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Inference in Mixed Hidden Markov Models and
Applications to Medical Studies

Titre: Inférence dans les modèles de Markov cachés à effets mixtes et applications médicales

Maud Delattre 1

Abstract: The aim of the present paper is to document the need for adapting the definition of hidden Markov models
(HMM) to population studies, as well as for corresponding learning methodologies. In this article, mixed hidden
Markov models (MHMM) are introduced through a brief state of the art on hidden Markov models and related
applications, especially focusing on disease related problems. Making the main assumption that a given pathology can
be considered at different stages, hidden Markov models have for example already been used to study epileptic activity
or migraine.

Mixed-effects hidden Markov models have been newly introduced in the statistical literature. The notion of mixed
hidden Markov models is particularly relevant for modeling medical symptoms, but the data complexity generally
requires specific care and the available methodology for MHMM is relatively poor. Our new approach can be briefly
described as follows. First, we suggest to estimate the population parameters with the SAEM (Stochastic Approximation
EM) algorithm, which has the property to converge quickly. The well-known forward recursions developed for HMM
allow to compute easily the complete likelihood at each step of the MCMC procedure used within SAEM. Then, for
dealing with the individuals, we suggest to estimate each set of individual parameters with the MAP (Maximum A
Posteriori) of the parameter distributions. Finally, the hidden state sequences are decoded using the Viterbi algorithm.
Some Monte-Carlo experiments are presented to illustrate the accuracy of our algorithms.

Résumé : Cet article veut montrer la nécessité d’étendre la définition des modèles de Markov cachés (HMM), ainsi
que leurs méthodes d’estimation au cadre des études de population. Nous motivons alors les intérêts des modèles de
Markov cachés à effets mixtes (MHMM) au travers d’un état de l’art succinct sur les modèles de Markov cachés et
leurs nombreuses applications. Nous nous limiterons à des problématiques médicales. Dans ce cadre, les modèles
de Markov cachés supposent que l’évolution des maladies peut s’interpréter à travers différents états. En effet, la
distinction de divers stades évolutifs dans la maladie justifie l’application de modèles de Markov cachés à certaines
pathologies, comme cela a déjà été le cas pour la migraine, ou encore l’épilepsie.

La définition des modèles de Markov cachés à effets mixtes est très récente. Ces nouveaux modèles sont des
candidats intéressants pour la modélisation de symptômes. Les données utilisées sont complexes par leur structure et
nécessitent toutefois une démarche d’analyse particulière. En outre, les méthodes d’apprentissage pour les MHMM
restent peu nombreuses. Notre démarche est la suivante. Pour commencer, nous proposons d’estimer les paramètres
de population au moyen de l’algorithme SAEM (Stochastic Approximation EM), dont la convergence est rapide. La
procédure forward développée pour les HMM permet ici un calcul simple de la vraisemblance complète à chaque étape
de la procédure MCMC de l’algorithme. Ensuite, les paramètres individuels sont obtenus par maximisation a posteriori
de leur distribution. Enfin, les séquences d’états les plus probables pour chaque individu sont estimées par l’algorithme
de Viterbi. Une étude par simulations Monte-Carlo illustre les propriétés de nos algorithmes.
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Inference in Mixed Hidden Markov Models 91

1. Hidden Markov models

1.1. Definition

Hidden Markov models first appeared in the statistical literature in the late 60’s, in a series
of articles from Baum and coworkers ([7, 6, 8]). Those new models weren’t referred to as
“hidden Markov models” yet. The expression “probabilistic functions of finite state Markov
chains” was rather used, reflecting quite well the definition of hidden Markov models. HMM
applications, especially to speech recognition, abounded in the 70’s and were at the origin of
some methodological developments for learning these new models. In 1989, Rabiner published a
tutorial ([16]) in which hidden Markov models were rigorously defined. This paper also clarified
the related methodologies and gave several application examples devoted to speech recognition
problems.

In hidden Markov models, a double process is assumed, among which only one is observed.
Consequently, two levels are separately considered in the definition of such models. First comes
the definition of the hidden process, which is a Markov process, generally assumed to have
memory one; second comes the definition of the observations’ process conditional on the hidden
one. In this section, we will consider a parametric framework and Ψ will denote the vector of all
HMM parameters.

