
Journal de la Société Française de Statistique
Vol. 151 No. 1 (2010)

A joint detection-estimation framework for
analysing within-subject fMRI data

Titre: Un cadre de détection-estimation conjointe pour analyser les données individuelles d’IRMf
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Abstract: In this paper, we review classical and advanced methodologies for analysing within-subject functional
Magnetic Resonance Imaging (fMRI) data. Such data are usually acquired during sensory or cognitive experiments
that aims at stimulating the subject in the scanner and eliciting evoked brain activity. From such four-dimensional
datasets (three in space, one in time), the goal is twofold: first, detecting brain regions involved in the sensory or
cognitives processes that the experimental design manipulates; second, estimating the underlying activation dynamics.
The first issue is usually addressed in the context of the General Linear Model (GLM), which a priori assumes a
functional form for the impulse response of the hemodynamic filter. The second question aims at estimating this
shape which makes sense in activating regions only. In the last five years, a novel Joint Detection-Estimation (JDE)
framework addressing these two questions simultaneously has been proposed in [59, 60, 102]. We show to which extent
this methodology outperforms the GLM approach in terms of statistical sensitivity and specificity, which additional
questions it allows us to investigate theoretically and how it provides us with a well-adapted framework to treat spatially
unsmoothed real fMRI data both in the 3D acquisition volume and on the cortical surface.

Résumé : Dans cet article, nous synthétisons la méthodologie usuelle et des variantes plus élaborées pour analyser des
données individuelles d’Imagerie par Résonance Magnétique fonctionnelle (IRMf). De telles données sont acquises
au cours d’expériences sensorielles ou cognitives dont le but est de stimuler le sujet dans le scanner afin d’évoquer
une activité cérébrale typique. À partir de données quadri-dimensionnelles (trois dans l’espace et le temps), le but
est double : d’abord, détecter les régions impliquées dans les processus sensoriels ou cognitifs que le protocole
expérimental manipule ; ensuite, estimer la dynamique cérébrale sous-jacente. La première question est généralement
abordée dans le contexte du Modèle Linéaire Général (MLG) qui suppose a priori connue la réponse impulsionnelle du
filtre hémodynamique. La seconde question traite de l’estimation de la forme de cette réponse qui fait sens uniquement
dans les régions activées. Durant ces cinq dernières années, un nouveau cadre de détection-estimation conjointe traitant
ces deux questions simultanément a été proposé successivement dans [59, 60, 102]. Nous montrons ici jusqu’à quel
point cette méthodologie étend les approches à base de MLG, les améliore en termes de sensibilité et spécificité
statistique, quelles questions supplémentaires ce cadre permet d’investiguer théoriquement et comment il fournit un
moyen aux utilisateurs de traiter de façon adaptée leur données non-lissées spatialement, aussi bien dans le répère 3D
de l’acquisition que sur la surface corticale.

Keywords: fMRI, neuroimaging, nonparametric hemodynamics, Bayesian inference, MCMC, model selection, Markov
random fields, partition function, Potts fields
Mots-clés : IRMf, neuro-imagerie, hémodynamique non-paramétrique, inférence bayésienne, MCMC, sélection de
modèles, champs de Markov, fonction de partition, champs de Pots
AMS 2000 subject classifications: 62F15, 62H30, 62M10, 62M40, 62P10

1 NeuroSpin, CEA Saclay, Bât 145 - Point Courrier 156, 91191 Gif-sur-Yvette cedex.
E-mail: philippe.ciuciu@cea.fr and and E-mail: thomas.vincent@cea.fr

2 Institute for Mathematical Science, Imperial College, SW7, London UK.
E-mail: laurent.risser@gmail.com

3 CEREMADE UMR CNRS 7534, Université de PARIS IX- DAUPHINE, Pl. du Maréchal DeLattre De Tassigny
75775 Paris Cedex 16
E-mail: donnet@ceremade.dauphine.fr

Journal de la Société Française de Statistique, Vol. 151 No. 1 58-89
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2010) ISSN: 2102-6238



A JDE framework for analysing fMRI data 59

1. Introduction

Since the first report of the Blood Oxygen Level-Dependent (BOLD) effect in human [70], fMRI
has represented a powerful tool to non-invasively study the relation between cognitive tasks and
the hemodynamic (BOLD) response reflecting evoked neuronal activity indirectly. To this end,
several subjects (typically fifteen) are sampled from a population of interest and then scanned
during an fMRI experiment consisting of the presentation of several stimulus types usually in a
random order to avoid anticipation effects.

At the subject-level, fMRI data analysis essentially addresses two problems. The first one is
about the detection of activated brain areas in response to given stimulus types or to behavioral
tasks, while the second one concerns the estimation of the underlying temporal dynamics, usually
referenced as the characterisation of the Hemodynamic Response Function (HRF). Detection has
been extensively treated in the context of General Linear Models (GLM) [47, 106, 76]. In this
framework, detection consists of a mass univariate inference of evoked brain activity at the voxel
level. This univariate inference rests on the modelling of the temporal BOLD response i.e., on
the definition of a design matrix, which usually relies on a spatially invariant temporal model
of the BOLD signal throughout the brain. The precise localisation of evoked brain activity thus
coincides with performing detection in every voxel of the brain.

The second question has been investigated in a parametric [29, 57, 18, 80, 56], semi-parametric [37,
40, 106, 107] or nonparametric [69, 41, 63, 14, 64, 65, 8] setting. The main differences between
these approaches lie in the underlying assumptions regarding the evoked responses: parametric
methods treat the HRF as a deterministic analytic function which depends on a small number
of parameters. Semi-parametric approaches are more flexible since they make use of function
basis, sometimes operate a selection [107] or introduce control time points in the HRF time
course [37, 106]. Nonparametric approaches do not assume a functional form for the hemody-
namic filter and implicitely rely on stick function basis to define it. Their nonparametric feature lies
in their large number of parameters compared to alternative methods that may induce ill-posedness
of the inverse problem aiming at identifying the filter, especially at the voxel level [14, 64, 65, 8].
Hence, to get a robust nonparametric HRF shape, the hemodynamic filter is usually transformed
into a stochastic object, which enables the introduction of prior information through a probability
distribution function (pdf).

Of course, detection and estimation are intrinsically connected to one another. On the one
hand, the detection of brain activation requires the specification of a HRF shape throughout
the brain. On the other hand, a robust and accurate estimate of the hemodynamic response is
only available in regions eliciting signal fluctuations correlated with the paradigm because the
SNR is too poor elsewhere. In the GLM and massively univariate context, the extra sum of
squares or likelihood ratio principle has been applied to select the best HRF shape in terms
of brain activation recovery. In particular, it has been shown that the voxelwise Finite Impulse
Response (FIR) model is very attractive to capture HRF shape fluctuations such as differences
in time-to-peak [48, 47], while enabling localisation of evoked activity. Nonetheless, the gain
achieved in flexibility using FIR models has a direct cost in terms of statistical sensitivity, because
the larger the number of HRF coefficients to be estimated the smaller the degree of freedoms in
subsequent statistical tests. Hence, voxelwise FIR modelling remains efficient in synchronous
experimental designs [14] but fails to provide a reliable answer to hemodynamics fluctuations
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in asynchronous designs in which the number of HRF coefficients becomes too large. The key
point is therefore to set up a formulation in which detection and estimation enter naturally and
simultaneously. This setting cannot be the classical hypothesis testing framework. Indeed, the
sequential procedure which first consists in estimating the HRF on a given dataset and then
building a specific GLM upon this estimate for detecting activations in the same dataset, entails
statistical problems in terms of sensitivity and specificity: the control of the false positive rate
actually becomes hazardous due to the use of an erroneous number of degrees of freedom. To
overcome this problem, a Joint Detection-Estimation (JDE) formalism has been developed in the
a Bayesian framework [59, 60, 86, 102]. where detection coincides with finding the voxels that
elicit an evoked response while estimation makes reference to the inference on the underlying
hemodynamics.

The rest of this paper is organized as follows. In Section 2, we review the recent literature
that motivates the development of the JDE methodology. In short, we focus on the within- and
between-subject variability sources in hemodynamics. Also, we summarize the salient features
of the most advanced version of the JDE approach. In Section 3, we overview the observation
model involved in the stationary parcelwise JDE formalism, explain how it extends any GLM-
based approach and how it can deal with trial-varying BOLD response. In Section 4, we focus
on the most relevant priors that give the best results in terms of HRF estimation accuracy and
optimal sensitivity/specificity trade-off for detection purposes. In Section 5, our parcelwise
Bayesian inference scheme is exposed with a particular attention to unsupervised estimation
of Spatial Mixture Models (SMMs). Next, the extension to whole brain analysis is presented
in Section 6. Section 7 is finally devoted to within-subject results on real fMRI data both in
the three-dimensional acquisition volume and also on the cortical surface. In Section 8, special
attention is then paid to model comparison and selection in the JDE context. Conclusions are
drawn in Section 9.

2. State of the art

Intra-individual differences in the characteristics of the HRF have been exhibited between cortical
areas in [1, 67, 45]. Although smaller than inter-individual fluctuations, this regional variability
is large enough to be treated with care. To account for these spatial fluctuations at the voxel
level one usually resorts to hemodynamic function basis. For instance, the canonical HRF can be
supplemented with its first and second derivatives to model differences in time [47]. To make the
basis spatially adaptive, more flexible semi-parametric approaches have been proposed later to
capture these variations [37, 40, 107]. For instance, Woolrich et al. have proposed a half-cosine
parameterisation in combination with the selection of the best basis set [106, 107], while other
have resorted to FIR models 1.

