋂{
Sa+1

a−L+2 < hL
} ⋂ {

Sa+1
a−L+3 < hL−1

} ⋂
· · ·

⋂ {
Sa+1

a+1 < h1
} ⋂

...
...

...
...

. . .
...

...
...{

Sb
b−L+1 < hL

} ⋂ {
Sb

b−L+2 < hL−1
} ⋂

· · ·
⋂ {

Sb
b < h1

}


, is comprised of b− a + 1 rows and L columns. Then, the multivariate Gaussian random
variable S3 ∈ R(b−a+1)L with the mean vector µS3 ∈ R(b−a+1)L and the covariance matrix
ΣS3 ∈ R(b−a+1)L×(b−a+1)L and the corresponding threshold vector hS3 can be described as

S3 =


Sa

a−L+1
Sa+1

a−L+2
...

Sb
b

 ; hS3 =


hL

hL
...

h1

 ; µS3 =


Ek0

[
Sa

a−L+1

]
Ek0

[
Sa+1

a−L+2

]
...

Ek0

[
Sb

b

]


ΣS3 =


cov
(
Sa

a−L+1,S
a
a−L+1

)
cov
(
Sa

a−L+1,S
a+1
a−L+2

)
· · · cov

(
Sa

a−L+1,S
b
b

)
cov
(
Sa+1

a−L+2,S
a
a−L+1

)
cov
(
Sa+1

a−L+2,S
a+1
a−L+2

)
· · · cov

(
Sa+2

a−L+2,S
b
b

)
...

...
. . .

...
cov
(
Sb

b,S
a
a−L+1

)
cov
(
Sb

b,S
a+1
a−L+2

)
· · · cov

(
Sb

b,S
b
b

)


Then, the function Fk0 (a;b;h1,h2, · · · ,hL) can be calculated numerically as

Fk0 (a;b;h1,h2, · · · ,hL) = Pk0

(
(b−a+1)L⋂

j=1

{
S3 ( j)< hS3 ( j)

})
(90)

Finally, the worst-case probability of missed detection for the VTWL CUSUM test can be
calculated as

Pk0 (TV TWL ≥ k0 +L|TV TWL ≥ k0) =
Fk0 (L;k0 +L−1;h1,h2, · · · ,hL)

Fk0 (L;k0−1;h1,h2, · · · ,hL)
, (91)

where Fk0 (L;k0−1;h1,h2, · · · ,hL), 1 for k0 = L. The proof of part 3 is completed. �.

E.4. Numerical calculation of Pk0 (TFMA ≥ k0 +L|TFMA ≥ k0)

Let us define the following function F̃k0

(
a;b; h̃L

)

F̃k0

(
a;b; h̃L

)
= Pk0

(
b⋂

k=a

{
Sk

k−L+1 < h̃L

})
. (92)

The multivariate Gaussian random variable S4 ∈ R(b−a+1) with its mean vector µS4 ∈ R(b−a+1),
covariance matrix ΣS4 ∈ R(b−a+1)×(b−a+1) and the threshold vector hS4 ∈ R(b−a+1) is defined as
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follows

S4 =


Sa

a−L+1
Sa+1

a−L+2
...

Sb
b−L+1

 ; µS4 =


Ek0

[
Sa

a−L+1

]
Ek0

[
Sa+1

a−L+2

]
...

Ek0

[
Sb

b−L+1

]
 ; hS4 =


h̃L

h̃L
...

h̃L



ΣS4 =


cov
(
Sa

a−L+1,S
a
a−L+1

)
cov
(
Sa

a−L+1,S
a+1
a−L+2

)
· · · cov

(
Sa

a−L+1,S
b
b−L+1

)
cov
(
Sa+1

a−L+2,S
a
a−L+1

)
cov
(
Sa+1

a−L+2,S
a+1
a−L+2

)
· · · cov

(
Sa+1

a−L+2,S
b
b−L+1

)
...

...
. . .

...
cov
(
Sb

b−L+1,S
a
a−L+1

)
cov
(
Sb

b−L+1,S
a+1
a−L+2

)
· · · cov

(
Sb

b−L+1,S
b
b−L+1

)
 .

The function F̃k0

(
a;b; h̃L

)
is calculated numerically as

F̃k0

(
a;b; h̃L

)
= Pk0

(
(b−a+1)⋂

j=1

{
S4 ( j)< hS4 ( j)

})
. (93)

Finally, the worst-case probability of missed detection for the FMA test is calculated numerically
as

Pk0 (TFMA ≥ k0 +L|TFMA ≥ k0) =

Pk0

(
k0+L−1⋂

k=L

{
Sk

k−L+1 < h̃L−µSL
1

})

Pk0

(
k0−1⋂
k=L

{
Sk

k−L+1 < h̃L−µSL
1

})

=
F̃k0

(
L;k0 +L−1; h̃L−µSL

1

)
F̃k0

(
L;k0−1; h̃L−µSL

1

) , (94)

where F̃k0

(
L;k0−1; h̃L−µSL

1

)
, 1 for k0 = L. The proof of part 4 is completed. �.

Remark 7. Let us discuss now the positive definiteness of the covariance matrices ΣS1 , ΣS2 ,
ΣS3 , and ΣS4 . First of all, S2 = S , where the last vector is defined in Lemma 1. As it follows
from Lemma 1, the covariance matrices ΣS2 = ΣS , which correspond to the FMA test, are
positive definite if Assumption 1 is satisfied. Second, the covariance matrix ΣS4 is also positive
definite if Assumption 1 is satisfied. The proof of this fact is completely analogous to that of
Lemma 1 in Appendix C. Finally, the covariance matrices ΣS1 and ΣS3 , which correspond to
the VTWL CUSUM test, are positive definite in some scenarios. Nevertheless, there are also
scenarios where the determinants of ΣS1 and ΣS3 are close to zero, especially with large values
of L and m. Therefore, it is necessary to verify their positive definiteness before executing the
numerical computation. The following heuristic solution is proposed in such cases : to use the
matrix ΣS1 +δI (resp. ΣS3 +δI ) instead of covariance matrix ΣS1 (resp. ΣS3), where I is
the identity matrix and δ > 0 is a small quantity.
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