Let {Z j} j∈N? be a stationary Markov chain with a discrete and finite state space S = {1, . . . ,S}.
In the following, let π be the stationary distribution of the chain and let A denote the S× S
transition matrix of the Markov process, and ∀s,s′ ∈ S2, let also as,s′ be the transition probability
associated with the transition from state s to state s′:

as,s′ = PΨ

(
Z j+1 = s′|Z j = s

)
;∀ j ≥ 1

where
S

∑
s′=1

as,s′ = 1;∀s ∈ S

In hidden Markov models, a second process {Yj} j∈N? enables inference on the latent process.
More precisely, the jth observation is assumed to be a probabilistic function of the jth hidden
visited state.

For discrete observations, emission probabilities are introduced to specify how the observations
are related to the state sequence. Let O be the observation space, and let bo,s be the probability
associated to observation o ∈O while current (unknown) state is s ∈ S:

bo,s = PΨ (Yj = o|Z j = s) ;∀ j ∈ N?

The emission probabilities are such that:

∑
o∈O

bo,s = 1;∀s ∈ S

For example, when the observations are count data, Poisson distributions with parameters λ1, λ2,
. . . , λS are usually chosen to model emissions in states 1, 2, . . . , S respectively. The model for
observations would thus read:

bo,s = Pλs (Yj = o|Z j = s) = exp(−λs)
λ o

s

o!
;∀s ∈ S
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92 Delattre

An additional assumption holds: conditionally to Z j, Yj is independent of Y1, ...,Yj−1,Yj+1, ...
and Z1, ...,Z j−1,Z j+1, ....

From the above definitions and assumptions, the general expression of the likelihood in HMMs
becomes:

L(y1, . . . ,yJ;Ψ) = ∑
z1,...,zJ∈SJ

π (z1)
J

∏
j=1

by j,z j

J−1

∏
j=1

az j,z j+1 (1)

where J is the length of the observed sequence.
Remark: extension to continuous observations is straightforward by defining conditional

emission densities, for example a Gaussian distribution with parameters (ms;σ2
s ) in state s ∈ S.

1.2. Learning methods

Infering hidden Markov models is challenging, mostly due to the complex expression of the
likelihood and to the non observable visited states. As a consequence, hidden Markov models
are associated with three “basic problems”. Quoting from [16], (i) computing the likelihood, (ii)
estimating the model parameters (emission probabilities, transition probabilities, and possibly the
probability distribution of the states at time 1), and (iii) decoding the most probable state sequence
for a given sequence of observations. Some algorithms are referenced and discussed in [16], giving
potential solutions to (i), (ii) & (iii). Among those presented in [16], the forward procedure, the
Baum-Welch algorithm and the Viterbi algorithm are the most relevant ones, applying respectively
to (i), (ii) & (iii). The Baum-Welch algorithm is an EM-type algorithm which is expected to
compute the maximum likelihood estimator (MLE). The question of the consistency of the MLE
has been largely investigated. This is however a complex problem, and very strong assumptions
were usually required to get the MLE consistency. Among other works, those of Leroux ([15]) and
Douc and Matias ([11]) could be cited. More recently, Douc, Moulines, Olsson and Van Handel
demonstrated the consistency of the MLE under very weak assumptions in [12]. Their result even
holds in situations where the state space is not compact.

2. From hidden Markov models to mixed hidden Markov models

Many authors suggested applying hidden Markov models to deal with some biological problems.
Hidden Markov models have become a very successful modeling tool in molecular biology, and
applications to genetics abound in the statistical literature. Hidden Markov models have also been
used in epidemiology, as an alternative to compartimental SIR (Susceptible-Infectious-Recover)
and SIS (Susceptible-Infectious-Susceptible) models, to study the propagation of epidemics or
infections in specific populations ([17, 9]). In this context, the observations consist of counts of
infected patients at successive time points. As such phenomenons are characterized by patient
to patient transmission, successive outcomes can’t be considered as independent outcomes and
assuming a Markov structure is of strong interest. Sometimes, the studied disease is asymptomatic
on some patients. Hidden Markov models could thus be an adapted way to describe the infection
latent process, through the estimation of important epidemiological parameters, or even through
the distinction of periods with different transmission rates. For example, Le Strat and Carrat were
interested in influenza-like illness (I.L.I.) and poliomyelitis in 1999 ([17]). In [17], I.L.I. incidence
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Inference in Mixed Hidden Markov Models 93