Due to the low Signal-to-Noise Ratio (SNR) in fMRI time series, prior information has to
be introduced in order to get robust HRF estimates, whatever the model in use. Then, most of
these contributions take place in the Bayesian setting and constrain the HRF. In a semi-parametric
framework, the HRF time course is typically decomposed into different periods (initial dip, attack,
rise, decay, fall, ...), each of them being described by specific parameters over which prior boundary

1 this number corresponds to the number of HRF time points to be estimated in the FIR model case.
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A JDE framework for analysing fMRI data 61

constraints are involved. In the non-parametric approaches or FIR models that have emerged
in the fMRI literature as a powerful tool to infer on the HRF shape [69, 41, 63, 14, 65], prior
information is usually embedded in a Gaussian process prior that induces temporal smoothness
constraints on the HRF shape.

On the other hand, several works segregating neuro- and hemodynamics events from fMRI
time series have been proposed. Most contributions rely on a stochastic modelling of hemo- and
neurodynamics in a state space formulation: the simplest approach called bilinear Dynamic Sys-
tems (BDS) [75, 61] embodies a nonparametric HRF modelling as in the JDE framework but pro-
ceeds voxelwise. The most sophisticated formalism is known as Dynamic Causal Modeling (DCM)
and enables the study of experimentally induced changes in functional integration among a small
number of brain regions [30, 97, 96, 95, 78]. DCM is a general Bayesian framework for inferring
hidden neuronal states from measurements of brain activity (fMRI, MEG/EEG, ...) [31, 55, 62]:
every DCM instance rests on biophysically plausible and physiologically interpretable models
of neuronal network dynamics that can predict distributed responses to experimental stimuli.
Hence, DCM could be regarded as a generalisation of our JDE framework, since the HRF con-
volution kernels are replaced by bio-physically informed differential equations mediating the
hemodynamic convolution [6, 28, 7, 84, 93, 94]. Because of the strong complexity behind most
of existing physiological models, several works have considered cruder but numerically simpler
models based on less informed evolution schemes (e.g. ARX, ARMAX models) [83, 2, 53]. Since
DCM is able to infer effective connectivity only between an a priori graph of regions but not
over the whole brain, this constitutes a strong limitation of DCM that prevents us from using it to
study hemodynamics fluctuations at a larger scale. However, the principle of modelling neuronal
and hemodynamic convolutions under biologically motivated constraints using Bayesian model
inversion are exactly the same than those behind the JDE framewok: DCM attempts to optimise
both the neuronal and hemodynamic convolution kernels simultaneously, but resorts to Variational
Bayes (VB) approximations to enable the computation of posterior estimators in a reasonable
amount of time.

The literature on Bayesian fMRI methods offers several approaches to adequately choose
spatial priors for detection purpose that make the overall fitting procedure multivariate. To en-
hance the estimation of regression coefficients in the GLM context, global stationary and more
recently local non-stationary spatial regularisation models have been introduced [106, 76, 25, 46].
These Bayesian spatial priors encode similarity between neighboring voxels and estimate one
or several degrees of smoothness of the parameter images throughout the brain. In this regard,
they do not require data to be smoothed prior to entering a statistical model. However, since
these models take place in the family of edge-preserving regularization models [34, 35, 9, 13],
posterior inference 2 is not numerically tractable at low computational cost without consider-
ing a mean-field approximation [26] and the VB formalism [4]. This kind of approximation
reduces numerical complexity by assuming conditional posterior independence, which means
independence across voxels in the fMRI context. It also provides closed form updating rules
for iterative estimation of parameters of interest and hyper-parameters provided that conjugate
priors have been retained. Nonetheless, the literature in spatial regularisation offers alternative
choices that make the definition of nonstationary spatial models and their global optimization [5]

2 e.g., the computation of the maximum a posteriori or the posterior mean estimates do not admit a closed form
expression.
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or simulation feasible [52, 49, 43, 91, 23, 105, 3], even if VB approximation can also be de-
rived [104]. These models enter in the class of Spatial Mixture Models (SMM) in which the
spatial structure is embedded on hidden allocation variables that specify the voxel states in the
fMRI context (activating, deactivating or non-activating) through a discrete Markov Random
Field (MRF) [98, 81, 91, 73, 105, 74] or a Conditional Random Field (CRF)[82]. In this regard,
the detection problem becomes a segmentation issue that can be addressed using a region-based
method [36, 52] instead of an edge-preserving restoration one [34, 35, 9, 13].

As introduced in [50, 19, 22, 101, 81] and further developed in [91, 105, 73, 25, 77], prior
mixture models define an appropriate way to perform the classification or the segmentation
of statistical parametric maps into activating, non-activating or deactivating brain regions. The
pioneering contribution related to mixture modelling in neuroimaging (PET) [50] has represented
the intensity distributions of Statistical Parametric Maps (SPMs) using a complex spatio-temporal
MRF. Yet, the use of mixture modelling in a joint detection-estimation problem introduces specific
concerns in comparison to the usual “hypothesis testing framework”. Indeed, our data is not the
voxelwise z-statistics but rather the raw fMRI time courses, which are required for the estimation
step.

In [59, 60], we have investigated the choice of the best independent 3 mixture model (IMM)
that serves as prior distribution on the evoked response magnitude, called the Neural Response
Level (NRL) hereafter. More precisely, it has been shown that the use of inhomogenous gamma-
Gaussian IMM permits to better disentangle activating from non-activating voxels at the expense
of higher computational cost. Nonetheless, in case of very few activations, the IMM model
overestimates the false positive rate (specificity). For this reason, homogeneous supervised
SMM (SSMM) has been considered as a powerful alternative in [102]. It has been shown that
SMM outperforms its IMM counterpart in terms of false positive control and activation cluster
recovery. More recently, unsupervised SMM (USMM) has been developed to make spatial
regularisation fully automatic [86, 102] at the whole brain scale.

As in the GLM or DCM frameworks, the JDE formalism enables the analysis of parcelwise
hemodynamics systems as well as the study of event-related fMRI data involving multiple
experimental conditions. The trial by trial variability that is usually accounted for either by
adding a specific regressor in the design matrix to parametrically modulate the effect size in
time or by modelling successive stimulus trials as separate regressors for modelling the so-called
repetition suppression effect in cognitive neuroscience is more efficienty handled in the JDE
approach. It actually relies on a sparser representation [15]. Also, while deactivations or negative
BOLD responses [89] are trivial to model within the standard framework by simply considering a
negative NRLs, their spatial coherence is not garanteed. The JDE framework enables the recovery
of deactivation clusters using a three-class Potts field, which is a generalization of the Ising
model of interacting spins on a lattice. Although developed originally in statistical mechanics,
the associated energy functions describing local interactions provide a nice statistical model for
spatial correlations in images. We will use a Potts field, where the different states of neighboring
voxels can be of three different sorts or “colors”; namely activated, not activated or deactivated.
Furthermore, akin to [98, 91], the JDE methodology allows us to jointly estimate HRFs and
perform activation detection at the parcel-level. Hence, it generalizes recent contributions [98, 91]

3 not spatially correlated.
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following directions:
– Following [49, 105] but in contrast to [98, 91], spatial regularisation in the JDE formalism is

unsupervised and makes the segmentation of brain activations fully automatic. Our unsu-
pervised regularisation is also spatially adaptive meaning that the amount of regularisation
varies across parcels. This requires a precise estimation of the partition function of the MRF
defined over each parcel; see Section 5 for details.

– Spatial regularisation also varies across experimental conditions in every parcel since both
the Signal-to-Noise Ratio (SNR) and the activation pattern may fluctuate from one condition
to another according to the involvement of the given parcel in the experimental paradigm.

Hence, the proposed methodology introduces spatially adaptive levels of regularisation at
a reasonable computational cost in adopting a fully exact Bayesian inference of brain activity.
Parcel-based parameters of interest (HRF shape, NRLs) as well as hyper-parameters are estimated
in the Posterior Mean (PM) sense from unsmoothed fMRI time series after convergence of a
hybrid Metropolis within Gibbs sampling procedure [58].

3. The spatially regularised JDE approach

3.1. A parcelwise procedure

We denote vectors and matrices with bold lower and upper case letters, respectively (e.g., y
and P ). A vector is by convention a column vector. Scalars are denoted with non-bold lower
case letters. The transpose is denoted by t. Unless stated otherwise, subscripts i, j, m and n
are respectively indexes over mixture components, voxels, stimulus types and time points. The
probability distribution functions (pdf) are denoted using calligraphic letters (eg, N and G for
the Gaussian and gamma distributions).

The JDE framework proposed in [60] relies on a prior parcellation of the brain into P =
(Pγ)γ=1:Γ functionally homogeneous and connected parcels [99], where typically Γ ≈ 500 to
cover the whole brain (see Subsection 6.1 and [100] for their computation and the assessment
of Γ 4); see also Figs. 4-5 for illustrations. Parcels are used to induce conditional dependencies
among various parameters of our hemodynamic model. The most important dependency is that,
within any parcel Pγ comprising voxels (Vj) j=1:Jγ

, the form of the HRF hγ is the same. This
does not mean that we treat each parcel as a single observation; we still optimise voxel-specific
parameters relating to how neuronal activity excites a hemodynamic response. In this section, we
describe this parcel-based model and the implicit assumptions that it entails. Then, we specify
the priors involved over each parcel. In other words, our Bayesian inference of brain activity is
independently repeated over the Γ different parcels. For notational simplicity, in what follows we
drop the γ index that makes reference to the parcel except for hγ and Jγ .

