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Abstract: Graphs have attracted a burst of attention in the last years, with applications to social science, biology,
computer science... In the present paper, we illustrate how self-organizing maps (SOM) can be used to enlighten the
structure of the graph, performing clustering of the graph together with visualization of a simplified graph. In particular,
we present the R package SOMbrero which implements a stochastic version of the so-called relational algorithm:
the method is able to process any dissimilarity data and several dissimilarities adapted to graphs are described and
compared. The use of the package is illustrated on two real-world datasets: one, included in the package itself, is
small enough to allow for a full investigation of the influence of the choice of a dissimilarity to measure the proximity
between the vertices on the results. The other example comes from an application in biology and is based on a large
bipartite graph of chemical reactions with several thousands vertices.

Résumé : L’analyse de graphes a connu un intérêt croissant dans les dernières années, avec des applications en sciences
sociales, biologie, informatique, ... Dans cet article, nous illustrons comment les cartes auto-organisatrices (SOM)
peuvent être utilisées pour mettre en lumière la structure d’un graphe en combinant la classification de ses sommets
avec une visualisation simplifiée de celui-ci. En particulier, nous présentons le package R SOMbrero dans lequel est
implémentée une version stochastique de l’approche dite « relationnelle » de l’algorithme de cartes auto-organisatrices.
Cette méthode permet d’utiliser les cartes auto-organisatrices avec des données décrites par des mesures de dissimilarité
et nous discutons et comparons ici plusieurs types de dissimilarités adaptées aux graphes. L’utilisation du package est
illustrée sur deux jeux de données réelles : le premier, inclus dans le package lui-même, est suffisamment petit pour
permettre l’analyse complète de l’influence du choix de la mesure de dissimilarité sur les résultats. Le second exemple
provient d’une application en biologie et est basé sur un graphe biparti de grande taille, issu de réactions chimiques et
qui contient plusieurs milliers de nœuds.
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1. Introduction

Graphs have attracted a burst of attention in the last years, with applications to social sciences,
biology, computer science... When wanting to understand the way a graph is structured and how
the relations it models organize groups of entities, clustering and visualization have been proven to
be useful tools. They are sometimes combined in order to provide the user with a global overview
of the graph (Noack, 2007). Several approaches have been developed so far to perform such tasks:
(i) using a vertex clustering prior to visualizing the graph induced by the clustering, which is a
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96 M. Olteanu & N. Villa-Vialaneix

simplified representation of the graph in which clusters are symbolized by a single vertex; (ii)
visualizing the whole graph by adding constraints on the vertex locations (Eades and Huang,
2000) that can be derived from a prior vertex clustering or (iii) combining in one step clustering
and visualization by using topology preserving methods such as self-organizing maps (SOM) or
derived topological maps (Boulet et al., 2008; Rossi and Villa-Vialaneix, 2010).

In the present article, we shall illustrate the latter approach by showing how a specific self-
organizing map designed to handle data described by a dissimilarity matrix can be used to provide
a simplified representation and thus an overview of the graph. To do so, we rely on the R package
SOMbrero which implements several extensions of the stochastic algorithm for self-organizing
maps to non vectorial data. The article is organized as follows: Section 2 recalls basic background
about self-organizing maps and their extensions to non-vectorial data. A discussion is provided in
this section on how these extensions can be used with graph and, in particular, we review different
standard dissimilarity measures adapted to quantify the proximity between nodes in a graph. Then,
Section 3 reviews SOM programs and R packages and presents SOMbrero. The package’s main
features are described. Finally, Section 4 illustrates its use on two real-life data sets. In particular,
the first dataset is used as a complete simple use case example of SOMbrero and also as a way
to investigate the influence of the chosen dissimilarity on the results. The second dataset comes
from a biological application and is discussed regarding external information provided by the
application context.

2. Self-organizing Maps and their extension to graphs

2.1. Basics on Self-organizing maps

In its standard (Euclidean) version, the self-organizing map algorithm (SOM, also known as
Kohonen’s algorithm, Kohonen, 2001) aims at mapping n input data x1, . . . , xn ∈ Rd into a low
dimensional map (or ) composed of U units (or neurons). A prototype pu, taking values in the
same space as the input data, is associated to each unit u ∈ {1, . . . ,U} of the map. The map is
equipped with a distance d between units (usually chosen as the length of the shortest path on the
map). The algorithm aims at clustering together similar observations while preserving the original
topology of the data (i.e., close observations in the input space are clustered together into the same
unit or into neighbor units on the map). Several approaches have been proposed to perform the
clustering, both stochastic and batch versions. In this article, we focus on the stochastic version,
which is known to provide a better topology preservation on the map than the batch version, at the
cost of a larger computational time, Fort et al., 2002).

After the prototypes have been initialized in Rd (usually randomly or using a PCA), the
stochastic SOM iterates over two steps:

– an assignment step in which one observation, xi, is picked at random and is affected to the
closest prototype:

f (xi) = arg min
u=1,...,U

‖xi− pu‖, (1)

where ‖ · ‖ is the Euclidean distance in Rd ;
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Using SOMbrero for clustering and visualizing graphs 97

– a representation step in which all prototypes are updated according to the new assignment
by mimicking a stochastic gradient descent scheme:

∀u = 1, . . . ,U, pnew
u = pold

u +µH (d ( f (xi),u))
(
xi− pold

u
)
, (2)

where H is the neighborhood function verifying the assumptions H : R+→ R+, H(0) = 1
and limx→+∞ H(x) = 0, and µ is a training parameter. Generally, H and µ are supposed to
be decreasing with the number of iterations during the training procedure so that H is the
indicator function in the last iterations of the SOM algorithm (hence, the last iterations of
the algorithm are used to improve the clustering quality of the map, in a way that is similar
to on-line k-means algorithm, once the map has been organized during the first iterations).