rates were modeled as a two-state Gaussian hidden Markov model, leading to a clear distinction
between epidemic and non epidemic periods. The number of monthly Poliomyelitis cases were
analyzed in the same manner, with a two-state Poisson hidden Markov model. In a same way,
Cooper and Lipsitch were interested in nosocomial infections ([9]) and proved that models with a
latent Markov process granted the best fit of their data. Then, some authors showed that hidden
Markov models could be particularly relevant for the study of chronic illnesses, such as migraine
([5]), multiple sclerosis ([2, 4]) or epilepsy ([1]). Here, the transitions between some unobserved
states, whom total number is possibly predefined, are supposed to describe the evolution of disease
symptoms, like the daily numbers of seizure counts in the context of epilepsy ([1]), the monthly
numbers of lesion counts in the context of multiple sclerosis ([2, 4]), or headache scores when
dealing with migraine ([5]).

To study diseases, the interests of hidden Markov models are numerous. First, those particular
models are quite easily interpretable, and appear to show up similarities with the biological
process that governs the pathologies. The Markov states are thus associated with distinct stages or
seriousness degrees for the studied illness, and the assumption is that patients alternate periods
in those stages. As an example, patients with multiple sclerosis seem to undergo relapsing and
remitting periods ([2, 4]). In the same way, Albert ([1]) assumes the epileptic patients to go
through two distinct stages, namely a low and a high seizure susceptibility. In related clinical trials,
markers are used to support disease diagnosis, and explaining their value by indirectly observed
illness stages seems to have a biological meaning; at least this approach is widely used. Seeing this,
the use of latent states, typically through mixture models, to study disease dynamics on specific
patients is natural. It is also quite reasonable to assume that consecutive values of a biomarker for a
given patient are interdependent. For example, past events or repeated past passages to acute forms
of the disease could reinforce susceptibility to the illness. It is thus justified to enrich the mixture
with a first-order memory, leading to hidden Markov models. Having a well-founded biological
interpretation, we could also imagine hidden Markov models could improve the understanding of
the process underlying some more obscure pathologies.

Therefore, hidden Markov models have conceptual validity in some disease studies. The
estimated model parameters help thus to interpret the disease process at several levels. First,
through the emission distributions, they give some idea of the way the biomarker values are
related to the hidden states. Second, the estimated transition probabilities help to see how state
changes are frequent in the studied population. Interpretation could even be carried on by including
covariates and regression variables in the parametrization of the model.

However, modeling disease using hidden Markov models is not straightforward. In particular,
while hidden, the “design” of the underlying Markov process could be challenging. When enough
knowledge on the disease of interest exists, the number of hidden states can be a priori fixed; but
most often, the number of hidden illness stages is unknown. Several numbers of states have to be
tried and adapted selection criteria are required. As an example, hidden Markov models from two
to six states are tried to model I.L.I. data in [17], and the BIC criteria is chosen to discriminate the
most adapted model from the others, leading to a five-state Gaussian hidden Markov model. Le
Strat stresses the lack of interpretability of such a result.

More specific difficulties occur when modeling the outcomes of clinical studies, mainly due to
their structure. Indeed, several patients are included, and are subject to repeated measurements.

As hidden Markov models are a possible way to analyze one particular sequence of data, the
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94 Delattre

first approach consisted in considering as many hidden Markov models as included patients. Each
individual set of parameters was therefore estimated independently of the others. Albert followed
this approach to epileptics’seizure count data ([1]) and to multiple sclerosis data ([2]). However,
by continuing Albert’s work on multiple sclerosis, Altman ([4]) underlined estimation inaccuracy,
and noted the obtained estimates were always associated with large standard errors.

