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Model evaluation in nonlinear mixed effect models,
with applications to pharmacokinetics
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Abstract: Model evaluation is an important part of model building, and has been the subject of regulatory guidelines
in drug development. In the present paper, we illustrate the use of some recently proposed metrics on several
simulated datasets. These metrics include Visual Predictive Checks (VPC), prediction discrepancies (pd) and normalised
prediction distribution errors (npde). We illustrate them using simulated datasets. Prediction bands around selected
percentiles can be obtained through repeated simulations under the model being tested, and their addition to VPC plots
or plots of pd and npde versus time and predictions are useful to highlight model deficiencies. Tests for some of the
metrics are also available and can be used as a complement to graphs.

Résumé : L’évaluation est une partie importante de la construction de modèles, faisant l’objet de recommendations de
la part des autorités régulant la mise sur le marché de nouveaux médicaments. Dans ce papier, nous effectuons une
courte revue de métriques récemment proposées, en particulier les VPC (Visual Predictive Check), les discordances
de prédictions (pd) et les erreurs de prédiction sur la distribution (npde). Nous illustrons ces métriques sur quelques
exemples simulés. Nous montrons comment il est possible de construire des bandes de prédiction autour de la courbe des
médianes (ou d’autres percentiles) des données simulées. Ces bandes de prédiction sont un outil visuel particulièrement
efficace pour détecter des zones où le modèle peut être amélioré. La distribution de certaines métriques est connue et
permet de proposer des tests pour compléter les graphes diagnostiques.
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1. Introduction

As recently defined by Ette and Williams in the eponym book, pharmacometrics is the science
of interpreting and describing pharmacology in a quantitative fashion [13], and can thus be
understood as the quantitative science of drug development. It consists in modelling the data
collected in drug clinical trials, developing and applying statistical methods to characterise,
understand and predict drug behaviour, as well as in characterising the uncertainty associated with
these different elements, to guide rational decision-making. Clinical trials are becoming more
complex, routinely now collecting longitudinal data. Nonlinear mixed-effect models, also termed
population analyses, are therefore increasingly used, in order to represent complex nonlinear
processes and to describe both between and within subject variability. Evaluation is an important
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Model evaluation in NLMEM, with applications to PK 107

part of modelling, and a section on model evaluation has been included in the guidelines on
population analyses issued by the main drug regulatory agencies [14, 11]. Evaluation methods
have been the topic of a number of publications in particular in Bayesian litterature.

Over the years, different terms have been used, including qualification, adequacy, assess-
ment, validation, checking, appropriateness or performance. The FDA guideline, issued in 1999,
mentions model validation while the more recent EMEA guideline devotes a section to model
evaluation. This evolution recognises the insight in Box’s famous quote "all models are wrong,
but some are useful", which indeed implies that no model can ever be accepted, but only evaluated
with respect to key features and model use [5]. Model evaluation therefore covers notions of
adjustment (whether the model describes observed data properly), parcimony (whether the model
is simple enough to ensure extrapolability) and predictive performance (whether the model can be
used for the purpose it has been developed for).

However, a recent bibliographic review of all population pharmacokinetic and/or pharmaco-
dynamic models published over a four years period (2001-2004) showed that evaluation was
absent from the report in 30% of the 478 models identified in the 324 papers included in this
review [9]. In addition, only in 25% of the papers was the evaluation judged to be good or excellent.
This unfortunate situation is partly due to the lack of a gold standard for model evaluation, but
modellers do have an array of tools at their disposal. It is the objective of the present paper to
provide a brief overview of these methods. We will focus on methods proposed for evaluation of
models built to describe the evolution of continuous responses. This paper follows up and relies
on papers by Mentré and Escolano [33], Brendel et al. [7, 8] and Comets et al. [10].

2. Models and Methods

Let B denote a building (or learning) dataset and V a validation dataset. B is used to build a
population model called MB. Evaluation consists in comparing the predictions obtained by MB,
using the design of V, to the observations in V. V can be the learning dataset B (internal evaluation)
or a different dataset (external evaluation). The null hypothesis (H0) is that data in the validation
dataset V can be described by model MB.

2.1. Statistical models

Continuous longitudinal data can be characterised by the following relationship between the
observations yi j collected for a value xi j of the design variables (usually the time and doses in
PK/PD studies) in subject i (where i=1,...,N) with covariates zi, and the vector of parameters θi

characterising individual i:

yi j = f (θi,xi j,zi)+g(θi,γ,xi j,zi)εi j (1)

f is the structural model, describing the evolution of the process being modelled, and g charac-
terises the measurement error model, which can depend on structural model predictions and on
additional variance parameters γ . εi j is assumed to be normally distributed with mean 0 and unit
variance. A commonly used model is the combined error model, where the variance depends of f
and on additional parameters a, b and c, with c often fixed to 1:

g(θi,xi j,zi) = a+b f c(θi,xi j,zi) (2)
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108 Comets, Brendel and Mentré

In the following, we will denote with a bold font the vector of individual observations for subject
i.