Contrary to the stochastic version, the batch version of the SOM algorithm (that we will not
discuss further in this article) processes all data at each iteration and updates the prototypes with a
generalized mean of the observations classified in the neighborhood of the corresponding unit.

2.2. SOM for kernel and dissimilarity data

Since the original algorithm for vectorial data was introduced, several variants of self-organizing
maps have been proposed to extend its use to more complex data and in particular to graphs.
The most popular extensions rely on the computation of a measure of similarity or dissimilarity
between the input data. The usual framework is to suppose that the input data are defined in a
general space, x1, . . . , xn ∈ G , and one may compute D = (δii′)i,i′=1,...,n the dissimilarity matrix,
generally positive (δii′ ≥ 0) and symmetric (δii′ = δi′i), but not necessarily Euclidean 1.

One approach of extending the SOM algorithm to data described by their dissimilarities
consists in using the median principle : replace the standard computation of the prototypes by an
approximation in the original data set (Ambroise and Govaert, 1996; Kohohen and Somervuo,
1998; Conan-Guez et al., 2006) and transform the representation step of Equation (2) into a discrete
optimization scheme. However, this method, called “median SOM”, increases the computational
time, while prototypes remain restricted to the original data and may generate possible sampling
or sparsity issues. Another extension is proposed in Graepel and Obermayer (1999) and uses the
dissimilarity in a probabilistic framework which is solved with an EM scheme. In this latter case,
the optimized cost function is not exactly equivalent to the original cost function of the SOM and
the topographic map is not based on prototypes which can help interpret the units.

The so-called “relational SOM” (the reader may refer to Hammer and Hasenfuss (2010) for the
batch version and to Olteanu and Villa-Vialaneix (2015) for the stochastic version) overcomes
the constrained framework of median SOM by defining the prototypes as (implicit) convex
combinations of the original data. The underlying hypothesis for relational SOM is the existence
of a pseudo-euclidean embedding of the original dataset, as defined in Goldfarb (1984), (see
Hammer and Hasenfuss (2010); Olteanu and Villa-Vialaneix (2015) for further details). The
original input data xi ∈ G , i = 1, . . . ,n may then be represented as vectors in the embedding space,
Φ(xi) ∈ E , i = 1, . . . ,n. The explicit form of Φ is not needed since only the dissimilarities are
used :

δi j = 〈Φ(xi)−Φ(x j) ,Φ(xi)−Φ(x j)〉E (3)

1 see Schoenberg (1935); Young and Householder (1938); Krislock and Wolkowicz (2012) for necessary conditions
that make a dissimilarity matrix embeddable in a Euclidean space.

Journal de la Société Française de Statistique, Vol. 156 No. 3 95-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



98 M. Olteanu & N. Villa-Vialaneix

Using the previous representation, prototypes are defined as convex combinations of vectors in the
embedding space, pu = ∑

n
i=1 γuiΦ(xi) ∈ E , with ∀u = 1, . . . ,U , ∑

n
i=1 γui = 1 and γui ≥ 0. Defining

prototypes as convex combinations of the input data makes sense and does not add supplementary
constraints with respect to the original algorithm since this is exactly the case for the original
algorithm: in the batch version, prototypes are defined as weighted averages of the input vectors;
in the on-line version, this property also holds if the prototypes are initialized in the convex hull
of the input data.

One can now define a dissimilarity between input data and prototypes in E :

δ (Φ(xi), pu) := ‖pu−Φ(xi)‖2
E = (Dγu)i−

1
2

γ
T
u Dγu

where γu = (γui)i ∈Rn. Furthermore, since the prototypes are constrained to convex combinations
of the input data, the update step of the algorithm involves only the weights γui. More precisely,
after having initialized the prototypes, the two steps of the stochastic version of the relational
SOM consist in the following modifications of steps described in Equations (1) and (2) above:

– assignment step:

f (xi) = arg min
u=1,...,U

(Dγu)i−
1
2

γ
T
u Dγu (4)

which is exactly equivalent to the assignment step in the standard SOM (Equation (1)), if the
dissimilarity matrix D is the squared Euclidean distance;

– representation step:

γ
new
u ← γ

old
u +µH(d( f (xi),u))

(
1i− γ

old
u
)

(5)

where 1i is a vector with a single non null coefficient at the i-th position, equal to one.
Again, this modification is exactly equivalent to the representation step (Equation (2)) in the
standard SOM if the dissimilarity matrix D is the squared Euclidean distance.

In some cases, instead of being described by pairwise dissimilarities, data are given as pairwise
similarities, (sii′)i,i′=1,...,n, sometimes expressed by means of a kernel, i.e., a fonction K : G ×
G → R which is symmetric (K(x,x′) = K(x′,x)) and positive (∀N ∈ N, ∀(αi)i ⊂ R, ∀(xi)i ⊂ G ,
∑

N
i,i′=1 αiαi′K(xi,xi′)≥ 0). In this case, an implicit Hilbert space H exists as well as an embedding

function Φ : G →H such that

sii′ = K(xi,xi′) = 〈Φ(xi) ,Φ(xi′)〉 ,

(see Aronszajn, 1950). K can thus be interpreted as a dot product in H . Another version of SOM,
called kernel SOM and very similar to relational SOM, is also available in the literature and was
introduced prior to relational SOM (Mac Donald and Fyfe, 2000; Andras, 2002; Boulet et al.,
2008). However, kernel SOM was proven (Rossi, 2014; Olteanu and Villa-Vialaneix, 2015) to be
exactly equivalent to relational SOM when using a dissimilarity δ which is Euclidean. Actually,
the relational algorithm applied to the squared distance induced by K in H , δii′ = sii + si′i′−2sii′

is strictly identical to the kernel SOM used with K. In fact, relational SOM generalizes the
kernel version of the algorithm thanks to the pseudo-Euclidean embedding but for non-Euclidean
dissimilarities/similarities, the two versions differ (because a kernel cannot be defined in these
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Using SOMbrero for clustering and visualizing graphs 99

cases) and relational SOM can lead to numerical difficulties caused by saddle points (see Hammer
et al., 2014 for further discussions).