Clearly, the individual fit approach to longitudinal data has the major drawback of incorrectly
capturing the heterogeneity among patients. Indeed, the complete set of individual estimates only
gives a limited summary of the variation or heterogeneity of the individual parameters. The need
for “. . . a model [that would] describe all patient’s data simultaneously” was therefore argued
for the first time in Altman’s article ([3]). On the same idea as mixed models, the heterogeneity
characterizing the data would be finely taken into account by including i.i.d. random effects in
each patient’s hidden Markov model parameters definition. It would also be a way to foresee
possible correlations between parameters. This way, Altman supposed defining a hidden Markov
model with random parameters would help to increase the precision of the estimates, and would
best capture the potential variation among patients. Those remarks, dating back to 2005, are at the
origin of mixed hidden Markov models.

3. Mixed hidden Markov models

3.1. Definition

A rigorous definition of mixed hidden Markov models by Altman followed in 2007 in [3]. Parallel
to this work, Ip and coworkers also published an article on mixed hidden Markov models in 2007
([13]). In both papers, mixed hidden Markov models appear as an extension of “classical” hidden
Markov models to deal with the specific contexts using a population approach.

Mixed hidden Markov models include several levels of definition. Assume we have at our
disposal data from n subjects. A hidden Markov model is used for each individual set of data, while
the parameters for each individual model are assumed to be random with a common probability
distribution. As for the definition of HMM, we will consider a parametric framework. Using the
same notations, O is the common observation space, and S is the common state space.

3.1.1. Definition of n “distinct” hidden Markov models

The first step of a MHMM’s definition consists in specifying a hidden Markov model for the
observations of each of the n subjects. More precisely, the distribution of the observations for
each individual is based on a Markov chain, which sequence of visited states is unknown. Let
us restrict to subject i (1 ≤ i ≤ n). Let ni be the number of observations for this subject, and
let Yi = (yi1 . . .yi,ni)

T and Zi = (zi1 . . .zi,ni)
T be respectively the sequence of observations for

individual i and his sequence of hidden states. As MHMM definition mainly goes through the
specification of individual hidden Markov models, as many sets of parameters as subjects are
required instead of only one set of parameters Ψ for HMM. Let Ψi denote the vector of parameters
for subject i. Typically, Ψi is part of the definition of

1. the emission distributions, via a series of emission probabilities for discrete observations:

b(i)o,s = PΨi (yi j = o|zi j = s) ;∀1≤ j ≤ ni;∀o ∈O,∀s ∈ S
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2. the transition matrix

a(i)s,s′ = PΨi

(
zi, j+1 = s′|zi j = s

)
;∀ j ≥ 1,∀(s,s′) ∈ S2

3.1.2. Model for the individual parameters

The n vector of individual parameters Ψi have a same probability distribution. The parameters θ

of this population distribution are the so-called population parameters. We will consider a linear
Gaussian model for the (transformed) individual parameters that can include covariates:{

h(Ψi) = µ +Ciβ +Diηi

ηi v
i.i.d.

N (0,Ω)

where h is a vector of link functions, Ci and Di are known matrices of covariates for individual i, µ

and β are unknown vectors of fixed effects, and Ω captures the variability of individual behaviors
that the covariates can’t explain themselves. Here, θ = (µ,β ,Ω).

With such a hierarchical definition, a single statistical model describes the whole individuals’
data simultaneously while taking into account the potential heterogeneity among patients.

The observed likelihood is given by

L(Y1,Y2, . . . ,Yn;θ) =
n

∏
i=1

∫
L(Yi,Ψi;θ)dΨi (2)

=
n

∏
i=1

∫
L(Yi|Ψi)L(Ψi;θ)dΨi

where L(Yi|Ψi) has a similar expression as the observed likelihood of a “classical” HMM given
in (1). This observed likelihood cannot be computed in a closed form and this complex expression
makes the model inference directly intractable.

3.2. Inference in MHMM

Inference in mixed hidden Markov models is not straightforward, and only some partial methods
have already been suggested. Here, we will finally put forward a different way to grasp MHMM’s
learning.