3.2. Forward parcel-based model of the BOLD signal

The forward bilinear model of the BOLD signal introduced in [59] and extended in [60] to
account for serial correlation of fMRI time series is a time-invariant model that characterises
4 The algorithm is available to the community in the fMRI Toolbox of the Brainvisa software at http://brainvisa.

info.
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each and every parcel Pγ by a single neurovascular impulse response hγ and a NRL for each
voxel and stimulus type. As illustrated in Fig. 1, this means that the HRF shape hγ is assumed
constant within Pγ , while its magnitude am

j can vary in space ( j = 1 : Jγ) and across experimental
conditions (m = 1 : M), where M is the total number of stimulus types. Then, the generative
BOLD model reads:

∀ j = 1 : Jγ , y j =
M

∑
m=1

=sm
j︷ ︸︸ ︷

am
j Xmhγ +P ` j +b j, (1)

where:
– y j = (y j,n)n=1:N denotes the fMRI signal measured in voxel Vj at times n = 1:N (N is the

number of scans).
– Xm = (xm

n−d∆t)n=1:N,d=0:D is a N× (D+1) binary matrix coding for the occurrences of the
m stimulus type, with ∆t is the sampling period of the unknown HRF hγ = (hd∆t,γ)d=0:D in
Pγ .

– am
j stands for the NRL in voxel Vj for condition m. Hence, the activation time course associ-

ated to the mth stimulus type in voxel Vj is given by hγ ×am
j . Let also A =

[
a1 | . . . |aM

]
be the whole NRL matrix in Pγ where am = (am

j ) j=1:Jγ
.

– P is a low frequency orthogonal matrix of size N×Q. To each voxel is attached an unknown
weighting vector ` j to estimate the trend in Vj. We denote L =

[
`1 | . . . |`Jγ

]
the set of low

frequency drifts involved in Pγ .
– b j ∈RN is the noise in Vj and follows a first-order autoregressive process: b j∼N (0,σ2

j Λ
−1
j )

where Λ j is tridiagonal and depends on the AR parameter ρ j [60].
Model (1) separates the dependency of the response on the hemodynamic convolution kernel

h and the neuronal inputs A, which kernel here is assumed to be a stick function. Conventional
formulations conflate these two by setting hγ to the canonical HRF shape hc [39] and try to
estimate a single lumped parameter set (e.g.,A) that reflects both neuronal and hemodynamic
contributions. As illustrated in Fig. 1, our bilinear form enables us to separately model the neuronal
hemodynamic contributions to the signal, while placing spatial constraints on the hemodynamic
component through our parcellation scheme.

Although the noise structure is correlated in space [108, 107, 82], we neglect such spatial
dependency and consider the fMRI time series Y =

[
y1 | . . . |yJγ

]
independent in space but not

identically distributed. The reason is twofold: first, neglecting the spatial dependencies of noise
is tenable when the BOLD signal model itself is flexible enough to account for HRF shape
fluctuations. Indeed, part of the usually observed spatial correlation of the noise is due to a
misspecification of the BOLD signal model. Second, the noise correlation is much lower than
that of the evoked BOLD response. While its modelling introduces additional computational
complexity, there is no evidence in the literature that ignoring this correlation induces strong bias
on the sought parameters (see [82] for such comparison). Hence, the likelihood reads:

p(Y |hγ ,A,L,θ 0) ∝

Jγ

∏
j=1

∣∣Λ j
∣∣1/2

σ
−N
j exp

(
−

ỹt
jΛ jỹ j

2σ2
j

)
(2)

where θ0, j = (ρ j,σ
2
j ), θ 0 = (θ0, j) j=1:Jγ

and ỹ j = y j−∑m sm
j −P ` j
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FIGURE 1. Parcel-based BOLD model. The size of each parcel Pγ varies typically between a few tens and a few
hundreds of voxels: 80 6 Jγ 6 350. The number M of experimental conditions involved in the model usually varies
from 1 to 5. Here, M = 2 and the NRLs (a1

j ,a
2
j) corresponding to the first and the second conditions are surrounded

by circles and squares, respectively. As illustrated, the NRLs take non-zero values (asynchronous paradigms) on time
points that do not necessarily match the acquisition ones and may vary from one voxel to another. The HRF hγ can be
sampled at a period of 1s and estimated on a range of 20 to 25s (e.g., D = 25). Most often, the LFD coefficients ` j are
estimated on a few components (Q = 4).

Note that model (1) is bilinear in the sense that Eq. (1) linearly depends on hγ when A is fixed
and vice-versa. This means that the ML solution (h∗γ ,A

∗) cannot be distinguished from any other
pair (h∗γ/s,A∗× s) whatever the scale parameter s > 0. The Bayesian formalism is helpful to get
rid of such identifiability problems and define a reference scale. In Section 4, we will introduce
priors on hγ and A, which are helpful to fix this scale to an arbitrary value c. However, this value
is not necessarily optimal for exploring the posterior distribution. Hence, instead of normalizing
hγ deterministically (

∣∣hγ

∣∣= c), it has been shown in [102, Appendix C] how this reference scale
s can be selected to speed up the exploration of the posterior distribution. Note that for the priors
involved in our inference scheme (see Section 4), this scalar parameter is quite easy to sample
from since it follows a Generalized Inverse Gaussian density [92].

3.3. A parametric approach to habituation modelling

The stationary model (1) assumes that each trial k of a given experimental condition m evokes a
BOLD response constant in shape and in magnitude. Recently, it was suggested that this might
not always be the case [21]. In the GLM framework, the trial by trial variability that exhibits some
repetition suppression effect of the BOLD response is usually captured by simply modelling the
first and subsequent trials as separate experimental conditions. Here, we propose an extension of
Eq. (1) that is able to account for this variability source in a sparser manner while assuming a
constant HRF shape. In contrast to [20], our modelling of this variability source relies on a single
normalised mean habituation parameter r jm ∈ [0,1] for voxel Vj and condition m that introduces a
parametric relationship between the trial-dependent NRLs am

jk. Our sparse model actually mimics
the repetition suppression effectin the sense that decreasing NRLs over trials can be obtained
in case of short ISIs. However, more flexible patterns can be observed in other paradigms (see
Fig. 2 for details). A key feature is to progressively forget the past events. Hence, our parametric
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FIGURE 2. (g) Illustration of the habituation effect on the trial-specific BOLD magnitudes am
jk in three

different voxels corresponding to a zero (red curve), a medium (blue curve) and a large (green curve)
normalised habituation speed rm

j .

habituation model depends on the paradigm as follows:

∀k ≥ 2, am
jk = η

m
jkam

j1 with η
m
jk =

(
1+

k−1

∑
l=1

am
j`r

δ m
`

jm

)−1

(3)

where δ m
` = τm

`+1− τm
` and (τm

` )` define the successive ISIs and onsets of the mth stimulus. In
this way, we introduce a nonlinear dependence between the successive NRLs that satisfy a closed
form updating rule across trials:

∀k > 2, η
m
jk =

[
(ηm

j,k−1)
−1 +η

m
j,k−1am

j1r
δ m

k−1
jm

]−1
. (4)

As shown in Eq. (3), there are particular constraints on the difference between the first and
subsequent occurrences of particular trials. This allows one to parameterise the explicit dependency
of repetition suppression on ISIs while still maintaining a large number of degrees of freedom in
comparison to the standard GLM framework. The activation signal sm

j in Eq. (1) thus becomes:

sm
j =

Km

∑
k=1

am
jkX

m
k hγ = am

j1X̃
m
j hγ with X̃m

j =
Km

∑
k=1

η
m
jkX

m
k , (5)

where ηm
j1 = 1 and Xm

k is the kth trial-specific submatrix of Xm. The ensuing region-based model
of fMRI time series is depicted in Fig. 3. It clearly indicates that the habituation speed may vary
in space and across stimulus types. As expected, when r jm→ 0, the proposed extension becomes
stationary since am

jk→ am
j1, ∀k > 2 (cf red line in Fig. 2(a)). When r jm ∈ (0,1), the sequence (am

jk)k
is non-monotonous and the between-trial variability is strongly influenced by the ISI values (see
blue line in Fig. 2(a) and Fig. 2(b)) . Finally, when r jm→ 1, the sequence (am

jk)k→ 0 whatever
the ISIs, as shown by the green curve in Fig. 2.

In Fig. 3, our parcel-based model of the BOLD signal accounting for such habituation effect
is illustrated. In comparison to Fig. 1, it clearly appears that the BOLD signal may decrease
over successive trials. Also, the habituation effect may fluctuate over conditions and voxels
meaning that our extension defined by Eqs.1 5 is able to simultaneously account for stationary
and non-stationary BOLD responses.
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FIGURE 3. Non-stationary ROI-based model accounting for voxel-based and stimulus-specific habituation effects.