The second level of variability characterises variations between the different individuals.
Interindividual variability (IIV) is usually modelled parametrically, with the vector of individual
parameters θi modelled as a function of a vector of fixed effects µ , of individual covariates zi, and
a P-vector of individual random effects ηi, through a function h(µ,zi,ηi). A common choice for
the ηi is to assume they follow a multivariate normal distribution with variance-covariance matrix
Ω:

ηi = (ηi(1),ηi(2), ...,ηi(P))
T ∼N (0,Ω) (3)

An often used transformation h is the following, leading to a log-normal distribution for the
parameters:

θi(p) = µ(p) eηi(p) (4)

In these equations, the subscript (p) denotes the pth component of the corresponding vector. Other
distributional assumptions can be made for η , in particular an alternative approach is to consider
a non-parametric distribution for the random effects [31]. Covariate relationships can be included
in equation (4) through a model relating the value of µ to individual covariates, which could
then be denoted as µ(zi). The dimension of the vector η may be different from the number of
fixed parameters of the model, especially when covariate relationships are included, or when the
interindividual variability on some parameters is assumed to be negligible.

In the following, model MB regroups the structural model f , the residual error model g, as well
as the set of population parameters Ψ. Ψ includes fixed parameters, parameters characterising the
distributional assumptions on θi or the variance model. For instance, with a log-normal model
to account for between-subject variability and a combined error model for the residual error, the
vector of population parameters Ψ is (µ,vec(Ω),a,b,c)T . Ψ is usually estimated as Ψ̂ using the
data in B.

The likelihood in nonlinear mixed effect models has no analytical expression, because it implies
an integral over the distribution of individual parameters:

ł(Ψ ; y) =
N

∏
i=1

ł(Ψ ; yi) = ∏
i

p(yi|Ψ) = ∏
i

∫
D

p(yi|ηi,Ψ)p(ηi|Ψ)dηi (5)

Several estimation methods have been proposed to obtain estimates of Ψ. The first methods
relied on linearisation of the model [30] or of the likelihood [42], and have been implemented
in software like NONMEM and SAS. Alternatively, numeric integration can be used to obtain
exact approximations of the likelihood in (5) [35], and adaptive Gauss-Hermite quadrature is
the default method in SAS proc NLMIXED. Recently stochastic EM algorithms have proved
extremely effective to maximise (5), and have been implemented in particular in Monolix [26].

2.2. Metrics for model evaluation

Standardised prediction errors

Prediction errors are defined as the difference between the observations yi and the predictions
f (µ̂,xi,zi) obtained using MB. When the residual error model is not homoscedastic, or when
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Model evaluation in NLMEM, with applications to PK 109

several observations are collected in some or all subjects, the prediction errors are correlated.
Standardised prediction errors are obtained after decorrelation by the variance-covariance matrix
of the vector of predictions, V̂i:

spei = V̂−1/2
i (yi−E( f (θ ,x,z))) (6)

The matrix V̂i depends on the individual i through the design matrix and possibly the covariate
model. The average prediction E( f (θ ,x,z)) is usually replaced by f (µ̂,xi,zi) assuming a first-
order approximation for the model; this is the usual approach when the estimation method is
also based on model linearisations, but this approximation can be poor when the model is non-
linear. Alternatively, both V̂i and the vector of predictions E( f (θ ,x,z)) can be obtained through
Monte-Carlo simulations by repeatedly sampling from the distribution of the random effects.
Standardised prediction errors are also referred to as weighted residuals when computed on the
data used for the estimation of the parameters.

The distribution of standardised prediction errors can be determined if the model f is linear. In
that case spei follow a standard normal distribution. However, when the model f is nonlinear, its
distribution is no longer known because of the approximation involved in the definition of spei.

Prediction distribution errors

Prediction errors appropriate for nonlinear mixed effect models have been proposed by Mentré and
Escolano [33]. Let pi(y|Ψ) be the predictive distribution of an observation y given the population
parameters Ψ. As the likelihood in equation 5, this predictive distribution can be obtained as an
integral:

pi(y) =
∫

p(y|θi,Ψ)p(θi|Ψ)dθi (7)

Let Fi j denote the cumulative distribution function (cdf) of the predictive distribution of Yi j

under model MB, which is the integral up to the observation yi j of pi(y|Ψ). We define the
prediction discrepancy pdi j as the value of Fi j at observation yi j, Fi j(yi j). Since the integral above
is analytically intractable, Fi j can be computed using Monte-Carlo simulations [33]. Using the
design of the validation dataset V, we simulate under model MB K datasets Vsim(k) (k=1,...,K).
Let ysim(k)

i denote the vector of simulated observations for the ith subject in the kth simulation.
Note that only the estimated value of the parameters is used for the simulation, neglecting the
uncertainty in these estimates (known as the plug-in approach).

The prediction discrepancy for an observation yi j, pdi j, is then computed as the percentile of

yi j in the empirical distribution of the ysim(k)
i j :

pdi j = Fi j(yi j)≈
1
K

K

∑
k=1

δi jk (8)

where δi jk = 1 if ysim(k)
i j < yi j and 0 otherwise.