3.2.1. First steps

Mixed hidden Markov models are somehow “new” models. As a consequence, their usage is
documented in a very limited way and the related methodologies are not well established. The
maximum likelihood approach could be used for estimating the population parameters but the
complex expression for the likelihood makes its maximum difficult to locate. Mixed hidden
Markov models can be viewed as missing data models where the visited states and the individual
parameters are the non observed data. As a consequence, the EM algorithm seems to be a natural
parameter estimation method for such models ([13]) but the E-step cannot be performed in a
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96 Delattre

closed-form. Altman suggested alternative methods, such as quasi-Newton methods or Gaussian
quadrature methods, or even the MCEM algorithm ([3]). Nevertheless, these algorithms are time
expansive. Several days may be required to estimate the model parameters when the number of
random effects in the model exceeds three. This forces her to restrict her attention to models
involving random effects on the emission distribution only. Considering the problem of predicting
mastisis prevalence in cows, Detilleux suggested to estimate the model parameters of a mixed
hidden Markov model using a Gibbs sampler ([10]).

3.2.2. Our methodology

Performing parameter inference in mixed hidden Markov models has been underlined to be
a complex problem. Knowledge of the population parameters is necessary to grasp the mean
tendency, as well as its variability among individuals; but it is not enough when focusing on
a particular individual. Using the population parameters alone could bias individual diagnosis.
That’s why it is important to divide the mixed hidden Markov models’ problem into three main
questions:

1. First naturally comes the question of estimating the population parameters.

2. Then the individual sets of parameters have to be estimated.

3. Estimating the most probable individual state sequences is the final issue to address.

In this paragraph, statistical methods dealing with the three points above are suggested. The use
of the SAEM algorithm for estimating the population parameters is the most original part of our
methodology, and is thus more detailed.

Population parameters’ estimation In models such as mixed hidden Markov models, the
E-step of the EM algorithm is not directly tractable. Then, we propose to adapt the MCMC-SAEM
algorithm ([14]) to the mixed hidden Markov model setting. Each iteration of the algorithm
can be decomposed into three steps. The non observed data are simulated (simulation step).
These simulated data are used in a second step together with the observations to approximate
the complete likelihood (stochastic approximation step). This likelihood is then be maximized to
update the estimation of the parameters (maximization step).

In the context of mixed hidden Markov models, the first idea would be to consider the in-
dividual parameters (Ψi) and the Markov chains (Zi) as the non observed data. Indeed, the
conditional distribution of (Ψi,Zi) can easily be simulated by MCMC and the complete likelihood
L(Y1, . . . ,Yn,Z1, . . . ,Zn,Ψ1, . . . ,Ψn;θ) can easily be maximized.

Even if this first version of the algorithm can be implemented and gives good results, consider-
ing the Markov chain as a nuisance parameter of the model allows to propose a much more simple
and efficient procedure. Note that a quick computation of the n individual likelihoods L(Yi,Ψi;θ)
is the key of the algorithm. Indeed, the following decomposition allows many simplifications
extremely useful for implementing the SAEM algorithm:

L(Yi,Ψi;θ) = L(Yi|Ψi)L(Ψi;θ) (3)

Computing L(Yi|Ψi) turns out to be easy by making use of the forward recursions that are part
of the well-known Baum-Welch algorithm which allows computing the observed likelihood in
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Inference in Mixed Hidden Markov Models 97

hidden Markov models. Then, L(Ψi;θ) derive from the Gaussian distribution and is easy to
compute and to maximize.

Let us describe iteration k of the algorithm. Here, θk denotes the current estimate of the
population parameters.

1. Simulation
The kth iteration begins with drawing Ψ

(k)
i from the conditional distribution p(Ψi|Yi;θk)

for all 1≤ i≤ n. The Hasting-Metropolis algorithm used for this simulation step requires
to compute L(Yi|Ψi;θk) in a closed form for evaluating each acceptance probabilities. As
mentioned above, computing this conditional likelihood is straightforward thanks to the
forward procedure.