Since relational SOM is designed for (dis)similarities and is based on very mild hypotheses,
it can be applied to complex data such as graphs as long as a (dis)similarity can be defined.
In the following, G = (V,E,W ) denotes a graph with vertices V = {x1, . . . ,xn}, edges E which
is a subset of V ×V and possibly a weight matrix W (i.e., an (n× n)-matrix, symmetric, with
positive entries and such that Wii = 0). When clustering and projecting graphs with relational
SOM, vertices represent the input data, while the edges (and the weight matrix) are used for
computing the dissimilarity matrix. The clustered vertices are then projected onto the map as a
simplified graph as explained in the following.

2.3. Using the SOM results to display a simplified graph

As explained in the introduction, it is common practice to represent a clustering of vertices by a
simplified graph induced from the original graph and the result of the clustering of its vertices
(see, for instance, Herman et al., 2000; Rossi and Villa-Vialaneix, 2011, among others).

In this approach, the vertices of the simplified graph represent the clusters, each cluster being
symbolized by a given glyph whose area is proportional to the cluster’s size (i.e., to the number of
vertices of the original graph that are classified in this cluster). The edges that link two clusters
usually have a width proportional to the number of edges (of the sum of the edges’ weights)
between the pairs of vertices clustered in the two corresponding clusters. When the clustering is
a prior step before the visualization, the clustered graph is drawn using modified force-directed
placement algorithm (Fruchterman and Reingold, 1991), which can cope with vertices having non-
uniform sizes (Harel and Koren, 2002; Tunkelang, 1999; Wang and Miyamoto, 1996). However,
when a topographic map is used, this second step is no more necessary because the prior structure
of the map provides natural positions for the clusters: as shown in Boulet et al. (2008), standard
maps position units in R2 at coordinates (1,1), (1,2), ..., (p,q) where p and q are the length and
width of the map (and thus pq =U): the induced graph is thus displayed with vertices positioned
at these coordinates. Rossi and Villa-Vialaneix (2010) uses a similar approach to represent graphs,
by defining a topographic map algorithm. This method does not rely on a dissimilarity but on a
criterion specific to graphs and derived from the modularity (Newman and Girvan, 2004), which
is a very standard quality measure for clustering the vertices of a graph.

2.4. Standard dissimilarities for vertices in a graph

Let us describe now the standard dissimilarities and kernels that are commonly used in the graph
context to measure the dissimilarity between vertices.

One of the most standard dissimilarities for vertices is the length of the shortest path between
them. However, this measure does not take into account the number of paths that link two vertices
but only the length of the shortest one and it cannot easily include information about the possible
weights that can be associated to edges. A very popular method to cluster the vertices of a graph
is the so-called spectral clustering (von Luxburg, 2007). This approach is based on a spectral
decomposition of the Laplacian of the graph, L = (Li j)i, j=1,...,n, a matrix encoding the graph
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100 M. Olteanu & N. Villa-Vialaneix

structure

Li j =

{
−Wi j if i 6= j,
di = ∑k 6=iWi j otherwise.

More precisely, the method first performs an eigen-decomposition of the Laplacian,
((λi)i=1,...,n,(vi)i=1,...,n) with λ1 = 0 ≤ λ2 ≤ ... ≤ λn the eigenvalues of the Laplacian (in in-
creasing order: the first eigenvalue is always equal to zero) and vi ∈Rn. Then, every vertices xi are
represented by the entries of the eigenvectors associated to the C smallest positive eigenvalues of
the Laplacian, where C is the number of clusters that are searched: thus, each vertex is transformed
into a vector in RC, vi = (v1i, . . . ,vCi), where v ji is the i-th coefficient of the j-th eigenvector. This
method can be seen as a relaxed version of the normalized cut problem in which the number of
edges of the original graph between vertices that belong to two different clusters is minimized
while ensuring that the cluster size is large enough. Applied to relational SOM, this gives the idea
to use the (squared)-Euclidean distance between vi and vi′ to measure the dissimilarity between
vertices xi and xi′ .

This method can even be refined, using standard kernels for graphs, such as the ones proposed
and discussed in Smola and Kondor (2003). These are based on regularized versions of the
Laplacian and include, among others, the commute time kernel, KCT = L+ (Fouss et al., 2007),
that can be interpreted as the average time a random walk takes to connect two vertices in the
graph or the heat kernel, KH = e−βL (β > 0, see Kondor and Lafferty, 2002) can be interpreted in
term of a diffusion process on the graph.

As already said, another very standard way to cluster the vertices of a graph is to maximize a
quality function called the modularity. For a partition C1, . . . , CC of the vertices in a graph, the
modularity is equal to

Q(C1, ...,CC) =
1

2m

C

∑
k=1

∑
xi,x j∈Ck

(
Wi j−

did j

2m

)
, (6)

with m the total number of edges of the graph (so that ∑i j Di j = ∑i j Wi j = 2m). Finding a partition
that maximizes the modularity is thus equivalent to find a partition in which the observed intra-
cluster weights, Wi j for xi and x j in the same cluster, are larger than those expected in a null model
where the weights of the edges would depend only on the degrees of the afferent vertices. In New-
man (2006), the modularity maximization problem is addressed using the eigen-decomposition of
a matrix called the modularity matrix which can be expressed as

B =W −D

where D is the matrix Di j =
did j
2m . Similarly to the spectral clustering, this eigen-decomposition

can be used as a mean to compute a dissimilarity measure between vertices in the graph: as
suggested in Newman (2006), the eigenvectors of B associated with the positive eigenvalues,
b1, . . . ,bp (with p≤ n), make it possible to provide the following p-dimensional representation
for the vertex xi: bi = (b1i, . . . ,bpn) and the squared Euclidean distance between those vectors
defines a dissimilarity matrix for the graph.