By construction, prediction discrepancies (pd) are expected to follow the uniform distribution
U (0,1). We can also transform pd back to a normal distribution using the inverse function of the
normal cumulative density function implemented in most software:

npdi j = Φ
−1(pdi j) (9)
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110 Comets, Brendel and Mentré

In the following npd will be the normalised prediction discrepancies.
However, within-subject correlations are introduced when multiple observations are available

for each subject. A test comparing the distribution of pdi j to U (0,1) therefore has an increased
type I error if these correlations are neglected [33]. To decorrelate the pd, we compute the
empirical mean Ê(yi) and empirical variance-covariance matrix var(yi) over the K simulations.
The empirical mean is obtained as:

Ê(yi) =
1
K

K

∑
i=1

ysim(k)
i

and the empirical variance is:

V̂i = var(yi) =
1

K−1

K

∑
i=1

(ysim (k)
i − Ê(yi))(y

sim (k)
i − Ê(yi))

′

Decorrelation is performed simultaneously for simulated data:

ysim(k)∗
i = V̂−1/2

i (ysim(k)
i − Ê(yi)) (10)

and for observed data:
y∗i = V̂−1/2

i (yi− Ê(yi)) (11)

Decorrelated pd are then obtained using the same formula as in (8) but with the decorrelated
data, and we call the resulting variables prediction distribution errors (pde):

pdei j = F∗i j(y
∗
i j)≈

1
K

K

∑
k=1

δ
∗
i jk (12)

where δ ∗i jk = 1 if ysim(k)∗
i j < y∗i j and 0 otherwise.

Under H0, if K is large enough, the distribution of the prediction distribution errors should
follow U (0,1) by construction of the cdf. Normalised prediction distribution errors (npde) can
then be obtained as previously:

npdei j = Φ
−1(pdei j) (13)

By construction, if H0 is true, npde follow the N (0,1) distribution and are uncorrelated within an
individual. The only approximation involved is to assume that decorrelation through equations 10
and 11 renders the pde independent, which is strictly true only for Gaussian variables.

Numerical and Visual predictive checks

A number of simulation-based approaches have been regrouped under the denomination of
Posterior Predictive Check (PPC). These methods consider that if MB is true, data simulated under
the model should resemble the observed data. The idea is then to choose one or several statistics
and compare its value when computed on V to its distribution obtained in simulated datasets
through a Neyman-Pearson test. If the value is too extreme, the model is rejected. The statistic(s)
can be chosen by the modeller to correspond to important model features, but it is recommended
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Model evaluation in NLMEM, with applications to PK 111

to choose non-sufficient statistics, that are not automatically adjusted during model fitting [2]. As
an example, Girard et al. assessed model adequacy through the predictions of compliance patterns
in a PK model [18]. Yano et al. studied a number of statistics for PPC, albeit in a very simple
simulation setting [43].

In fact, pd and npde are a form of observation-based PPC [33]. Another very useful diagnostic
tool based on PPC is the Visual Predictive Check [21]. A VPC plot is obtained by simulating
a large number of datasets with the same design as V, and by plotting the prediction interval
corresponding to a given value. For instance, the 90% prediction interval is obtained for each time
point as the interval in which lie 90% of the simulated values for this time point. The observed
data are plotted on the graph to assess whether the model is able to reproduce the evolution in
time and the variability. The same simulations as those performed for npde can be used to obtain
any desired prediction interval.

VPC as suggested by its name provides primarily a visual diagnostic, but tests using the
simulations performed to obtain the plots have been proposed for a less subjective interpretation.
Wilkins et al. computed the percentages of outliers outside several prediction intervals to the
theoretical value and showed that trends in the prediction intervals can be used to pinpoint some
model deficiencies [41]. This approach, which we will call PI-NPC in the following, is in fact an
example of what Gelman called Numerical Predictive Check (NPC) in Bayesian analyses [16].

2.3. Tests and graphs

Tests

Under the null hypothesis that model MB describes adequately the data in the validation dataset,
npde follow the N (0,1) distribution. Under the additional hypothesis that the model is linear,
spe follows the same distribution, although with nonlinear models the distance to the theoretical
distribution can be very important even for simple PK models [33, 8]. To compare distributions,
omnibus tests such as the Kolmogorov-Smirnov test can be used, or a combination of three tests:
Brendel et al. proposed to use a Wilcoxon test comparing the mean to 0, a Fisher test comparing
the variance to 1, and a Shapiro-Wilks test to test normality, and a global p-value can then be
obtained as the maximum of the three p-values after a Bonferroni correction to account for
multiple tests [7].

For PI-NPC, comparing the proportion of outliers outside of a given prediction interval to the
expected proportion can be performed through a normal (approximation) or a binomial test. Here
we will show the results for the 90% prediction interval, in which we will compare the proportion
of points inside the interval to the value of 0.9. As with prediction discrepancies however, the type
I error of PI-NPC increases with several observations per subject; Brendel et al. proposed to use
instead the decorrelated observations and simulations to obtain decorrelated PI-NPC, PI-NPCdec,
for which the same tests can be used [8].