2. Stochastic approximation
Follows a stochastic approximation of the log likelihood:

Qk (θ) = Qk−1 (θ)+ γk

[
n

∑
i=1

logL
(

Yi,Ψ
(k)
i ;θ

)
−Qk−1 (θ)

]

where (γk)k≥0 is decreasing to 0 over iterations.
Qk (θ) can be written as the sum of two terms among which only one depends on parameter
θ :

Qk (θ) = Rk +Tk (θ)

where

Rk = Rk−1 + γk

[
n

∑
i=1

logL
(

Yi|Ψ(k)
i

)
−Rk−1

]

and

Tk (θ) = Tk−1 (θ)+ γk

[
n

∑
i=1

logL
(

Ψ
(k)
i ;θ

)
−Tk−1 (θ)

]

Then, it is equivalent to maximize Qk (θ) or Tk (θ) with respect to θ and our stochastic
approximation step would just reduce in computing Tk (θ).

3. Maximization
kth iteration ends in maximizing Tk to update the estimation of θ :

θk = argmax
θ

Tk (θ)

Iterations of this procedure are repeated until numerical convergence of the sequence (θk) to some
estimate θ̂ is achieved.

Computing the standard errors (s.e.) of the estimated parameter θ̂ requires computing the Fisher
Information Matrix (F.I.M.). We propose to estimate the F.I.M. using the stochastic approximation
procedure described in [14] and based on the Louis formula.
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Individual parameters’ estimation After estimating the population parameters with the SAEM
algorithm, each individual parameter estimate Ψi can be calculated through the MAP (Maximum
A Posteriori) method:

Ψ̂i = argmax
Ψi

p
(
Ψi|Yi; θ̂

)
Such maximization for each individual requires some optimization procedure.

Remark: An alternative would be to estimate the conditional mean E
(
Ψi|Yi; θ̂

)
with the

MCMC procedure used within the SAEM algorithm.

Most likely state sequences’ decoding Once the individual parameters (Ψi) are estimated,
each individual model can be considered separately and the optimal individual state sequences
can be decoded using the Viterbi algorithm:

Ẑi = argmax
Zi

p
(
Zi|Yi,Ψ̂i

)
4. Application

4.1. The model

Our simulations were inspired by the quite numerous studies on epileptic activity. Similarly
to the works cited above, we assumed the existence of a hidden Markov chain, which would
condition the intensity of the seizures in epileptic patients. The common intuition is the following.
The first and the second states would respectively be associated with a low and a high epileptic
activity. Periods in both states would thus alternate in epileptic patients. As in [1], the emission
distributions are chosen to be Poisson distributions. This means that conditional to the state the
number of daily seizures for a given epileptic patient is assumed to follow a Poisson distribution.
Let λ

(i)
1 and λ

(i)
2 be individual i’s Poisson parameters in state 1 and in state 2, with λ

(i)
1 < λ

(i)
2 .

Let also p(i)11 and p(i)21 be individual i’s transition probabilities associated respectively with the
transitions from state 1 to state 1 and from state 2 to state 1.

Our model is the following:

logit(p(i)11) = γ1 +η1i (4)

logit(p(i)21) = γ2 +η2i (5)

log(λ (i)
1 ) = log(λ1)+η3i (6)

log(α(i)) = log(α)+η4i (7)

λ
(i)
2 = λ

(i)
1 +α

(i) (8)

The random effects are assumed to be independent and normally distributed:

ηi = (η1i,η2i,η3i,η4i) v
i.i.d.

N (0,Ω)

θ corresponds here to the concatenation of the fixed effects (γ1, γ2, λ1, α) and the elements of the
variance-covariance matrix Ω.
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Inference in Mixed Hidden Markov Models 99

4.2. A first numerical experiment

One dataset with 200 individuals and 100 observations per subject were simulated using the
following values for the fixed effects: γ1 = 1.4, γ2 =−1.4, λ1 = 0.8, α = 2.3. The random effects
were simulated assuming a diagonal variance-covariance matrix Ω with the following diagonal
elements: ω2

γ1
= 0.1, ω2

γ2
= 0.1, ω2

λ1
= 0.2 and ω2

α = 0.1.
Table 1 displays the results of the SAEM algorithm used for estimating the population parame-

ters and their standard errors. The true values of the population parameters θ ?, the initial values
θ0 and the estimates θ̂ are given together with their estimated standard errors (s.e.) and relative
standard errors (r.s.e.).