These different dissimilarities are illustrated and compared on a simple example in Section 4.1.
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Using SOMbrero for clustering and visualizing graphs 101

3. SOMbrero

3.1. Self-organizing maps programs and SOMbrero

Several implementations of the SOM algorithm exist in different mathematical/statistical softwares
but most of them can only handle (standard) multi-dimensional datasets. Among them are the
SOM Toolbox 2 (Matlab library), a function included in SAS Entreprise Miner (current version
12.3), the SAS programs by Patrick Letremy 3 and several R packages (class, som, popsom,
kohonen and yasomi). Among these programs, only yasomi 4 and The Matlab SOM Toolbox
provide the relational version of the SOM and can handle dissimilarity data. In these two programs,
the batch version of the algorithm is implemented.

The R package SOMbrero (current version 1.0, released on March, 2015 on CRAN http:
//cran.r-project.org/web/packages/SOMbrero.) proposes two stochastic versions of the
SOM algorithm for non vectorial data: the “KORRESP” algorithm by Cottrell et al. (1993),
which handles contingency tables by means of a factor analysis 5, and the relational SOM. The
implementation is slower than the one in yasomi but the package provides additional tools which
may help the user for representing and interpreting the results. A special attention was given to
making the syntax of the functions as simple as possible and to provide sufficient documentation
and vignettes for using SOMbrero with different types of data. The package also includes a
graphical interface that can be used even by those who do not know R programming language
and that makes it suited for teaching also. Finally, several options and methods in the package
were thought so as to handle graphs, including, in particular, a function that produces a simplified
representation of a given graph given the results of the SOM algorithm or the results of a super-
clustering of the prototypes of the SOM. Detailed features of the relational algorithm, which is
the version that is to be used with graphs, are described in the next section.

3.2. Features of SOMbrero for relational data

3.2.1. Training the SOM: the function trainSOM

SOMbrero proposes three different variants of the SOM algorithm with only one func-
tion, trainSOM. Specifying the argument type, the standard multi-dimensional SOM is per-
formed when setting type="numeric", the “KORRESP” algorithm is performed when setting
type="korresp" and the relational algorithm, that can be used for graphs, is performed when
setting type="relational". In the sequel, the description of the package will be restricted to
the relational version.

2 current version 2.1, last updated in December 2012, available at http://research.ics.aalto.fi/software/
somtoolbox or on Github https://github.com/ilarinieminen/SOM-Toolbox

3 current version 9.1.3, last updated in December 2005, no longer maintained, available at http://samos.
univ-paris1.fr/Programmes-bases-sur-l-algorithme

4 Rossi, 2012 (current version 0.3, last updated in March 2011)
5 The description of this method is out of the scope of this paper since it is not designed to directly deal with graphs.

We advice the reader to refer to the original article for further details on the method or Bourgeois et al. (2015) for an
example of a way to use of the KORRESP algorithm with graphs.

Journal de la Société Française de Statistique, Vol. 156 No. 3 95-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238

http://cran.r-project.org/web/packages/SOMbrero
http://cran.r-project.org/web/packages/SOMbrero
http://research.ics.aalto.fi/software/somtoolbox
http://research.ics.aalto.fi/software/somtoolbox
https://github.com/ilarinieminen/SOM-Toolbox
http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme
http://samos.univ-paris1.fr/Programmes-bases-sur-l-algorithme


102 M. Olteanu & N. Villa-Vialaneix

TABLE 1. Arguments that can set in the function trainSOM for the relational algorithm in SOMbrero 1.0

name description value

dimension dimension (width and length) of
the map

dimension is a vector of size 2. The default value is a square
map with width and length approximately equal to

√
n/10.

Units are then supposed to be positioned on a rectangular
map in R2, at coordinates (1,1), (1,2), ..., (p,q) where p
and q are the length and width of the map (and thus pq =U).

dist.type d

The default value is the euclidean distance between the co-
ordinates of the units in R2. All method provided by the
function dist are also available. Additionally, the value
“letremy” can be used, which corresponds to the original
implementation by Patrick Letremy (more details about this
option are provided in Section 4.1.1).

radius.type H

The default value is a Gaussian neighborhood (i.e., H(x) =
e−βx with β > 0 decreasing throughout the iterations) but
when dist.type is set to “letremy”, the value “letremy”
can also be used for radius.type, which corresponds to the
original implementation by Patrick Letremy (more details
about this option are provided in Section 4.1.1).

affectation type of the affectation step de-
scribed in Equations (1) and (4)

The default value is the standard affectation step described in
this article. An alternative is “heskes” which corresponds
to the modified affectation step described in Heskes (1999).

maxit
number of iterations of the algo-
rithm (affectation and represen-
tation steps)

The default value is equal to 5×n.

init.proto how to initialize the prototypes?

The coefficients (γui) can be initialized randomly in [0,1]
and then scaled so that ∑i γui = 1 (option “random”). They
can also be initialized to 0 except for one γu,i(u) = 1 where
i(u) is picked at random in {1, . . . ,n} (option “obs”, which
is the default) or they can be initialized using a MDS (Multi-
Dimensional Scaling): in this case, the coordinates (γui) are
regularly placed along the first two axes of the MDS. Alter-
natively, the user can pass his/her own initial prototypes with
the argument proto0.

scaling type of data preprocessing

The default value is to use the original data directly (option
“none”) but the similarity equivalence for the cosine pre-
processing described in Ben-Hur and Weston (2010) is also
available with the option “cosine” (further details on this
preprocessing are given in the package’s documentation).

nb.save number of intermediate results
to save

The default value is 0 which leads to save only the final map.
Alternatively, the user can choose to save intermediate results
(clustering and prototypes) during the training process.

Several other arguments can be passed to the function for tuning the training algorithm. The
main arguments that can be used for the relational version of the algorithm are summarized in
Table 1.