Graphs

Goodness-of-fit graphs are now widely used to examine and detect model deficiencies, and as
such they are plotted for each model in the model building process. Plots of spe against time and
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112 Comets, Brendel and Mentré

predictions in particular have long been used to detect model deficiencies. The same graphs can
be performed with pd and npde, which are residuals more appropriate for nonlinear models. In the
field of population PK/PD, graphs of residuals versus predictions use the values predicted by the
model even when the residuals have been decorrelated, as is the case for both spe and npde here.
Following the suggestion of a referee, we could question whether in this case it would not be more
appropriate to decorrelate also the predictions. The decorrelated predictions can be obtained as:

ypreddec,i =V−1/2
i Ê(yi) (14)

Comparing metrics to their theoretical distributions can be done through QQ-plots or his-
tograms [10]. Examples of these different graphs will be shown in the next section.

VPC plots usually show the limits of the 90% or 95% prediction interval (eg, for the 95%
prediction interval, the 2.5th and 97.5th percentile), sometimes shading the area lying between
these two lines, as well as the predicted median; the observed data can be plotted over the interval.
A very visually appealing addition to VPC plots has recently gained popularity: in addition to
the 2.5th, 50th and 97.5th percentiles, we plot the prediction interval on these percentiles. For a
given time-point, we compute the values of the 2.5th, 50th and 97.5th percentiles for each of the K
simulated datasets; for each of the three percentiles, we plot the limits of the 95% interval over
these K intervals. Usually the 95% intervals around each border and around the median are plotted
as coloured areas; for model assessment, the corresponding 2.5th, 50th and 97.5th percentiles of
the observed data are plotted as lines or points, and should remain within the coloured areas. The
same idea can be applied to graphs of pd and npde, and again examples will be shown in the next
section.

3. Illustrative examples

3.1. Simulated datasets

As in [10], to illustrate the different graphs and tests, we use simulated data based on the well
known toy dataset recording the pharmacokinetics of the anti-asthmatic drug theophylline. The
data were collected by Upton in 12 subjects given a single oral dose of theophylline who then
contributed 11 blood samples over a period of 25 hours [4]. We removed the data at time zero from
the dataset, and applied a one-compartment model with first-order absorption and elimination,
as previously proposed [12]. The model was parameterised in absorption rate constant ka (hr−1),
volume of distribution V (L) and elimination rate constant k (hr−1) and did not include covariates.
V is in fact the apparent volume of distribution and should be denoted V/F where F is the
bioavailability, but for the sake of simplicity we will drop the reference to F. The concentration at
time t following a dose D is then obtained using the following equation:

C(t) =
D
V

ka

ka− k

(
e−k t − e−ka t

)
(15)

The residual variability was modelled using a combined error model. Interindividual variability
was modelled using an exponential model for the three PK parameters, eg for V :

Vi =V eηV (16)
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Model evaluation in NLMEM, with applications to PK 113

The variance-covariance matrix was denoted Ω:

(ηVi,ηki,ηkai)∼N (0,Ω) (17)

A correlation between the parameters k and V was assumed (cor(ηk,ηV )). Using NONMEM
(version 5.1) with the FOCE INTERACTION estimation method, we obtained the parameter
estimates reported in Table 1. This model and these parameter estimates correspond to MB. Were
this analysis performed in actual conditions, the large correlation between the random effects
corresponding to k and V would probably be investigated, through reparameterisation and study
of the relationship with covariates.

TABLE 1. Parameter estimates for the theophylline concentration dataset. A one-compartment model was used,
parameterised with the absorption rate constant ka, the volume of distribution V, and the elimination rate constant k. A
correlation between ln(V) and ln(k) (cor(ηk,ηV )) was estimated along with the standard deviations of the three
log-parameters. The model for the variance of the residual error was a combined error model.

Fixed effects Interindividual variability (SD)
ka (hr−1) 1.51 ωka (-) 0.67
V (L) 31.9 ωV (-) 0.12
k (hr−1) 0.087 ωk (-) 0.13
a (mg.L−1) 0.088 cor(ηk,ηV ) (-) 0.99
b (-) 0.26

For the purpose of illustrating the different graphs and tests, we simulated datasets including
N=100 subjects; in the original study, each subject had different doses and sampling times, so to
design the simulation study we took the median total dose of 320 mg and the following time points,
which appeared to be the nominal times in the original study: 15 and 30 min, 1, 2, 4, 5, 7, 9, 12 and
24 h. We then simulated several external validation datasets V with this design: Vtrue was simulated
under MB (H0), using the parameters reported in Table 1. Two datasets, Vbioavail and VIIV, were
simulated assuming respectively a bioavailability divided by 2 (so that V/F is multiplied by 2), or
an IIV increased by 50% for V; these situations could occurr during model development when
the validation dataset is taken from a different population (eg. healthy volunteers versus patients).
We also simulated a dataset with a two-compartment model, V2cpt, with the following parameter
values, to assess the influence of model misspecification: ka=1.55 hr−1, V=20 L, k=0.02 hr−1,
k12=0.2 hr−1 and k12=0.01 hr−1, and 30% IIV on k12 and k12. The residual error model and the
values of the other interindividual variabilities were unchanged.