Table 1 shows the SAEM estimates are similar to the true values. On this particular example,
the relative estimation error is less than 15% on the whole, except for parameter ω2

γ2
(36%). We

also note that the (relative) standard errors for each parameter are low, which is very encouraging,
except for variance parameters ω2

γ1
and ω2

γ2
(48% and 41% respectively).

TABLE 1. Estimation of the population parameters: the true values, the initial values, the estimations, their standard
errors and relative standard errors.

θ? θ0 θ̂ s.e. r.s.e. (%)
γ1 1.4 0.4 1.41 0.058 4
γ2 -1.4 -0.4 -1.45 0.06 4
λ1 0.8 2 0.779 0.03 4
α 2.3 0.5 2.25 0.062 3
ω2

γ1
0.1 0.4 0.113 0.055 48

ω2
γ2

0.1 0.4 0.136 0.056 41
ω2

λ1
0.2 0.4 0.202 0.029 14

ω2
α 0.1 0.4 0.115 0.015 13

Figure 1 shows the sequences of estimated parameters (θk). One clearly sees that SAEM
converges in very few iterations to a neighborhood of the “true” value used for simulating the
data, even with a poor initialization. Moreover, it took only 6′ on a laptop for estimating both the
population parameters and the Fisher information matrix with this dataset.

Then we have estimated the individual parameters (Ψi;1≤ i≤ 200) by computing the MAP
estimates for each subject.

Finally, each individual state sequence was estimated with the Viterbi algorithm. As dealing
with simulated datasets, the ”true” state sequences are known. Even if this information is omitted
during the whole inference process, true and estimated states can be compared. Figure 2 presents
the results obtained with three typical subjects. On each graph, the (simulated) observations (daily
seizures) are represented as a function of time (number of days). The true unknown states are
displayed in the left column. The second column depicts the raw data, i.e. the only information
available in the practice for inference. The right column displays the estimated states. We can
observe a very good agreement between the true and the decoded states.
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FIGURE 1. Estimation of the population parameters: convergence of the SAEM algorithm.

4.3. Monte Carlo study

This first result is encouraging but it was obtained on a particular dataset. Then a Monte Carlo
study should confirm the good behavior of the proposed methodology. 100 datasets were simulated
using the same design and the same population distribution. Then, the population parameters and
their standard errors were estimated with SAEM for each dataset. For m = 1,2, . . . ,100, let θ̂m

be the estimated vector of population parameters obtained with the mth simulated dataset and let
r̂sem be their respective estimated standard-errors. For each model parameter, we have computed
the mean estimated parameter θ , the mean estimated relative standard error rse and the relative
standard deviation of the estimated parameters rsd( ˆθθ):

θ =
1

100

100

∑
m=1

θ̂m (9)

rse =
1

100

100

∑
m=1

r̂sem (10)

rsd(θ̂) = 100×

√√√√ 1
100

100

∑
m=1

(
θ̂m−θ ?

|θ ?|

)2

(11)
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FIGURE 2. State sequences of three typical subjects. Left: the observed data and the true unknown states, center: the
observed data without the states, right: the estimated states.

Here, θ ? denotes the true values of the population parameters. Table 2 gives a brief summary of
the Monte Carlo results.

Figures 3 and 4 display the empirical distributions of the 100 relative estimation errors defined
as:

REEm = 100× θ̂m−θ ?

θ ?
(12)

Except for ω2
γ1

and ω2
γ2

, one can observe that the estimates show very little bias and small
ranges (table 2). The median REE for the fixed effects γ1, γ2, λ1 and α remains between −5% and
5% (figures 3). The estimated variances ωλ1 and ωα are also very well estimated. The variances
ωγ1 and ωγ2 are more difficult to estimate accurately. Indeed, the REE boxplots suggest quite
important relative RMSE (root mean square errors) for those two parameters (44% and 51%) but
this apparent estimation difficulty is in accordance with the estimated relative standard errors for
those two parameters (54% and 58%).