The result of the function trainSOM is an object of class somRes which contains, in particular,
the values of the prototypes (as a matrix having dimension U×n) which correspond to the γui and
the clustering. Several methods have been implemented for this class, to help the user interpret
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Using SOMbrero for clustering and visualizing graphs 103

the results.

3.2.2. Checking the SOM’s quality: the methods summary and quality

Once the map is trained, SOMbrero offers several additional functions for checking its quality
and for interpreting the results:

– a function summary displays a short summary of the results and includes an ANOVA
procedure for testing the relevance of the clustering regarding the data. For the relational
SOM a dissimilarity ANOVA is performed, as described in Anderson (2001);

– a function quality calculates two well-know quality criteria for the map (Polzlbauer, 2004):
– the topographic error: this error quantifies the continuity of the map with respect to the

input space metric by counting the number of times the second best matching unit of a
given observation belongs to the direct neighborhood of the best matching unit for this
observation. A topographic error equal to 0 means that all second best matching units are
in the direct neighborhood of the winner units and thus that the original topology of the
data is well preserved on the map. The direct neighborhood of the unit u in the squared
map below are the colored units:

u

– the quantization error: this error quantifies the quality of the clustering. It is equal to
the average distance of the sample vectors to the cluster prototypes by which they are
represented. For the relational SOM, this quantity is equal to

1
n

U

∑
u=1

∑
i: f (xi)=u

[
(Dγu)i−

1
2

γ
T
u Dγu

]
; (7)

3.2.3. Displaying the SOM: the method plot

A function plot displays a wide range of plots aimed at giving a comprehensive overview of the
resulting clusters (colors, bars, pie charts, boxplot, . . . ). Just two arguments handle the type of the
output plot in a handy way: what and type. The argument what is used to plot either the original
observations (in the case of the relational plot, only a dissimilarity matrix is passed to the training
function and thus this option can not be used except for displaying the names of the observations
in every unit of the map), the prototypes (or the distances between pairs of prototypes) or an
additional variable that can be combined with the result of the map. This last option was found
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TABLE 2. Summary of plots available in SOMbrero 1.0 for relational data

type
relational

obs proto add
color x
lines x x

barplot x x
radar x x

boxplot x
poly.dist x
umatrix x

smooth.dist x
mds x

grid.dist x
hitmap x
names x x
words x

pie x
graph x

to be very handy when the dissimilarity matrix corresponds to a graph: in this case, the option
type="graph" makes it possible to obtain the simplified projected representation of the graph
as described in Section 2.3. Table 2 summarizes all available graphics for the relational SOM
algorithms.

3.2.4. Clustering the prototypes: the method superClass

The SOM algorithm often results in a large number of classes, which is not very handy for
interpretation. Therefore, a common practice is to run an ascending hierarchical clustering
algorithm on the prototypes of the trained map. SOMbrero implements this in the function
superClass. A dendrogram and a scree-plot can be drawn using the function plot.somSC,
which can guide the user’s choice. Results of this super-clustering can also be combined with any
of the graphics described in Section 3.2.3.

3.2.5. Projecting a graph on the SOM: the method projectIGraph

Finally, when the clustered entities are vertices of a graph, the projected graph which is displayed
as described in Section 2.3 can easily be retrieved as an igraph 6 object using the method
projectIGraph which takes two parameters: the result of the SOM algorithm and the original
graph on the form of an igraph object. The resulting igraph object contains information about
the size of the clusters (one cluster corresponding to one unit in the map) and the number of (or the
sum of the weights of the) edges between vertices in two different clusters. An attribute layout
is attached to the results, which positionned the nodes of the projected graph at the coordinates in
R2 of the corresponding units on the map.

The same feature exists for the super-clusters obtained by the function superClass: in this
case, the nodes of the projected graph are positioned at the center of gravity of the super-clusters

6 available from the R package igraph, Csardi and Nepusz (2006).
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on the map. This feature allows the user to obtain a simplified overview of its graph, as shown in
the Section 4.

These graphs can be directly represented using the command line

plot(x, what="add", type="graph", ...)

with x an object of type somRes or with command line

plot(x, type=" projgraph ", ...)

with x the result of the superClass function.
A simple example of the way these functions can be used is provided in Section 4.1 on a toy

example available in the package.

3.3. Getting started with SOMbrero

SOMbrero also provides five vignettes (HTML documentation files accessible from within the
package or on the CRAN webpage) that detail the use of the package for different types of data.
Three datasets, provided with SOMbrero, are used to illustrate the numeric case, the “KORRESP”
case and the relational case. In particular, the dataset provided to illustrate the relational SOM is
the graph described and studied in Section 4.1, which is derived from the novel “Les Misérables”
by the French author Victor Hugo.

Moreover, SOMbrero comes with a user-friendly graphical interface, which makes most of
its options available in a few clicks, without resorting to the command line. The interface is
programmed using the R package shiny RStudio and Inc. (2013). It can be tested using a simple
web browser (some of the features may not work with Internet Explorer or Chrome; Firefox must
be preferred), and can be accessed on-line at http://shiny.nathalievilla.org/sombrero,
as shown in Figure 1. The interface was also integrated in the package in order to allow SOMbrero
users run it locally if preferred (for faster interactivity). Within the package, it may be accessed
using the sombreroGUI() command.

The interface consists of seven panels: the left hand side panel allows the user to choose the
type of SOM and gives general information and references. An “Import Data” panel is used to
import a data file in csv or text format, and set formatting options for the importation. If the data
are properly imported, a preview table is shown in this panel. The “Self-Organize” panel is used
to select the SOM options and train the algorithm. The “Plot Map” panel provides the different
graphical outputs implemented in SOMbrero. The “Superclasses” panel is used to compute and
to display super-classes. The “Combine with external information” panel can be used to import
additional data and to display them on the map and thus to combine the results of SOM with
external information. Finally, the “Help” panel contains indications about how to use the interface.