For the habituation model proposed in Eqs. 3- 5 and the same assumptions on the data Y in
parcel Pγ , the likelihood function p(Y |hγ ,A1,R,L,θ 0) reads as in Eq. 2, but ỹ j depends on
sm

j which takes the form (5). Here, A1 and R make reference to the NRLs associated to the first
trial and to the normalised habituation speed, respectively.

4. Bayesian priors

4.1. Hemodynamic filter

The Bayesian approach developed in [60] introduces proper priors on the unknown parameters
(hγ ,A) or (hγ ,A1) in order to recover a robust estimate of brain activity (localisation and
activation profile). Akin to [60, 14], we rest on a Gaussian prior process for the HRF i.e., hγ ∼
N (0,vhR) with R = (Dt

2D2)−1, which allows us to estimate a smooth HRF time course since
D2 is the second-order finite difference matrix penalising therefore abrupt changes. Moreover,
the extreme time points of the HRF can be constrained to zero if necessary [14].

4.2. Neural Response Levels

Regarding NRLs, we first deal with the stationary model. According to the maximum entropy
principle we assume that different types of stimulus induce statistically independent NRLs
i.e., p(A |θa) = ∏m p(am |θ m) with θa = (θ m)m=1:M. Vector θ

m denotes the set of unknown
hyperparameters related to the mth stimulus type.

Mixture models are introduced to segregate activating voxels from non-activating and de-
activating ones. To this end, let qm

j be the allocation variable that states whether voxel Vj is
activating (qm

j = 1), de-activating (qm
j =−1) or non-activating (qm

j = 0) in response to stimulus
m. The NRLs still remain independent conditionally upon qm. This means that p(am |qm,θ m) =
∏ j p(am

j |qm
j ,θ m) for every condition m. In the case of an IMM [59, 60], the marginal density of

the NRLs factorizes over voxels and reads:

p(am |θ m) =
Jγ

∏
j=1

1

∑
i=−1

p(am
j |qm

j ,θ m)Pr(qm
j = i |θ m). (6)
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An important feature of IMM lies in the definition of the mixing probability (or weight) Pr(qm
j = i)

which is constant over voxels and so independent of j. This means that IMM explicitely estimates
the proportion of voxels in the activating and non-activating classes.

Instead, spatial mixture models are introduced here to favor clustered activations and deacti-
vations and the mixing probabilities become space-varying. Hereafter, the marginal density no
longer factorizes over voxels and reads:

p(am |θ m) = ∑
qm∈{0,±1}Jγ

[ Jγ

∏
j=1

p(am
j |qm

j ,θ m)
]

Pr(qm |θ m). (7)

Spatial correlation is directly incorporated in the probabilities of activation through a hidden
Potts field on the allocation variables qm, as already done in image analysis [49, 43] or in
neuroimaging [91, 90]. Here, as opposed to IMM, the proportions of voxels for the different
classes is not explicit. The prior density on the allocation variables reads:

Pr(qm |βm) = Z(βm)−1 exp
(
βmU(qm)

)
(8)

with U(qm) = ∑
j∼k

I(qm
j = qm

k )

and I(A) = 1 if A is true and I(A) = 0 otherwise. The notation j ∼ k means that the sum extends
over all pairs ( j,k) of neighbouring sites. The neighbouring system can be defined either in 3D
in the brain volume intersecting region Pγ or in 2D along the cortical surface. In this paper,
we only consider the 3D case using 6-connexity. Extensions to 18 or 26 neighborhood system
are straightforward. The Potts field in (8) has no external field. Previous works have shown
that anatomical prior information can be embedded in an external field to increase activation
probability in the grey matter[91]. The parameter βm > 0 in (8) controls the amount of spatial
regularisation: large values of βm associate higher probabilities to configurations containing
clusters of like-valued neighboring binary variables. Since activation patterns within parcel Pγ

should be different from one stimulus type to another, different parameters βm are considered
across m stimulus types. The normalization constant of the MRF, also called the partition function
Z(·) reads:

Z(βm) = ∑
qm∈{0,±1}Jγ

exp
(
βmU(qm)

)
(9)

and guarantees that the MRF defines a pdf.
In what follows, we assume that (am

j |qm
j = i) ∼ N (µi,m,vi,m), with i = 0,1. We impose

µ0,m = 0 for the mean of the NRLs in non-activating voxels, leading to θ
m = [v0,m,µ1,m,v1,m,βm].

Note that a Bernoulli-Gaussian formulation has also been tested in fMRI in [91]. This modelling
corresponds to a degenerated mixture (v0,m = 0).

4.3. Normalised Habituation Speed (NHS)

If we consider the forward model (1) based on Eqs. (3)-(5), the prior on NRLs involves A1
and the habituation parameters R. In that case, we still assume that different stimulus type
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induce statistically independent NRLs and NHS: p(A1,R |θa) = ∏m p(am
1 ,rm |θ m). In the

SMM context, this joint prior density admits the following expression:

p(am
1 ,rm |θ m) = ∑

qm∈{0,±1}Jγ

[ Jγ

∏
j=1

p(am
1 ,rm |qm

j ,θ m)
]

Pr(qm |θ m). (10)

In addition, the NRLs and NHSs still remain independent in space as well as independent of each
other conditionally upon qm:

∀m, p(am
1 ,rm |qm,θ m) =

Jγ

∏
j=1

p(am
j1,r

m
j |qm

j ,θ m)

with p(am
j1,r

m
j |qm

j ,θ m) = p(am
j1 |qm

j ,θ m) p(rm
j |qm

j )

Since p(am
j1 |qm

j ,θ m) have been defined in Subsection 4.2, there only remains to precise the
distribution p(rm

j |qm
j ). First, to get rid of identifiability problems, the NHSs rm are constrained to

zero in non-activating voxels: ∀m,rm
j = 0 |qm

j = 0. It seems a priori meaningless to fit habituation
effect on noise-only time series. In contrast, for activating and deactivating voxels, the MHSs
rm are assumed identically and uniformly distributed: (rm

j |qm
j =±1)∼U ([0,1]). Note that this

prior has not been tested yet in the deactivation context involving three-class SMMs. However,
this could be easily handled considering that the BOLD signal reduction becomes less important
under repeated stimulations. Our compound prior mixture therefore reads:

p(am
1 ,rm |θ m) = ∑

qm∈{0,±1}Jγ

[ Jγ

∏
j=1

fi,m(am
j1) pi(rm

j )
]

Pr(qm |β m). (11)

4.4. Noise and drift parameters

To complete the Bayesian model, priors are required for all the remaining parameters. The noise
and drift parameters, θ 0 and L respectively, are assumed independent in space: p(θ 0,L |v`) =
∏ j p(θ0, j)p(` j |v`) and without informative prior knowledge, the following priors are chosen:
` j ∼ N (0,v`IQ) and p(ρ j,σ

2
j ) = σ

−1
j I(

∣∣ρ j
∣∣< 1) to ensure stability of the AR(1) noise process.

Non-informative Jeffrey priors are retained for hyper-parameters such as the drift and HRF shape
variances: p(vh,v`) = (vhv`)−1/2.

4.5. Mixture parameters

Similarly, the prior considered for v0,m is p(v0,m) = v−1/2
0,m because we do expect non-activating

voxels in any parcel. Hence, class 0 should never be empty a priori. If this assumption is not
tenable, we could introduce a conjugate prior (an inverse Gamma law) denoted as I G (av0 ,bv0), as
already done for the variance parameters (v±1,m) of activating and deactivating voxels. We would
then avoid degeneracy problem that could prevent its sampling. In the same way, a proper prior
N (aµ±1 ,bµ±1) is chosen for µ±1,m (aµ±1 = x and bµ±1 = y). Finally, the prior on β = (βm)m=1:M
is independent and identically distributed (iid) across conditions and follows a uniform pdf over
fixed range: p(βm) = U ([0,βmax]) with βmax = 1.6. Interestingly, such proper prior defined over
[0,βmax] allows us to easily compute Potts field partition functions on this discrete β -grid; see
Section 6.
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5. Within-parcel inference of unsupervised SMMs

5.1. Role of the parcellation scheme

The parcellation scheme does not depend upon the posterior densities of the within-parcel
optimisation: it is assumed known a priori and derived from a specific procedure as explained in
Section 6. To simplify posterior inference, all parcels are treated as independent latent variables
and the fMRI data are also independent conditionally on these parcel variables.

5.2. Posterior distribution under stationary BOLD model

Considering the constructed model and assuming no further prior dependence between parameters,
Bayes’ rule gives us for the stationary BOLD model (1):

p(hγ ,A,L,Θ |Y ) ∝ p(Y |hγ ,A,L,θ 0) p(A |θA) p(hγ |vh) p(L |v`) p(θ 0)
p(θA) p(vh,v`)

∝ v−
D
2

h v−
Jγ Q

2
`

Jγ

∏
j=1

(1−ρ2
j )

1/2

σ
N+1
j

I(
∣∣ρ j
∣∣< 1) (12)

exp
(
−

Jγ

∑
j=1

[ 1
2σ2

j
ỹt

jΛ jỹ j +
1

2v`
‖` j‖2])

exp
(
−

ht
γR
−1hγ

2vh

) M

∏
m=1

p(θ m)p(am |θ m).