Figure 1 show plots of the concentration versus time profiles for the 4 datasets.

3.2. Model evaluation for simulated datasets

For each dataset, K=1000 simulations under MB were performed. The simulations were used to
plot the VPC, compute the simulation-based metrics pd and npde, and to evaluate the percentage
of observed data within the 90% prediction interval for PI-NPC. Thus, in the present paper, for
each setting, we simulated both the original and the external validation dataset, with different
parameter sets.
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114 Comets, Brendel and Mentré

FIGURE 1. Plots of concentrations versus time in simulated datasets Vtrue (upper left), Vbioavail (upper right), VIIV
(lower left), V2cpt (lower right).

For V2cpt, we first estimated the parameters assuming a one-compartment model, and the
metrics were then computed using these new estimates instead of those from MB. Indeed in
this case we were interested in assessing whether the different metrics were able to detect the
misspecification in the structural model, to mimick the use of diagnostic tools during model
building where different structural models are successively tested.

3.3. Results

Tests

Table 2 gives the results of the three tests on mean, variance and distributional shape performed on
the npde computed for each dataset, as well as the result of the global test obtained by combining
these three tests with a Bonferroni correction [8]. We also show the alternative to the global test, a
Kolmogorov-Smirnov test comparing the distribution of the npde to N (0,1), and the binomial
test for the 90% PI-NPC. As expected, none of the tests is significant for Vtrue, but for Vbioavail,
the mean differs very significantly from 0, and the normality assumption is clearly violated,
resulting in a very significant global test. For VIIV, where the variability on parameter V was
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increased from about 12% to about 25%, the variance is increased, which is detected using the
Bonferroni-corrected test but not with a Kolmogorov-Smirnov test. Finally, with V2cpt, the data
simulated under the two-compartment model were fitted to a one-compartment model, but model
misfit can be detected through the test and appears in the value of the test of the mean.

TABLE 2. Values of the tests on npde and of the binomial test on the coverage of the PI-NPC (90% PI), for the four
datasets simulated in the present study. The simulations used to compute the metrics were performed under model MB
for the first three datasets. For the data in V2cpt, simulated under a two-compartment model, we re-estimated the
parameters assuming a one-compartment model and we used these estimates to compute the metrics.

Dataset Separate tests (npde) Global tests (npde) PI-NPC
Mean Variance Normality 3 tests combined KS test 80% PI

Vtrue 0.23 0.71 0.57 0.69 0.46 0.53
Vbioavail <10−9 0.002 <10−10 <10−10 2<10−16 2<10−16

VIIV 0.78 0.01 0.69 0.04 0.51 4.10−6

V2cpt 0.001 0.79 0.64 0.002 0.005 0.11

The proportion of observed data within the 90% prediction interval computed on the simulated
datasets was estimated to be 89.4% (CI 87.3-91.2) for Vtrue, 38.6% (35.5-41.7) for Vbioavail, 85.4%
(83.0-87.5) for VIIV, and 88.5% (86.3-90.4) for V2cpt. The p-values of the binomial test for the
corresponding PI-NPC are shown in the last column of table 2, and show that the test was able
to detect model misspecification for Vbioavail and VIIV, but not for V2cpt in this example. We also
performed the test on the decorrelated data: in the present example, there was hardly any difference
between the p-values obtained for the PI-NPC and PI-NPCdec, so we do not report the p-values
for the latter in the table.

Graphs

The npde library also provides plots, shown in figure 2 for Vtrue. The two upper plots compare
the distribution of the npde to the theoretical N (0,1), either through a QQ-plot (left) or with a
histogram (right). The two lower plots are scatterplots of npde versus time (left) and predicted
concentrations (right). For an observation yi j, the predicted concentration is obtained as the
empirical mean of the corresponding simulations ysim

i j (as in the computation of Ê(yi) for pd)
(that is E( f (θi,xi,zi))). Dashed lines at ±1.96 indicate the interval in which we expect 95% of
the npde to be, and the line in the middle indicates y = 0. For dataset Vtrue which is expected to
correspond to MB, no trend can be seen in the scatterplots, and the distributional plots (top) show
a very good match between theoretical and observed distribution of the npde.
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116 Comets, Brendel and Mentré

FIGURE 2. Plots provided by the npde library for Vtrue. Top: QQ-plot of the distribution of the npde versus the theoret-
ical N (0,1) distribution (left). Histogram of the distribution of the npde, with the density of the standard Gaussian
distribution overlaid (right). Bottom: scatterplot of npde as a function of time (left) and predicted concentrations
(right); dashed lines show the lines y=0 and y=±1.96.
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Figure 3 shows a plot of npde versus the decorrelated predictions for Vtrue. The decorrelation
tends to spread out the data over the whole range of (decorrelated) predictions.

FIGURE 3. Scatterplot of npde versus decorrelated predictions for Vtrue. Dashed lines show the lines y=0 and y=±1.96.