4. Application

4.1. Les Misérables

The example addressed in this section is described in Knuth (1993) and comes from the novel
“Les Misérables” by the French author Victor Hugo. The graph extracted from this novel is a graph
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FIGURE 1. Screenshot of the SOMbrero web user interface

of co-appearance of the characters of the novel: the vertices of the graph are the 77 characters
of the novel and the 254 edges stand for a co-appearance of the corresponding two characters
in a same chapter of the novel. The edges are weighted by the number of co-appearances. The
graph is available as a igraph object in the R package SOMbrero. SOMbrero also includes the
dissimilarity matrix based on the shortest path lengths in the graph, which can be directly used
with the relational SOM algorithm included in the package.

This section aims at providing a simple use case example of the R package SOMbrero to
explain the differents steps that can lead to obtain a simplified and comprehensive representation
of the graph. This use case example describes the different command lines and options using the
functions in SOMbrero, that can be used to obtain typical outputs for a graph. Then, an insight on
choices that can be made regarding the dissimilarity to use in a graph is provided. The differences
between the different dissimilarities are illustrated in a comparative study.

4.1.1. Use case example

This section presents a use case example of the SOMbrero package with the data presented
above. The use case is performed from the dissimilarity matrix included in the package, which
is the shortest path length. The results shown in the current section are those included in the
package’s vignette that illustrates the use of the relational SOM. The map was built using a
random initialization of the (γui) between 0 and 1 (with a scaling so that for every u, γui sums to
1) and functions d and H that correspond to the original implementation of the Patrick Letremy’s

SAS program. More precisely, H is a function of the form Ht(r) =
{

1 if r ≤ rt

0 otherwise.
, where rt
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takes decreasing successive values from an original value r0, depending on U and on the number
of iterations, to 0. The default d is usually equal to the maximum distance between units u and u′

with coordinates (ux,uy) and (u′x,u
′
y) so that

d(u,u′) = max
(
|ux−u′x|, |uy−u′y|

)
,

except when rt = 0.5, at which time d is chosen as the Euclidean distance (every unit has then 4
neighbors, except for the bordering units).

The data are referenced in the package under the name lesmis:

data( lesmis )

which gives access to two variables: lesmis, which is the graph itself, provided on the form of an
igraph object, and the dissimilarity matrix dissim.lesmis based on the shortest path length
between pairs of vertices. The map is then trained using the command line:

som.lemis <- trainSOM ( dissim .lesmis , init.proto=" random ",
maxit =500 , type=" relational ",
radius .type=" letremy ")

Only the dissimilarity matrix and the type of algorithm are mandatory for this function. Default
parameters with this dataset would have been to initialize the dimension of the map to 5×5, the
number of iterations to 385.

The quality of the map is checked using the function quality

quality (som.lemis)
# $ t o p o g r a p h i c
# [1] 0

# $ q u a n t i z a t i o n
# [1] 0 . 6 1 3 0 3 1

and various types of graphics can be produced (see results in Figure 2):

plot(som.lesmis , what="obs")
plot(som.lesmis , what="add", type="graph", variable = lesmis )
plot(som.lesmis , what="obs", type="names", scale=c(0.9 ,0.5))

Here, the hitmap is shown, which is the default plot for the observations (hence the argument
type does not have to be passed to the function plot) and displays a rectangle which area is
proportional to the number of vertices clustered in every unit. The projected graph, as described
in Section 2.3, is also given as well as the result of the clustering where the column names of the
dissimilarity matrix (here, the characters’ names) are displayed in their corresponding units.

At this step, due to the large number of clusters, the representation of the projected graph is
still a bit messy and the clustering quality is not very good (the modularity is equal to 0.389).
However, a clustering of the prototypes can be performed to improve it:
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Hitmap Projected graph

Clustering

FIGURE 2. Hitmap, projected graph and clustering on the map
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sc. lesmis <- superClass (som. lesmis )
plot(sc. lesmis )
sc. lesmis <- superClass (som.lesmis , k=5)
plot(sc.lesmis , type=" hitmap ")
plot(sc.lesmis , type=" projgraph ", variable = lesmis )

The results are illustrated in Figure 3. In particular, Figure (c) shows that the clusters obtained

(a) (b)

(c) (d)

FIGURE 3. (a) Dendrogram of the clustering of the prototypes: from this figure, we chose to select 6 super-clusters, (b)
hitmap colored with the result of the super-clustering, (c) original graph with the result of the super-clustering, (d)
projected graph using the super-clustering

make sense (each one is associated to an important character of the novel : Valjean, Myriel,
Fantine, Gavroche, Cosette, Javert and the Thenardier family) and the modularity is improved
(0.529). In Figure (d), the super-clustering is used to obtain a final simplified representation of the
graph in which all super-clusters are positioned at their gravity center on the map.
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4.1.2. Influence of the dissimilarity measure

Let us now investigate the influence of the dissimilarity on the SOM performances. To do so, we
have used different dissimilarities described in Section 2.4 with the graph of co-appearance from
“Les Misérables”. The following dissimilarities were computed on this graph:

(a) the shortest path lengths, computed with the unweighted graph,
(b) the dissimilarity based on the weighted Laplacian eigen-decomposition with C = 25 (to be

used with a 5×5 map),
(c) the squared distance induced from the commute time kernel which uses also the weighted

Laplacian,
(d) the dissimilarity based on the modularity matrix eigen-decomposition, which also uses the

weighted graphs.
The different dissimilarities are illustrated on the heatmaps of Figure 4.