Our Bayesian model is too complex to be amenable to analytical calculations. Hence, we resort to a
hybrid Gibbs sampling to sample the posterior distribution (12). The complete sampling procedure
is detailed in [102, Table I]. The reader may also refer to [60, Appendix B]. PM estimates are
then computed from these samples according to the following rule: x̂PM = (Tc−T0)−1

∑
Tc
t=T0+1 x(g),

∀x ∈
{
hγ ,A,Θ

}
where T0 stands for the length of the burn-in period (see Subsection 7.1). Also,

for classification or detection purpose, the marginal maximum a posteriori criterion is employed:
(q̂m

j )MAP = argmaxi Pr(qm
j = i |y j).
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5.3. Posterior distribution under non-stationary BOLD model

When resorting to the non-stationary BOLD signal sm
j (see Eqs. (3)-(5)), the posterior distribution

reads:

p(hγ ,A1,R,L,Θ |Y ) ∝ p(Y |hγ ,A1,R,L,θ 0) p(A1,R |θA) p(hγ |vh)
p(L |v`) p(θ 0) p(θA) p(vh,v`)

∝ v−
D
2

h v−
Jγ Q

2
`

Jγ

∏
j=1

((1−ρ2
j )

1/2

σ
N+1
j

I(
∣∣ρ j
∣∣< 1)

)
(13)

exp
(
−

Jγ

∑
j=1

[ 1
2σ2

j
ỹt

jΛ jỹ j +
1

2v`
‖` j‖2])

exp
(
−

ht
γR
−1hγ

2vh

) M

∏
m=1

p(am
1 ,rm |θ m) p(θ m).

To simulate this posterior distribution, a hybrid Gibbs sampler including one-at-a-time Metropolis-
Hastings (MH) moves has been implemented; see Subsection 5.5 and Appendix A for details.

5.4. β sampling step

Unsupervised spatial regularisation consists in automatically tuning parameter vector β from
the dataset Y in a given parcel Pγ . In the proposed hybrid Gibbs sampler (see [102, Table I]),
this is implemented by adding a sampling block involving p(β |Q) within the sampling loop. As
shown in [102], a MH algorithm is designed to draw candidates but importantly this rests on the
knowledge of the partition function Z(·), which can be estimated using importance sampling.

5.5. One-at-a-time Metropolis-Hastings steps

We have designed specific Single-component MH jumps for all parameters which the full con-
ditional posterior distribution cannot be sampled directly. More precisely, separate jumps are
proposed for each of the parameters in turn. To this end, suitable instrumental distributions
regarding the parameters of interest are tuned. For AR parameters, akin to [60] we have paid
attention to derive a close-to-target instrumental distribution by matching its mode to that of
the full conditional posterior distribution p(ρ j |y j, · · ·). The acceptance ratio was tuned to about
70% limiting withdrawn realisations while enabling large jumps. Regarding the β -parameters, we
resorted to a random walk MH step and consider a truncated Gaussian distribution as proposal
i.e., g(· |x) ∼N[0,βmax](x,ξ

2
j ) with the mean fixed on the current value x and a scale parameter

ξ j for each parameter that is updated every 10 jumps. At the tth update, ξ t
j is updated using

ξ
t+1
j = ξ t

jS1+A+ r/A+R where A and R are the numbers of accepted and rejected jumps since
the last ξ t

j update, respectively, S is the desired rejection rate, which was fixed at 0.7 [38, 51]. The
same procedure has been successfully applied to the NHS parameters except that the proposal
differs; see Appendix A.2 for details.
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6. Whole brain analysis: spatially adaptive USMM

We have described the Bayesian inference of within-parcel model parameters in the previous
section. In this section, we describe how the parcels are defined. Crucially, the parcellation scheme
does not depend upon the posterior estimates of the previous section. In other words, we first
define our parcellation scheme and then optimise the model parameters for each parcel separately.
In the next paragraph, we explain how the parcels are derived using a clustering algorithm that
relies on a compound criterion balancing spatial and functional homogeneity.

6.1. Derivation of brain parcellation from fMRI data

As outlined in Section 3, our BOLD signal modelling is parcel-dependent and spatial regularisation
differs over each parcel Pγ . The methodology proposed in Section 5 to make this regularisation
unsupervised is therefore applicable to all parcels separately making our whole brain analysis of
fMRI data fully spatially adaptive. This makes sense given that the stimulus-specific SNRs also
vary in space. Of course, the critical issue is to exhibit such functionally homogeneous parcellation
of brain. To this end, several algorithms have been proposed [24, 99, 100]: they segregate the
brain into connected and functionally homogeneous regions by minimizing a criterion reflecting
both the spatial and functional structures of the dataset. The functional part of this criterion can be
computed either from the raw fMRI time series or from voxel-based hemodynamic features (time-
to-peak and time-to-undershoot, peak and undershoot magnitudes, ...) [27], which can be extracted
from nonparametric HRF estimates [14, 65]. As depicted in Figs. 4–5, the parcellations may be
defined either in the volume or along the cortical surface.

Any parcel has a specific size and shape. Hence, the same Potts field defined over different
parcels admits a distinct partition function since the latter depends on the number of voxels and
cliques (here pairs of neighboring voxels) and the length of the parcel boundary. As unsupervised
spatial regularisation in a given parcel needs partition function estimation, this estimation has to
be repeated for each parcel to achieve spatially adaptive regularisation over the whole brain. For
an averaged-size parcel of 250 voxels, partition function estimation requires around 10 seconds
which results in a increase of about 30 minutes for a whole brain analysis, since several hundreds
of parcels are typically necessary to cover the entire brain. In comparison with 1.5 hour for
the complete analysis, it yields a large increase of 33%. Hence, we introduce fast numerical
alternatives based on efficient approximations of 3D Potts field partition functions, so that the
overall cost would be quite negligeable.

6.2. Multiple partition function estimation

To avoid any confusion, we reiterate that the estimation of the partition function is not part of the
parcellation scheme but is required to implement the adaptive spatial constraints afforded by the
parcellation, when inverting our model of hemodynamic responses in Section 5.

Several approaches have been designed to estimate a single partition function [66, 33]. How-
ever, none of them is able to perform multiple partition function estimation for Potts fields of
variable size and shape in a reasonable amount of time. Since several hundreds of such grids are
manipulated in the JDE context, fast estimation of multiple partition functions is necessary. To this
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(a) (b)

FIGURE 4. 3D Parcellations of the brain: (a) using the Voronoi based method - (b) as obtained with an optimal
anatomo-functional parcellation [99].

FIGURE 5. Surface-based gyrii parcellation of the brain (left) and its decimated version (right) to guarantee parcels
of homogeneous size [17, 100].

end, we have proposed in [88] a hybrid scheme which consists first in resorting to path-sampling
to get log-scale estimates (log ẐGp(β ))p=1:P in a small subset of reference grids (Gp)p=1:P and
then in using extrapolation formulas to obtain log Z̃T (β ) for the large remaining set of brain
regions to be analysed, each of them referenced by a test graph T for the sake of notational
simplicity.

6.2.1. Fast and robust extrapolation technique

The reliable extrapolation technique proposed in [87, 88] proceeds in two steps: 1) Akin to [85],
reference log-PFs 5 log ẐGp(βk) are estimated using path-sampling. The topological configurations
of the reference grids (Gp)p=1:P can be inhomogeneous to cover a maximum of situations that
may occur when dealing with intra-subject parcellation. 2) For any test grid T , the quantity
logZT is approximated from a single reference log-PF estimated by minimizing the maximal
approximation error A (β ,Gp) with respect to all reference grids (Gp)p=1:P:

AT (β ,Gp) = ‖ logZT (β )− log Z̃T (β ,Gp)‖2/‖ logZT (β )‖2

with log Z̃T (β ,Gp) =
cT

cGp

(
log ẐGp(β )− logL

)
+ logL, (14)

5 log Partition-Function.

Journal de la Société Française de Statistique, Vol. 151 No. 1 58-89
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2010) ISSN: 2102-6238



74 Ciuciu, Vincent, Risser and Donnet

where (cT ,cGp) and (nT ,nGp) are the number of cliques and sites of the L-color Potts fields
defined over T and Gp, respectively. In [103, Appendix A], it has been shown that A (0,Gp) =
maxβ A (β ,Gp),∀Gp, whenever the grid homogeneity in Gp and T is similar. Hence, we get:

Gref = argmin
(Gp)p=1:P

AT (0,Gp) subject to LT (Gp)≤ ε

and AT (0,Gp)
∆= ‖(nT −1)−cT (nGp−1)/cGp‖

2/n2
T

where ε > 0 is a positive threshold fixed by hand. Once Gref has been identified, the log-PF
estimate in T is thus given by log Z̃T (β ,Gref) according to Eq. (14). Our extrapolation formula
(14) is derived according to two principles: i.) an unbiased asymptotic approximation error 6 and
ii.) an exact approximation of (logZT (β ))′ for β → 0+; see [103, 88] for details.

In [88], we also compared the accuracy of our extrapolation approach to alternative mean-field
like approximations [26] both in 2D and 3D. To get such results, we studied Potts fields defined
on small grids and computed the ground truth partition function value both by path-sampling as
well as using Onsager’s formulae in the 2D context [71]. These results were also confirmed on
larger fieds.