Figure 4 shows several representations of VPC. In the top panel, the left figure represents the
observed data as points, dashed lines join the 2.5, 50 and 97.5th percentiles of the simulated data
with a thicker line for the median. The right figure shows the same plot, but with a coloured area
to make it easier to visualise where the bulk of the data is expected to lie. The bottom panel shows
another representation of VPC: prediction bands (see methods) are plotted around the 2.5, 50 and
97.5th percentiles of the simulated data. The lines now represent the 2.5, 50 and 97.5th percentiles
for the observed data instead of the simulated data (which we could also plot, but here lead to a
rather busy plot and were omitted for clarity). The lower two figures differ only by overlaying
the data or not. Different colours can be used for the extreme percentiles (2.5 and 97.5) and the
PI around the median, both when representing the prediction intervals and when plotting the
lines themselves. VPC with prediction bands as shown in the two lower plots are a very vivid
representation of the data that can make it immediately clear in which areas the model still needs
improvement. The four plots in figure 4 show different ways of comparing the model predictions
to observed data, with additional information in the two lower ones. The two upper figures are
identical save for the shaded area. Both have been used in the literature, but the right hand figure
is more visually appealing and is increasingly replacing the former. The two lower figures include
additional information, as the shaded areas can be used to compare observed percentiles to model
predictions. Depending on the study design, the amount of data and their spread may clutter the
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graph, making the lower right-hand plot more appealing. Alternatively, only the observations
outside the shaded areas may be plotted instead.

FIGURE 4. VPC plots for Vtrue, with several representations. Top: 2.5 and 97.5th percentiles of the simulated data,
shown as dashed lines (left) or coloured area (right); for both graphs the 50th percentile is shown as a thick dashed
line and the observations are overlaid as dots. Bottom: 95% prediction intervals around 2.5, 50 and 97.5th percentiles
of the simulated data shown as coloured areas; the 2.5, 50 and 97.5th percentiles of the observed data are plotted as
dotted/dashed lines (– . –) with a thicker line for the median.
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Prediction bands can also be obtained to complete the scatterplots of pd and npde versus time or
predictions. As for VPC, we compute pd and npde for each simulated dataset to obtain prediction
bands around selected percentiles of the observed pd and npde; the results are shown in figure 5,
for pd (top) and npde (bottom), with similar conventions as for figure 4. Again, adding the area
in which the median and limits of the 95% interval are expected to be found is very visually
appealing. Of the two sets of plots, when model misspecification is being investigated, pd can be
preferred over npde. Indeed, npde have been transformed to remove the correlation between the
samples taken in the same individual, while pd remain closer to the original data.

FIGURE 5. Graphs of pd (top) and npde (bottom) for Vtrue, plotted versus time (left) and predicted concentrations
(right), with prediction bands (see legend of Figure 4 and text for description).
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Figure 6 shows the VPC with prediction bands for the four datasets. We chose not to show
the individual observations to reduce the clutter, but the same plots could include individual
datapoints. The VPC are able to highlight all the model misspecification we simulated.

FIGURE 6. VPC with prediction bands, for datasets Vtrue (upper left), Vbioavail (upper right), VIIV (lower left), V2cpt
(lower right).
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Figure 7 shows the pd versus time with prediction bands for the four datasets (again without
observations overlaid). Model misspecification is again very clear for Vbioavail because of the large
change in the volume of distribution. For VIIV, there are too many extreme values of pd but no
trend in time, suggesting a problem with the variability model which was maybe not as readily
apparent with VPC; spikes outside the prediction bands can be seen around the same time as the
spikes in the VPC plot. Finally, for V2cpt, structural model misspecification appears as a trend in
time only visible at the latest time.

FIGURE 7. Plot of pd versus time with prediction bands, for datasets Vtrue (upper left), Vbioavail (upper right), VIIV
(lower left), V2cpt (lower right).

4. Discussion

A number of metrics have been described in [7]. We briefly recalled the most promising of them
and illustrated them. The purpose of the present paper is not to evaluate or compare the different
metrics, but rather to present examples of their use for model evaluation, and to show how they
can be made particularly striking by adding prediction bands around important features of the
model. A single dataset was simulated for each simulation settings. Therefore, this presentation
is by no means exhaustive nor does it claim to provide a definitive methodology for model
evaluation. Some metrics, such as the weighted residuals (called WRES in NONMEM), also
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called standardised prediction errors [40], were not included on purpose for the present illustration.
Although they have been extensively used, their ineffectiveness has indeed already been amply
demonstrated [33, 8]. WRES rely on a first-order approximation of the model, as do another
metric, the conditional weighted residuals CWRES [22]. npde are residuals based on the whole
predictive distribution for each observation, and avoid the linearisation problem. Recently, Laffont
and Concordet proposed a metric termed GUD for Global Uniform Distance [27], as well as a
circular diagnostic graph. This metric requires extensive simulations to define a prediction region
not unlike the prediction bands around the boundaries that have been proposed for VPC and
applied also to pd and npde in the present paper.