This figure shows that, as expected, the dissimilarity based on the eigen-decomposition of the
Laplacian and the one computed from the commute time kernel present very similar patterns,
the latter being slightly less contrasted than the former which uses only a part of the eigen-
decomposition. The shortest path length (which is based on the unweighted graph, contrary to the
other three) exibits rather different patterns and seems to have a larger number of distant vertices
than the two previous. Finally, the dissimilarity based on the modularity matrix has exactly the
opposite behaviour: very few pairs of vertices are considered as distant. Similar conclusions can
be drawn from Figure 5 which illustrates the dissimilarities from Valjean’s point of view 7. This
figure shows that the dissimilarities are quite different except for the dissimilarity based on the
eigen-decomposition of the Laplacian and the one computed from the commute time kernel which
present similar patterns. In particular, the dissimilarity based on the modularity matrix provides
results that are a bit strange to interpret, like the fact that “Old man” (bottom left of the graph)
is “closer” (from this dissimilarity point of view) than “Toussain” who is directly connected to
Valjean (middle of the graph), which indicates that this dissimilarity is maybe not very relevant
for clustering vertices in this graph.

For every dissimilarity matrix, three different initializations of the SOM algorithm were
tested, that are the three options available in SOMbrero (as described in Section 3.2). Then, for
every dissimilarity and every type of initialization, 1,000 maps were trained using the function
trainSOM with a 5×5-map, 500 iterations and d and H as in the original implementation of the
algorithm by Patrick Letremy. To test if a combination of dissimilarities corresponding to different
features can improve the results, two combined dissimilarities were also computed as suggested
in Olteanu and Villa-Vialaneix (2015):

Dsp+modularity =
Dsp

‖Dsp‖F
+

Dmodularity

‖Dmodularity‖F
and Dsp+spec. clust =

Dsp

‖Dsp‖F
+

Dspec. clust

‖Dspec. clust‖F
(8)

with Dsp the dissimilarity matrix based on shortest path length, Dmodularity the dissimilarity matrix
based on the eigen-decomposition of the modularity matrix, Dspec. clust the dissimilarity matrix
based on the eigen-decomposition of the Laplacian and ‖.‖F the Frobenius norm to make the two
combined dissimilarities have comparable scales.

7 Jean Valjean is one of the main (or even the main) character of the novel.
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(a) shortest path lengths (b) Laplacian

(c) commute time kernel distance (d) modularity

FIGURE 4. Heatmap of the different dissimilarities obtained from the graph “Les Misérables”. Red corresponds to
small (or null) dissimilarities, blue to large ones.

The different results were compared using different quality measures, two of which being
directly computed with the quality function in SOMbrero, the topographic error (which provides
an insight on the good organization on the map) and the quantization error (which helps quantify
the quality of the clustering). Note that these two quality measures are not really a fair criterion for
comparing different dissimilarities as they both depend on the dissimilarity itself. However, the
topographic error is an error rate and can thus hint which dissimilarities allow for a good topology
preservation (i.e., are well projected on the map). The quantization error, whose value is given
in Equation (7), was divided by the Frobenius norm of the corresponding dissimilarity matrix to
allow for similar scales between the different dissimilarities. Finally, an external clustering quality
criterion was used, the modularity (Equation (6)). Two versions of the criterion were computed:
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(a) shortest path lengths (b) Laplacian

(c) commute time kernel distance (d) modularity

FIGURE 5. Graph coming from “Les Misérables” with vertex colors corresponding to the distances of the vertices
from Valjean. Colors are chosen based on the range of distances from Valjean only: red corresponds to small (or null)
dissimilarities, blue to large ones.

one using the weighted graphs and one the unweighted graph (in this latter case, the weights Wi j

were then equal to either 0 or 1).
The distribution of the different quality measures other the 1,000 maps are given by dissimilar-

ity and type of initialization in Figure 6. Additionally, Table 3 gives the average performance for
the four quality measures whatever the initialization.

Several conclusions can be drawn from these results: first, the type of initialization does not
seem to have a strong impact on the quality of the results, which is expected for a stochastic
algorithm. Second, the maps obtained with the shortest path length are the best for the standard
quality criteria for SOMs but are not good from the modularity perspective (especially the
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FIGURE 6. Distribution of the topographic and quantization errors and of the modularity (based on the weighted
or unweighted) graph, given by dissimilarity and type of initialization. “ctk” means “commute time kernel”, “sp”
means “shortest path length” and “spec. clust” stands for the dissimilarity based on the eigen-decomposition of
the Laplacian. “observations” means random initialization so that, for every u, γui(u) = 1 for a unique i(u), “pca”
is the initialization based on a PCA-like approach and “random” is the initialization in which γui are sampled in
[0,1] and then scaled such that ∑i γui = 1. The last panel of each figure provides the distribution whatever the type of
initialization (distribution over 3,000 maps).

weighted version, which is expected since this dissimilarity does not use the information on
weights). On the contrary, the maps based on the dissimilarity computed from the commute time
kernel exhibit rather poor topological preservation and quantization error as compared to the
other dissimilarities but they have the best performances for the modularity (at the cost of a very
large variability). This means that, since they depend on the dissimilarity itself which represents
more or less faithfully the graph topology, the standard quality criteria for SOMs are probably
not to be trusted too much to compare maps obtained from different dissimilarities. Surprisingly,
the dissimilarity which is based on the modularity matrix did not outperform the others for the
modularity criteria. This might be due to the fact that the matrix only uses the positive part of
the modularity matrix spectrum, which may well be insufficient to grab most of the information
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TABLE 3. Average performance for four quality criterion over all 3,000 maps produced for each dissimilarity. “ctk”
means “commute time kernel”, “modularity” is the dissimilarity based on the modularity matrix eigen-decomposition,

“sp” means “shortest path length” and “spec. clust” stands for the dissimilarity based on the eigen-decomposition of
the Laplacian. The “+” indicates that the two dissimilarities have been combined as in Equation (8).

topographic quantization modularity weighted
dissimilarity error error modularity
ctk 0.100 0.00338 0.369 0.406
modularity 0.106 0.00310 0.242 0.330
sp 0.037 0.00293 0.309 0.253
spec. clust 0.065 0.00305 0.308 0.301
sp + modularity 0.038 0.00319 0.287 0.288
sp + spec. clust 0.039 0.00329 0.347 0.318

needed to optimize the modularity itself 8. Also, the dissimilarity based on the modularity matrix
had a very poor topographic preservation (which could be the consequence of uninterpretable
values, as described above). Finally, the combined dissimilarities provide almost everywhere
average performance, except for the quantization error which is among the worst (but this error is
probably the most dependent from the values of the dissimilarity themselves and maybe not as
reliable as the others).