7. Results on Real fMRI datasets

We applied the JDE procedure to real unsmoothed fMRI data recorded during an experiment
designed to map auditory, visual and motor brain functions as well as higher cognitive tasks such as
number processing and language comprehension. It consisted of a single session of N = 125 scans
lasting TR = 2.4 s each, yielding 3-D volumes composed of 64×64×32 voxels. The paradigm
was a fast event-related design comprising sixty auditory, visual and motor stimuli, defined in ten
experimental conditions (auditory and visual sentences, auditory and visual calculations, left/right
auditory and visual clicks, horizontal and vertical checkerboards).

7.1. MCMC convergence assessment

In practice, observations of the chain with different initial conditions confirmed that a burn-
in of T0 = 5000 iterations was sufficient followed by Tc = 104 subsequent jumps. In addition,
convergence has been checked by monitoring on-line (see Appendix A.1) the behaviour of
the estimated values of some scalar parameters (eg, noise variances, AR parameters, mixture
parameters...) from one iteration to another. These observations also confirmed that 104 iterations
were a fair compromise between convergence and numerical cost. Posterior mean estimates
(Âγ , ĥγ)Γ

γ=1 have thus been computed over 104 realizations of the MCMC procedure.

7.2. 3D JDE analysis

We compare the three versions of the JDE procedure: IMM, SSMM (β = 0.8) and USMM, in
order to assess the impact of the adaptive spatial correlation model. Fig. 6 shows normalised

6 limβ→+∞ AT (β ,Gp) = 0.
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(a) (b) (c) (d) (e)

IMM β = 0.8 USMM β̂AC β̂AS

FIGURE 6. (a)-(c): Comparison of the IMM (a), SSMM (b) and USMM (c) models wrt the Auditory Computation vs.
Sentence (AC/S) normalised contrast maps:

(
âAC− âAS)/std

(
âAC−âAS). Stronger activations and deactivations

appear in red and purple, respectively. The most activating parcel located in the parietal cortex is surrounded in
magenta. (d)-(e): correspond to the parcelwise and condition-specific β -maps ((d): AC and (e): AS). Neurological
orientation: left is left.

(a) (b) (c) (d) (e)

IMM β = 0.8 USMM β̂RAC β̂LAC

FIGURE 7. (a)-(c): Comparison of the IMM (a), SSMM (b) and USMM (c) models wrt the Right vs. Left Auditory
Click (R/LAC) normalised contrast maps:

(
âRAC− âLAC)/std

(
âRAC−âLAC). Stronger activations and deactivations

appear in red and purple, respectively. The most activating parcel located in the left motor cortrex is surrounded in
magenta. (d)-(e): correspond to the parcelwise and condition-specific β -maps ((d): RAC and (e): LAC). Neurological
orientation: left is left.

contrasts maps of auditory computation (AC) versus auditory sentence (AS), where the modelling
of spatial correlation seems to lead more sensitive results as activations in the parietal cortex are
highlighted with SSMM and USMM whereas they are not with IMM. Moreover, these activations
are coherent with the anatomy since they seem to follow the posterior part of the cingulate sulcus,
which implication in numbers processing has been identified [44]. In another respect, Fig. 7 shows
normalised contrast maps of auditory induced right click (RAC) versus auditory induced left click
(LAC). As expected, the activations lie in the contralateral left motor cortex. Here, only USMM is
more sensitive and we illustrate the advantage of an adaptive spatial correlation model. Indeed,
estimated β̂ PM with USMM for the left auditory click was 0.56 so that the supervised setting of
SSMM with β = 0.8 leads to too much correlation and less sensitive results.

Interestingly, Figs. 6-7 also depict the parcel-dependent maps of β̂ PM estimates for the RAC and
LAC experimental conditions. The gain in sensitivity in the USMM contrast map (âRAC−âLAC)
results from a difference in the amount of spatial regularisation introduced between the two
conditions involved in the contrast. In parcels located in the left motor cortex, the BOLD signal is
known to be stronger for the RAC than for the LAC condition. This is a possible interpretation of
the lower regularisation level estimated for RAC compared to LAC (β̂LAC ≈ 0.5 vs. β̂RAC ≈ 0.75)
in the activating region outlined in Fig. 7.
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Finally, following an illustrative purpose, Fig. 8 shows estimated HRF shapes in the most active
regions for the two contrasts of interest. The time course ĥ26 strongly departs from the canonical
shape: its Time-To-Peak (TTP) is shifted by around 2 seconds. The bumped tail of ĥ232 can be
explained by several hypotheses. There may be a sort of periodic scheme in the stimulus involved
by the concerned activating regions. This may also be a particular behaviour of the local vascular
system which responds to the undershoot. In any case, we would have to resort to a specific
paradigm for a precise investigation.
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FIGURE 8. (a): HRF time course estimate ĥ232 (solid line) for the mostly activated parcel in Fig. 6 superimposed
to the canonical HRF (dashed line). (b): HRF time course estimate ĥ26 for the mostly activated parcel in Fig. -7
superimposed to the canonical HRF (dashed line).

For the three-color Potts prior the parcel-dependent β̂ PM maps shown in Fig. 9 appear more
homogeneous in space, especially for the LAC condition, and higher in absolute value. This
observation can be explained as follows. When considering a three-class label configuration space
for the Potts field, a Potts field realization involving only two states out of three has a lower
probability than the same realization defined on a two-class Ising field. Hence, one way to enforce
voxels in activating and non-activating states in the Potts case consists in increasing the β -value
in comparison to the Ising case. This is exactly what happens in Fig. 9.

β̂ RAC,L = 2 β̂ LAC,L = 2 β̂ RAC,L = 3 β̂ LAC,L = 3

FIGURE 9. Comparison of parcel-dependent β̂ maps computed for the RAC and LAC conditions and for the two-color
(L = 2, left panels also appearing in Fig. 7) and three-color (L = 3, right panels) Potts fields.

Moreover, it has been checked on observed Potts fields that changing the state space from two
to three-classes generates an increase of the ML estimates of the β -parameters. This result is
actually stronger on highly correlated configurations.
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7.3. 2D surface-based JDE analysis

Surface-based analysis requires three preprocessing steps: i.) the segmentation of the grey-white
matter interface from the T1-weighted anatomical MRI in order to extract the mesh of the cortical
surface. ii.) the projection of fMRI signals acquired in the volume onto this cortical surface and
iii.) the derivation of a cortical parcellation. Step i.) is easily addressed using the anatomical
pipeline (T1 MRI toolbox) in the BrainVISA software 7. Step ii.) corresponds to mapping voxels
in the original acquisition space to nodes of the cortical surface. To achieve this goal, we resort to
the method proposed in [72], which is also available in BrainVISA but in the Cortical Surface
toolbox 8. The third step may also be addressed using the latter toolbox or resorting to the
Freesurfer package 9. We chose the latter solution to derive cortical parcellations in Fig 5.

Regarding JDE analysis, we only focus on the USMM version. The goal here is to illustrate
the between-region hemodynamics variability at the subject level. To this end, we carried out the
JDE algorithm on the over-segmented gyrii parcellation depicted in Fig. 5. From the surfaced-
based HRF estimates, we extracted two parameters of interest: first, the TTP corresponding
to the time point at which the HRF maximum is reached and second, the Full Width at Half-
Maximum (FWHM), which describes the duration of activation before baseline return. The
cortical mapping of these parameters is shown in Fig. 10. Interestingly, an antero-posterior TTP
gradient is observed in the sense of slower responses in the frontal lobe. Also, it is worth noticing
that the TTP fluctuates more across regions than the FWHM. The latter appears quite stable even
for distant regions (pre-frontal and parietal gyrii).

As shown in Fig. 11(a)-(b), the vertical checkerboard stimulus elicits activation in the primary
visual cortices (occipital lobe) whose orientation is coherently organized with the stimulus
orientation due to the retinotopy mapping. Of course, the horizontal checkerboard visual stimulus
elicits coherent horizontal activation in the same areas (results not shown). Also, we grouped the
experimental conditions involving visual and auditory stimulus whatever the underlying cognitive
task (reading, computing, ...). Fig. 11(a)-(b) show the Auditory-Visual contrast in the right and left
hemispheres of a given subject, respectively. As expected, the major activation lie in the superior
temporal sulci, with a stronger and larger BOLD response in the left hemisphere because of the
lateralization of the language organization in the brain.

8. Bayesian model comparison

The fitting or inversion of forward models of hemodynamic responses in a Bayesian setting
produces the integrated likelihood (or evidence) for a model (which is generally used for model
comparison or selection), and the posterior or conditional density on the unknown model parame-
ters, given that model. The evidence is used for inference on model-space and the posterior density
is used for inference about the parameters conditioned upon a particular model. In this paper,
we focussed on the inversion of models and how to access the posterior density using sampling
techniques. Here, we close this review with a brief discussion on approximations to the integrated
likelihood using appropriate techniques.

7 http://brainvisa.info
8 http://olivier.coulon.perso.esil.univmed.fr/brainvisa.html
9 http://surfer.nmr.mgh.harvard.edu

Journal de la Société Française de Statistique, Vol. 151 No. 1 58-89
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2010) ISSN: 2102-6238



78 Ciuciu, Vincent, Risser and Donnet

%
∆

B
O

L
D

si
gn

al

TTP definition Left hemisphere TTP map

%
∆

B
O

L
D

si
gn

al

FWHM definition Left hemisphere FWHM map

Time in sec.