In fact, with the improvement in computer power, several metrics using extensive simulations to
approximate the distribution of a statistic under the model being tested have been made available.
Normalised prediction distribution errors, npde, are an example of a larger class of statistics called
posterior predictive check (PPC). They were first proposed for non-parametric estimation methods
by Mesnil et al. [34]; in that setting, they can be computed exactly because the distribution of
random effects is discrete. They were more recently extended to parametric estimation methods
where they are computed using Monte-Carlo methods [33], and improved by taking correlations
into account [7]. The idea can be traced back to the Bayesian concept of using the whole predictive
distribution for model evaluation, as discussed in Gelfand et al [15] and Gelman et al [16]. In
the field of pharmacokinetics/pharmacodynamics, Girard et al. used the predictive distribution of
compliance pattern to compare models [18]; more recently, Yano et al. formalised the concept of
PPC and evaluated a number of standard statistics [43]. PPC extend readily to non-continuous
data, and a nice example of VPC applied to categorical data can be found for instance in [19],
where the evolution with time of the probability of experiencing hand and foot syndrome after
exposition to two anticancer agents was modelled using a proportional odds model and evaluated
with odd-type VPC. An application of npde to count data has also demonstrated the efficiency of
this metric even with non-continuous data [38].

Posterior predictive checks come naturally in the Bayesian framework, which uses the posterior
distribution resulting from Bayesian inference to compute the distribution of a future observable
quantity, conditionally on observed values [37]. Posterior predictive p-values measuring the
discrepancy between the data and a model have been proposed which reconcile the Bayesian
analysis and the frequentist notion of p-values [1]. Different types of p-values have been proposed,
based on different distributions, such as prior predictive distribution [6], posterior predictive
distribution [37, 32], partial predictive distribution or conditional predictive distribution[1]. The
properties of the different p-values were studied in several examples, and Robins et al in a
companion paper studied their asymptotic distributions[36]. Their results suggest a superiority
of conditional predictive p-values and partial posterior predictive p-values, but admit that the
computation of these p-values may be difficult; their extension to nonlinear mixed-effect models
would be a subject worthy of investigation but is far beyond the scope of the present paper.
Concerning posterior predictive p-values, Bayarri and Berger [1] argue that the plug-in approach,
which consists in using point estimates and disregarding uncertainty, avoids a double-use of the
data occurring when using the full posterior distribution, but point out the resulting p-value may
be conservative. This finding was corroborated by Yano et al. who in their PK/PD simple example
found the plug-in approach to be appropriate, although they caution that this could depend on
the design of the study and the magnitude of interindividual variability [43]. A more in-depth
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discussion on this topic can be found in [33].
Simulation-based metrics require to be able to simulate all the features of the data. As noted by

Karlsson and Savic [25], this may pose several problems. First, some observational designs are
not readily amenable to simulations. Second, clinical trials often include drop-outs, censored or
missing data, and the construction of diagnostic graphs need to take these processes into account
in the model. In particular, all these simulation-based metrics implicitely assume the data does not
contain censored data, such as data under the limit of quantification (BQL data); if the amount of
BQL data is large at certain time points, it can be worthwhile to compare the percentage of BQL
data predicted by the model to the percentage observed in the dataset [8]. Drop-out processes can
be modelled to correct for model misspecification [24], but patterns will appear in plots of the
npde or in the VPC when the data is not missing completely at random (MCAR). When data is
missing at random (MAR), imputation of unobserved values may be used to complete diagnostic
plots and remove these trends, as well as provide insight into model features [17] and this has
been shown to work well with npde and VPC [28].

Models should be evaluated by different tools; in the quick illustration presented here, we could
see how VPC and/or normalised pd with prediction intervals can pinpoint model deficiencies, while
npde or PI-NPC provide an overall test which can be more sensitive than the human eye. Indeed,
in the present illustration, npde were able to correctly detect all the model misspecifications we
simulated in our examples, when using the global test with Bonferroni correction, and examining
the individual tests provided some insight as to which feature of the model should be improved.
Plots of pd versus time with prediction bands and VPC plots were also very sensitive to the
various model misspecifications simulated here. With the Kolmogorov-Smirnov test on npde, on
the other hand, we did not detect a problem with the dataset where the IIV was misspecified.
However we need to recall that we only changed the IIV from 13% to 25% and only on one
parameter, which is a very small change that may be both difficult to detect in practice and
unlikely to be clinically significant. PI-NPC or their decorrelated version appeared on the other
hand sensitive to misspecification in IIV, but here did not indicate a problem with V2cpt where the
structural model was misspecified. These differences were somewhat surprising since there is a
close relationship between VPC, where we consider the position of the observation within the
distribution of the simulated concentrations, and pd which are the quantiles of the observations
in this distribution. This result may therefore be related to the different statistical tests involved,
as we have already seen differences between using a Kolmogorov-Smirnov test or a global test
involving three sub-tests. Examining the strengths and weaknesses of the different tests would
require a more in-depth investigation than the simple illustration performed in the present review.
In addition, in real datasets, model misspecifications may occurr simultaneously for several model
features, which may make them more difficult to identify; in addition, the presence of outliers or
large amounts of data may render the tests (especially the normality test) inordinately sensitive
in practice, so that the results of the statistical tests should probably then be used more as an
indication to guide model building.