More generally, one can remark the very good agreement between the estimated standard errors
and the empirical standard deviations. The empirical standard deviations obtained from simulated
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TABLE 2. Estimation of the population parameters: the true values, the means and the relative standard deviations of
the estimated parameters, the mean estimated relative standard errors.

θ? θ rsd(θ̂) (%) rse (%)
γ1 1.4 1.394 4 4
γ2 -1.4 -1.414 4 4
λ1 0.8 0.778 3 4
α 2.3 2.292 3 3
ω2

γ1
0.1 0.112 44 54

ω2
γ2

0.1 0.121 51 58
ω2

λ1
0.2 0.200 14 14

ω2
α 0.1 0.098 14 13

data allow to evaluate the uncertainty of the estimated parameters. Of course, these empirical
standard deviations cannot be computed in the practice when only one dataset is available and
when the true population parameters are unknown. Nevertheless, one can have confidence with the
estimated s.e. provided by the algorithm for evaluating the uncertainty of the estimated parameters.

These numerical results suggest that our algorithm produces unbiased and consistent population
parameter estimates and standard errors in large databases. A theoretical study of the statistical
property of the maximum likelihood population estimates is beyond the scope of this paper, but
we will consider this issue in future works. On the other hand, more exhaustive studies should be
led considering more difficult and more realistic contexts than the one here.

4.4. Technical remarks

The proposed methodology for MHMM has been implemented in the MONOLIX software
(http://software.monolix.org). All the numerical examples were performed with MONOLIX 3.1.

In Monolix, it is possible to choose the number of Markov chains used for the SAEM algorithm.
Here, two Markov chains were used instead of only one chain. That allowed to slightly improve
the convergence of the algorithm by reducing its stochastic behavior.

Each initial guess for the SAEM algorithm was randomly chosen for each Monte Carlo run.
The initial probability distribution of the hidden Markov chain was not estimated. It was

assumed that π
(i)
1 = π

(i)
2 = 1

2 .

5. Conclusion and perspectives

A brief state of the art on HMM applications to disease progression data shows that hidden Markov
models are a reasonable modeling tool in this context. However, longitudinal data need models
able to take account of the existing heterogeneity between individuals. This remark recently lead
to the use of mixed hidden Markov models. However, related algorithms initially first tackled the
population parameter estimation only including a small number of random effects. We suggested
a new and complete inference methodology. The originality of our work consists in the use of the
SAEM algorithm for estimating the model population parameters. A Monte Carlo study showed
its good practical properties. More precisely, the SAEM algorithm converges to a neighborhood
of the good parameter values in very few iterations even when the initial guess is poor. The
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FIGURE 3. Estimation of the fixed effects: empirical distribution of the relative errors of estimations.

estimation process is fast, even with large datasets. The impact of the data size and the theoretical
properties of the algorithm keep to be rigorously studied in future works. The main problems to
tackle would be a precise analysis of the convergence of the algorithm as well as the statistical
properties of the maximum likelihood estimate in MHMM.

From a practical point of view those new models seem to offer very promising statistical
applications. More precisely, mixed-effects hidden Markov models could help for a more finely
analysis of clinical trials, when the collected data often consist of longitudinal count data and
when one suspects several hidden states. Having a measure of interest, the most popular approach
consists of mean comparisons, between groups of patients or treatment periods. However, the
classical comparison methods could sometimes lead to improper conclusions. Assume a finite set
of hidden stages give a plausible interpretation for the dynamics of the studied pathology, then an
inappropriate choice for the statistical model (i.e. a model ignoring the transitions between distinct
stages) would not catch enough information on the phenomenon observed. We could imagine a
treatment effect occurs at transition level and a variation of the time spent in one specific hidden
state once entering this state could constitute the only difference between treatment groups or
between treatment periods, without modifying the observations’ distribution in any state. Then, a
simple comparison between means of observed outcomes would either fail in bringing to light a
significant treatment effect or show an overestimated or underestimated treatment induced change.
Mixed hidden Markov models including the treatment group or the treatment dose as covariates in
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FIGURE 4. Estimation of the variance parameters: empirical distribution of the relative errors of estimations.

the definition of both the transition model and the observation model, would thus help to capture
the true treatment effect and adequately locating it.
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