FIGURE 10. Within-subject variability on the cortical surface (left hemisphere) of two HRF parameters.
Top: Time-To-Peak (TTP) and Bottom: Full Width at Half-Maximum (FWHM).
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FIGURE 11. Surface-based contrast maps derived from the USMM version of the JDE approach: (a)-
(b): Contrast maps associated to the vertical checkerboard condition in the right and left hemispheres,
respectively. (c)-(d): Contrast maps associated to the Auditory-Visual conditions in the right and left
hemispheres, respectively.
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8.1. Why do we need model comparison or selection?

We have chosen to frame our approach in terms of a joint detection-estimation framework, where
both the detection and estimation rest upon the posterior density on the model parameters. The
distinction between detection and estimation depends on how one uses the posterior density. First,
we summarise what are the main motivations for model comparison and selection in the JDE
formalism:

– Sensitivity to the parcellation: Since our inference depends on the input parcellation, it
seems of primary interest to compare different configurations at the whole brain level in
order to assess the impact of changing the parcellation on the HRF and NRL estimates and
hence to decide which one provides the most functionally homogeneous brain regions. This
may help us improving the experimental set up to acquire complementary fMRI data that
aims at deriving the optimal parcellation.

– sparse BOLD model: In any parcel Pγ , it is of primary interest to derive the sparsest
BOLD signal model in the sense of the smallest set of experimental conditions that elicit
activation in Pγ . The problem therefore consists in selecting first the smallest integer S 6 M
and then in deriving the most relevant set of stimulus types MS = {m1, . . . , mS} involved in
Eq. (1) to explain the measured fMRI time series at best; see [20] for details.

– BOLD stationarity: Even if the proposed non-stationary BOLD model in Subsection 3.3
may encompass the stationary one, its estimation is very time consuming given its voxel-
dependent nature (see Eq. (5)). Hence, it only makes sense to consider the habituation
modelling in parcels eliciting significant and strong repetition-suppression effect (eg, in the
superior temporal sulcus if repeated sentences are delivered over headphones).

– Negative BOLD response: Select the best SMM prior regarding its number of components:
two (activating and non-activating voxels) vs. three class-mixture in which deactivating
voxels enter in the model; see [88] for further details about this comparison.

– Noise modeling: Compare the influence of different temporal noise models (white, AR(1),
AR(p),...) on the sensitivity-specificity trade-off or consider spatially correlated noise models
as done in [77]. Compare the detection power of conditional random fields in comparison
with that of MRF [82], since CRFs enable the introduction of spatial dependencies between
the measured fMRI signals, ie the modelling of spatially correlated noise process.

– Prior MRF: Compare the influence of a symmetric prior 3D MRF to its asymmetric
counterpart in which the external field involves the sengmentation of anatomical MRI data
in three tissue types (white and grey matters, cerebrospinal fluid).

To perform Bayesian model comparison and selection between different JDE results, we
proceed first by carrying out parameter estimation for each model separately before comparing
them using Bayes factors and thus approximations to model evidence or integrated likelihood, as
explained below.

8.2. Bayes factor computation

Bayesian model comparison is usually addressed through the computation of Bayes factors:

BFST
∆=

p(Y |MS)
p(Y |MT )

=
∫

p(Y |θ S,MS) p(θ S |MS)dθ S∫
p(Y |θ T ,MT ) p(θ T |MT )dθ T

,
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where MS and MT refer to tw different models, for instance when (S,T ) ∈ N∗M in order to
compare the number of experimental conditions involved in Eq. (1). Bayes factor is computed
as the ratio of model evidences, ie p(Y |MS) and p(Y |MT ) of models MS and MT . Several
algorithms exist to estimate model evidences [68, 54, 10, 11, 42]. However, we focus on techniques
that perform this estimation from the outputs of our MCMC algorithm since the JDE methodology
relies to date on such simulation techniques.

The methodology proposed in [68, 54] and further developed in [79] based on the harmonic
mean identity: p(Y |MS)

−1 = E
[

p(Y |θ S,MS)
−1 |Y ,MS

]
, which provides the practitioner with

the following model evidence estimate:

p̂HM(MS) =
[

1
G

G

∑
g=1

1

p(Y |θ (g)
S ,MS)

]−1

. (15)

Although this estimator is a simulation-consistent estimate of p(Y |MS), it is not stable because
of the inverse likelihood does not have finite variance. Hence, in [32] it has been proposed to
resort to

p̂GD(MS) =
[

1
G

G

∑
g=1

t(θ (g)
S )

p(Y |θ (g)
S ,MS)π(θ (g)

S |MS)

]−1

where t(·) is a density with tails thinner than the product of the prior and the likelihood. It can
be shown that p̂GD(MS)→ p(Y |MS) as G becomes large without the instability of p̂HM(MS).
Nonetheless, this approach requires a tuning function, which can be quite difficult to determine
in high-dimensional problems, and subsequent monitoring to ensure that the numbers are stable.
Its application therefore requires a stabilising procedure (see [79] for its theoretical foundations
and [60, 12] for an application to the JDE context) that depends on the problem at hand and thus
prevents its general use for all abovementioned model comparisons. Other attempts to modify
the harmonic mean estimator, though requiring samples from both the prior and the posterior
distributions, have been discussed in [68].

To overcome such difficulty, Chib has proposed in [10] an efficient procedure to approximate
p(Y |MS) as soon as latent variables ZS may enter in the formulation. In other words, using
the data augmentation principle, the joint posterior distribution p(ZS,θ S |Y ,MS) is sampled
using Gibbs sampling. At convergence, we get (θ (g)

S ,z(g))g=1...G ∼ p(θ S,ZS |Y ,MS) and the
computation of log p(Y |MS) can thus be done using:

∀θ ∗ ∈ΘS, log p(Y |MS)= log p(Y |θ ∗,MS)+ log p(θ ∗ |MS)−log p(θ ∗ |Y ,MS) (16)

p(θ ∗ |Y ,MS) =
∫

p(θ ∗ |ZS,Y ,MS) p(ZS |Y ,MS)dZS

where p(θ ∗ |Y ,MS) is approximated by

p̂(θ ∗ |Y ,MS) =
1
G

G

∑
g=1

p(θ ∗ |z(g)
S ,Y ,MS).
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and the samples (z(g)
S )g=1...G are considered as outputs of the Gibbs sampler because the condition

z
(g)
S ∼ p(ZS |Y ,MS) is met asymptotically (G→+∞). Since Eq. (16) is satisfied ∀θ ∗ ∈ ΘS, it

holds in particular for the MAP estimate under model MS.
In the JDE framework, we first note that our MCMC scheme is a hybrid MH-within-Gibbs

sampling algorithm. Fortunately, Chib’s approach has been generalized to the MH case in [11].
Nonetheless, whatever the choice of ZS and θ S the two-blocks version of Chib’s algorithm cannot
be implemented as such for JDE analysis since we are not able to simulate according to all
conditional posterior distributions. We need to decompose θ S = (θ S1,θ S2), which leads to the
following procedure: i.) sample p(θ S1 |θ S2,ZS,Y ,MS), ii.) sample p(θ S2 |θ S1,ZS,Y ,MS), and
iii.) sample p(ZS |θ S1,θ S2,Y ,MS). The goal is still to estimate p(θ ∗S |Y ,MS) as follows:

p(θ ∗S |Y ,MS) = p(θ ∗S1 |Y ,MS) p(θ ∗S2 |θ ∗S1,Y ,MS)

p(θ ∗S1 |Y ,MS) =
∫

p(θ ∗S1 |θ S2,ZS,Y ,MS) p(θ S2,ZS |Y ,MS)dθ S2 dZS (17)

p(θ ∗S2 |θ ∗S1,Y ,MS) =
∫

p(θ ∗S2 |θ ∗S1,ZS,Y ,MS) p(ZS |Y ,θ ∗S1,MS)dZS. (18)

As already done in the simple “two-blocks” case, we approximate Eq. (17) using Monte-Carlo
integration:

p̂(θ ∗S1 |Y ,MS) =
1

G1

G1

∑
g=1

p(θ ∗S1 |θ
(g)
S2 ,Z

(g)
S ,Y ,MS)

assuming that
{

θ
(g)
S2 ,z

(g)
S

}
are drawn according to p(θ S2,ZS |Y ,MS). The main difficulty now

lies in Eq. (18) because our Gibbs sampler generates realizations of ZS which are distributed
according to p(ZS |Y ,MS) and not to p(ZS |Y ,θ ∗S1,MS). Hence, we propose to set θ S1 =
θ
∗
S1 after G1 iterations of Gibbs sampling and then to continue the alternating simulation of

p(θ S2 |θ ∗S1,ZS,Y ,MS) and p(ZS |θ ∗S1,θ S2,Y ,MS). Then, asymptotically, we have z
(G1+g)
S ∼

p(ZS |Y ,θ ∗S1,MS) and

p̂(θ ∗2 |θ ∗1,Y ,MS) =
1

G2

G2

∑
g=1

p(θ ∗2 |θ ∗1,Z
(G1+g)
S ,Y ,MS).