VPC and PI-NPC require rather homogenous designs for all subjects, while pd and npde take
naturally into account individual differences in designs. When sampling times differ, binning can
be an option. When doses differ, or when covariates enter the model, one solution for VPC is to
stratify, but the amount of information per stratum will then decrease, and the VPC may become
less informative. To solve this conundrum, it has recently been proposed to normalise VPC using

Journal de la Société Française de Statistique, Vol. 151 No. 1 106-128
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2010) ISSN: 2102-6238



124 Comets, Brendel and Mentré

the median predicted value at each time point (or within in binning interval), thus producing
Prediction Corrected VPC (PC-VPC) [3]. PC-VPC partly correct for design heterogeneity, and
are more efficient to detect model misspecification; we could also propose a PI-NPC test for
the prediction corrected VPC. However, contrary to pd and npde there does not appear to be a
theoretical rationale for the correction proposed; PC-VPC also do not take into account within
subject correlations. In the present paper, the designs we simulated were homogenous, with the
same dose and sampling times for all individuals and no covariate in the model, therefore VPC and
PC-VPC are the same, since the population prediction for each time-point is the same across all
subjects and the ratio involved in the computation of PC-VPC is equal to 1 for all observations. In
particular, we chose to simulate the same dose for all subjects, to avoid having to split the graphs
for VPC. It would therefore be interesting to evaluate PC-VPC as well as the other diagnostic
tools in a more challenging setting.

Plots of residuals are traditionally plotted versus time and predicted concentrations. With
weighted residuals or npde however, we could consider decorrelating the variables plotted on the
X-axis. For predicted concentrations, the variance-covariance matrix of the individual vector of
predictions can be used to perform the decorrelation. We show an example of such a graph in
figure 3 for Vtrue, and it would be interesting to study in more detail how these graphs could be
used for model diagnostics. In the present work, they performed similarly to the graphs using
non-decorrelated predictions: a clear downward trend appeared for Vbioavail, but the other two
model misspecifications were not readily apparent (data not shown). Diagnostic plots are not
limited to the plots versus time and predictions. Commonly used plots include graphs of the
predictions versus the observations, individual fits, as well as plots of absolute prediction errors.
In addition, other elements to help diagnose models are the standard errors of estimation (SE),
which are reported by the software and can sometimes help to detect overparameterisation. The
modeller should therefore select features of the model which are important for the purpose of
the analysis, and choose diagnostic tools to evaluate these aspects. For instance, the global test
proposed to test the distribution of the npde is a combination of three tests; the Wilcoxon test
assessing whether the mean of the npde is significantly different from 0 can be used to evaluate
whether the structural model is appropriate, and can be completed by an absence of trend in
the graph of npde versus time to check whether this hypothesis holds with time. This can also
be seen through a VPC with the simulated median superimposed. In addition, the validity of
certain diagnostics may depend on design, as there is evidence that the usefulness in particular
of individual predictions or individual residuals may be decreased in the presence of significant
shrinkage [25].

Outliers can be seen in most diagnostic graphs, especially with real data. Although the ability
of the different approaches to detect outliers or influential data has not to our knowledge been
formally studied, Semmar et al. have shown that npde values of large magnitude were correlated
with outlier data identified by a priori multivariate techniques [39]. VPC and plots of the npde
or pd versus time can therefore be used to gain an impression of outliers in a dataset. However,
this approach probably makes more sense when applied to external evaluation, since in internal
evaluation the outlier value is included in the dataset used to estimate the parameters.

A number of tools providing diagnostic plots are available to modellers. For users of the
Monolix software, a large number of diagnostic plots are output for each run, including VPC
plots as well as histograms and QQ-plots of the distribution of npde. For users of the NONMEM
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software, libraries for R such as Xpose [23], WfN [20] and npde [10] are very useful, and the
latest version of NONMEM (version 7) outputs VPC and npde. Xpose can be combined with PsN
(Perl speaks Nonmem) [29] to produce VPC plots as well as coverage plots for different intervals.
Prediction bands for VPC or other metrics can be produced with R code, as we did in the present
examples. Computing the prediction bands for the pd and especially the npde can be somewhat
computationally cumbersome, since it requires to compute the metrics for each of the simulated
datasets, but if this is really a challenge then the prediction bands can be computed in a subset, for
instance 200, of the simulated datasets.

Internal evaluation applies the metrics described above to the dataset used to build the model,
while external evaluation uses data not involved in parameter estimation. The metrics illustrated
here can be applied indifferently for internal or external evaluation. Used for internal evaluation,
they provide model diagnostics to guide model building and assessment. External evaluation is
considered to be the most stringent, allowing to evaluate the predictive ability of the model in an
independent dataset. However, V should be relatively similar to B so that the evaluation remains
meaningful. If the number of subjects is large enough, data-splitting approaches can be used to
divide the full dataset in a building and a validation subset. Cross-validation using the metrics
described above, by repeatedly splitting the data in building and evaluation datasets, can also
be used to assess the true predictive capacity of the model on a separate sample. We should of
course always keep in mind that the approaches reviewed here only allow to reject a model and
never to accept it. An alternative would be to develop tests of model adequacy, using for instance
bioequivalence principles.
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