4.2. Analysis of a bipartite metabolic network

The database used in this section comes from a reconstruction of the human metabolic network
from the BiGG database (Schellenberger et al., 2010, http://bigg.ucsd.edu). This graph was
already used for visualization purposes in Schulz et al. (2008) and its clustering is of interest as
demonstrated in Hanisch et al. (2002), which uses similar data combined with expression data
to cluster genes and improve their knowledge on their biological functions. We took a snapshot
of the data on August 13rd, 2014 and extracted chemical reactions related to Homo Sapiens and
located in the Cytosol, which corresponded to 957 reactions. A bipartite graph was defined from
these data, in which:

– the vertices were the reactions or the elements involved in a reaction;
– the edges meant that one of the corresponding vertices (an chemical element) was involved

in the other vertex (reaction).
The largest connected component of this graph contained 1832 vertices (949 reactions and 883
elements) and 4,504 edges. Additionally, contextual information was extracted from the data:
the pathway of the chemical reaction (100 different pathways such as Nucleic acid degradation,
Extracellular transport, Steroid Metabolism, ...).

The following methodology was used to produce a map from SOMbrero: first, the shortest
path lengths between every pair of vertices were calculated and used for the dissimilarity matrix
input in the trainSOM function. The algorithm was trained with a 10×10 map, 5,000 iterations
and H and d set as in the original implementation by Patrick Letremy. 10 maps were obtained
with different initializations corresponding to the default option ((γui(u)) = 1 for a unique i(u)
randomly chosen in {1, ...,n})). For every map, the topographic error and the quantization error

8 Note that Rossi and Villa-Vialaneix (2010) has already observed that using the eigen-decomposition of the modularity
matrix is not the best method for defining a kernel which should optimize the modularity.
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TABLE 4. Topographic error and quantization error for the chosen map and average over the 10 trained maps.

topographic error quantization error
chosen map 0.288 1.40
average (10 maps) 0.370 1.40

were calculated. The final selected map was the one with the smallest averaged rank, where the
average is taken between the rank on topographic error and the rank on quantization. The final
map contained 98 clusters has the quantization and topographic errors given in Table 4, that
can be compared to the average topographic and quantization errors over the 10 maps. Note
that the expectation for a given unit to be in the neighborhood of another unit on the map is
approximately equal to 8.3% which shows that the obtained topographic error fairly correct. The
average dissimilarity over the pairs of nodes is equal to 3.9 (with a maximum at 13), which shows
also that the quantization error (i.e., the average dissimilarity between the nodes in a given unit
and the unit’s prototype) is also correct.

Additionally, quality criteria pertaining to the external information available on the chemical
reactions were also calculated. More precisely, Table 5 provides the average unit purity and the
normalized mutual information (Danon et al., 2005) with respect to the pathway (both quantities
were calculated considering only the reactions).

TABLE 5. Average node purity and normalized mutual information for the pathway for the chosen maps and mean for
the 10 trained maps.

node purity nmi
chosen map 53.8% 54%
average 49.9% 53.8%

An enrichment analysis for the pathway was performed for every unit and every pathway in the
map. Fisher tests with Bonferroni correction for multiple tests were performed and units found
to be significantly enriched in a given pathway were extracted (with risk 5%). 25 units (over 98
non-empty clusters on the map) were found to be significantly enriched in 15 different pathways,
which shows a good consistency between the obtained map and the external information provided
by the pathway, that was not used to train it.

A super-clustering of the prototypes was then performed leading to the dendrogram shown
in Figure 7, from which we chose to keep 8 clusters. These clusters were all tested for pathway
enrichment and 5 were found to be significantly enriched in one, two or three different pathways.
Finally, Figure 8 shows the projected super-clusters on the map, labeled with enriched pathways.
The modularity of this clustering is equal to 0.420 (to be compared with 0.537 and 0.372 which
are, respectively the modularity found with the original approach of Newman and Girvan (2004)
for 26 clusters and the modularity found using the eigen-decomposition of the modularity matrix
as in Newman, 2006 with 5 clusters). However, our approach offers an a priori representation
of the clusters’ positions and should provide useful hints on the graph structure. For instance,
Figure 8 shows a very central cluster enriched in “Caruitine shuttle” and “Fatty acid activation”
that has strong links with almost all the other clusters. On the contrary, the bottom left cluster
enriched in “Tyrosine metabolism” and “Tryptophan metabolism” is rather isolated and not
connected with the rest of the graph and must be a very coherent set of reactions associated to
these two peculiar functions.

Journal de la Société Française de Statistique, Vol. 156 No. 3 95-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



116 M. Olteanu & N. Villa-Vialaneix

FIGURE 7. Dendrogram of the super-clustering of prototypes for the chemical reaction bipartite graph. 8 super-clusters
were extracted.

FIGURE 8. Projected super-clusters at centers of gravity of their clusters labeled with enriched pathways.
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5. Conclusion

In this article, we presented an R package for non-vectorial Self-Organizing Maps, SOMbrero.
We showed that the relational SOM implemented in the package can be useful to obtain a
simplified representation of the graph, based on a clustering. We provided a simple use case of
the package, whilst investigating several dissimilarities that can be used for this task. We found
that different types of dissimilarities can be used depending on the objectives, the shortest path
lengths being the one that seems to give the best performances from the point of view of standard
SOM’s quality measures. Finally, we have proposed to use super-clustering to provide a simple
representation of a clustered graph using the map structure.
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