Importantly, the asymptotic convergence of this scheme to the model evidence has been proved
in [10, 11]. In the JDE framework (IMM case considering white noise assumptions to enable
the simulation by Gibbs sampler without any MH step [12]), the choice of ZS = (hγ ,Q,L)
and θ S = (A,θA,σ2,σ2

h) for every parcel Pγ has led to a closed form expression of the log-
likelihood log p(Y |θ SMS) ∀S ∈N∗M , which corresponds to the first term in the right hand side of
Eq. (16). Hence, the proposed approximation scheme to model evidence can be integrated within
our Gibbs sampler as follows:

1. Simulation of the missing data ZS at iteration g:
– hγ ∼ p

(
· |Y ,L(g−1),A(g−1),(σ2)(g−1),(σ2

h)(g−1)
)

– ∀ j, ` j ∼ p
(
· |y j,h

(g)
γ ,a

(g−1)
j ,(σ2

j )
(g−1)

)
– ∀m,qm ∼ p

(
· |(λ m

1 )(g−1)
)

where λ m
1 = Pr(qm

j = 1),∀ j ∈Pγ .
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2. Simulation of the parameters θ S at iteration g:
– Block 1: θ S1 = (σ2

h,A): simulate σ2
h ∼ p(· |h(g)

γ ) and ∀m ∈MS sample (am)(g) ∼
p
(
. |Y ,(qm)(g),h

(g)
γ ,L(g),(σ2)(g−1)

)
. Note that the parallel computing over voxels for

a given m is only feasible in the IMM case.
– Block 2: θ S2 = (σ2,θA): Draw ∀ j,σ2

j ∼ p
(
· |y j,h

(g)
γ ,a

(g)
j

)
and then proceed to the

simulation of mixture parameters θ
m, ∀m:

– Simulate λ m
1 ∼ p

(
· |(qm)(g)

)
– Simulate vm

i ∼ p
(
· |(am)(g),(qm)(g)

)
for i = 0,1

– Simulate µm
1 ∼ p

(
· |(am)(g),(qm)(g),(vm

1 )(g)
)

The technical details are available in [12]. The extension of this structure to correlated noise
processes is currently under development but remains feasible. However, the generalisation
to SMM mixtures is not straightforward because the log-likelihood log p(Y |θ S,MS) do not
factorise over voxels and thus no longer admits a closed-form expression. To this end, we will pay
attention to alternative strategies based on mean-field variational approximations for computing
model evidences.

9. Discussion and conclusion

In the present paper, we review the most advanced version of the JDE approach to analyse fMRI
data at the subject level. We focussed on several aspects. First, unsupervised and spatially adaptive
regularisation has been integrated in the Bayesian formalism to make the recovery of activation
clusters feasible even from the unsmoothed fMRI time series. This extension has been achieved
by estimating parcel-dependent regularisation parameters β , which requires a precise estimation
of the underlying 3D Potts field partition function. To this end, an extrapolation algorithm based
on a few path-sampled partition function estimates has been used over the vast majority of parcels,
either in the 3D or the 2D context.

Second we have highlighted, using real fMRI data, that a misspecification of a fixed β value
(SSMM) can lead to wrongly estimated activation label maps so that spatial correlation modelling
does not bring any advantage compared to IMM. This limitation of SSMM was finessed by
the USMM approach where a more relevant setting of β was found. The optimal setting of β

actually varies when considering different regions of the brain. In this respect, we identified
regions where SSMM-β = 0.8 provides the same effect maps as IMM whereas USMM was more
sensitive (β̂ = 0.56). Hence, our claim is that our regularisation scheme is not only unsupervised
but spatially adaptive. As a remark, the sensitivity gain compared to IMM was mainly observed
for low contrasts between conditions. For contrast involving higher response levels (for example
auditive vs. visual conditions), there were no noticeable gain in resorting to USMM. Indeed, in
this case there is enough information within data and spatial regularisation may be useless. To
summarise, our approach enables a finer recovering of subtle contrasts by adapting the spatial
regularisation to varying contrast-to-noise ratios as well as various underlying activation patterns.

Third, our approach relies on the definition of an appropriate spatial scale which should be
small enough so that the HRF shape invariance can be assumed and big enough so that we benefit
from enough HRF reproductibility. This optimal trade-off, which impacts temporal modelling,
is fulfilled by the parcellation scheme we rely on. If we resort to such partitioning for HRF
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modelling, one could also think of taking the whole brain as the spatial support for the detection
part, so that we would consider only one SMM to model response levels. However, this would
obvioulsy prevent us from making regularisation spatially adaptive. Even if parcellation is well
justified for HRF modelling from a physiological viewpoint, it is still questionable for response
levels modelling. Indeed, two regions may be well suited to explain different vascular system
properties so that we consider two different HRFs but they may not be suited for underlying
activations which may span these two regions for example. From a pratictal viewpoint, we did not
observe any impact of parcel boundaries that would prevent activation clusters to span different
regions.

Also, we have illustrated that the JDE framework enables the study of brain deactivations
considering three-class prior hidden Potts model instead of Ising ones. On the proposed example,
we did not show any difference in the contrast maps indicating that there is no deactivation in the
data set under consideration. Future work will investigate pathological data (eg like in epilepsy)
on which it is known a priori that deactivations occur.

Finally, we have demonstrated the interest of running the JDE analysis on the cortical surface to
investigate the between-region hemodynamics fluctuations. At the subject level, it has been shown
that an antero-posterior TTP gradient exists with earlier BOLD responses in the occipital cortex.
Further analysis will investigate the origin of these findings with multimodal MRI data (Arterial
Spin Labeling), the goal being to disentangle the role of the vascular circuitry from the neuronal
sources of activation. This also needs to be validated at the group level.

Ongoing work will validate the current method on group analysis to appraise the impact of our
spatial regularisation scheme to the sensitivity of group level effect maps. To this end, parcella-
tion at the group level could also be performed to account for between-subject variability [16].
Indeed, linking together brain parcels rather than voxels allows us to overcome the drawbacks of
normalisation due to spatial variability.

As future direction of research, one could also produce a meaningful functional parcellation
related to hemodynamic parameters. After treating an over-segmented parcellation, spatially
connected parcels which share the same labels could then be merged together and then be
subsequently used in another JDE iteration to derive more reliable hemodynamic parameters.
This might require more constraints like the use of a semi-parametric approach regarding the
hemodynamic filter to specify its shape among a finite class of FIR models whose dimension
should be small compared to number of parcels. Hence, several parcels could have the same HRF
shape. Also, the use of VB approximations might maintain closed-form updating rules for the
different unknows in the inference scheme as well as a computationally realistic numerical strategy.
This would enable the optimisation of the full joint posterior probability of the parcellation scheme
and the unknown parameters related to the JDE approach.

Appendix A: Details on our hybrid Gibbs sampler

A.1. Convergence diagnosis of our hybrid Gibbs-MH algorithm

Convergence monitoring has been performed component-wise using parallel sampling as detailed
in [33]. For each estimand φ (eg, φ =), we draw B parallel sequences of length C (we typically
took B = 10 and C = 50), each sample being denoted φ [bc], with b = 1 : B and c = 1 : C. We
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then compute the between-sequence variance (BV), and the Within-sequence Variance (WV) as
follows:

BV =
C

B−1

B

∑
b=1

(
φ̄

[b· ]− φ̄
[ ·· ]
)2

with φ̄
[b· ] = 1

C

C

∑
c=1

φ
[bc] and φ̄

[ ·· ] = 1
B

B

∑
b=1

φ̄
[b· ]

WV = 1
B

B

∑
b=1

(s2)[b], with (s2)[b] = 1
C−1

C

∑
c=1

(
φ

[bc]− φ̄
[b· ]
)2

We then calculate
√

R̂ =
√

1+ 1
C

( BV
WV −1

)
for each scalar estimand. These quantities are sup-

posed to decline to 1 as the sampling converges. We stop the algorithm when all are close enough
to 1, e.g., smaller than 1.1, and remove α percent of each chain to account for a burn-in period.

A.2. Metropolis-Hastings steps

The MH move specifically designed for Potts field parameters β has been intensively studied
in [102], while the one dedicated to AR noise parameters ρ has been detailed in [60]: the
calibration of the instrumental distribution was not too difficult in both cases.

Here, we study the MH step that concerns the normalised habituation speeds R. The full
conditional posterior π?

1 (rm
j ) = p(rm

j |y j,qm
j = 1,rest) reads:

π
?
1 (rm

j ) ∝ exp
(
−‖y j−C j\m−sm

j ‖2
Λ j

/2σ
2
j
)
U(0,1)(r

m
j ),

where sm
j depends on rm

j and C j\m = P ` j−∑n6=m sn
j is independent of rm

j , it cannot be sampled
directly. Hence, we resort to a MH step with an uncentered Laplacian density, truncated over
[0,1], as proposal: f (r |r0) = Z−1

β ,r0
e−β |r−r0|1[0,1](r), where r0 = rm,(t−1)

j . At iteration t, the MH

acceptance ratio is given by α(r0→ r) = min
[
1,

π?
1 (r)

π?
1 (r0)

Zβ ,r0
Zβ ,r

]
, which requires to generate the trial-

varying NRLs (Eq. (3)) at points r and r0. This can be hopefully done efficiently using Eq. (4). Note
that detection is performed according to the MAP criterion: (q̂m

j )MAP = argmaxi Pr(qm
j = i |y j).

The NHS estimate is derived as follows: in every non-activating voxel ((q̂m
j )MAP = 0), we impose

r̂m
j = 0. For activating voxels ((q̂m

j )MAP = 1), the MHS estimate is computed as the average of

samples rm,(g)
j over iterations g that satisfy q(g),m

j = 1. The goal is to avoid mixing effects with
zero-valued MHS samples in case of label switching.
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