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Abstract: Calculating return periods and critical layers (i.e. multivariate quantile curves) in a multivariate environment
is a difficult problem. A possible consistent theoretical framework for the calculation of the return period, in a multi-
dimensional environment, is essentially based on the notion of copula and level sets of the multivariate probability
distribution. In this paper we propose a fast and parametric methodology to estimate the multivariate critical layers of a
distribution and its associated return periods. The model is based on transformations of the marginal distributions and
transformations of the dependence structure within the class of Archimedean copulas. The model has a tunable number
of parameters, and we show that it is possible to get a competitive estimation without any global optimum research. We
also get parametric expressions for the critical layers and return periods. The methodology is illustrated on rainfall
5-dimensional real data. On this real data-set we obtain a good quality of estimation and we compare the obtained
results with some classical parametric competitors. Finally we provide a simulation study.

Résumé : Dans un environnement multivarié, le calcul de zones critiques et de périodes de retour associées est un
problème difficile. Un cadre théorique possible pour le calcul de ces périodes de retour est essentiellement basé sur la
notion de Copule et sur les ensembles de niveau d’une distribution de probabilité multivariée. Dans ce travail, nous
proposons une méthodologie rapide et paramétrique pour estimer les zones critiques de distributions multivariées et
leurs périodes de retour associées. Le modèle est basé sur des transformations des distributions marginales et sur des
transformations de la structure de dépendance au sein de la classe des copules Archimédiennes. La méthodologie
est illustrée sur des données réelles de précipitation. Sur ce jeu de données, nous développons également un modèle
imbriqué transformé.

Mots-clés : Multivariate probability transformations, level sets, estimation copulas, hyperbolic conversion functions,
risk assessment, multivariate return periods.
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1. Introduction

1.1. Return Periods

The notion of Return Period (RP) is frequently used in environmental sciences for the identifica-
tion of dangerous events, and provides a means for rational decision making and risk assessment.
Roughly speaking, the RP can be considered as an analogue of the “Value-at-Risk” in Economics
and Finance, since it is used to quantify and assess the risk (see, e.g., Nappo and Spizzichino,
2009). In engineering practice, finance, insurance and environmental science the choice of the RP
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12 E. Di Bernardino and D. Rullière

depends on the impact/magnitude of the considered event and the consequences of its realisation.

Equally important is the related concept of design quantile, usually defined as “the value of
the variable characterizing the event associated with a given RP”. In the univariate case the
design quantile is usually identified without ambiguity. Conversely in the multivariate setting
different definitions are possible (see Serfling, 2002). For this reason, the identification problem
of design events in a multivariate context has recently attracted the attention of many researches.
The interested reader is referred for example to Embrechts and Puccetti (2006), Belzunce et al.
(2007), Nappo and Spizzichino (2009), in the economics and finance context; to Chebana and
Ouarda (2009), Chebana and Ouarda (2011) (and references therein) in the hydrological context.

During the last years, researchers in environmental fields joined efforts to properly answer the
following crucial question: “How is it possible to calculate the critical design event(s) in the
multivariate case?” (see for instance Salvadori et al., 2007). In this sense, a possible consistent
theoretical framework for the calculation of the design event(s) and the associated return period(s)
in a multi-dimensional environment, is proposed, e.g., by Salvadori et al. (2011), Salvadori et al.
(2012), Gräler et al. (2013). In particular the authors define the multivariate return period using the
notion of upper and lower level sets of multivariate probability distribution F and of the associated
Kendall’s measure.

In the following, we will consider a sequence X = {X1,X2, . . .} of independent and iden-
tically distributed d−dimensional random vectors, with d > 1. Thus each Xk, k ∈ N, has
the same multivariate distribution FX : Rd

+→ [0,1] as the nonnegative real-valued random
vector X ∼ FX = C(FX1 , . . . ,FXd ) describing the hydrological phenomenon under investigation.
The function C is the d-dimensional copula associated to F (see Nelsen, 1999). We write
I = {1, . . . ,d} the set of indexes of the considered random variables and of their associated
cumulative distribution functions, i.e., FXi(xi) = P(Xi ≤ xi), for i ∈ I.

In the following we will consider multivariate distribution functions FX satisfying these regularity
conditions

- for all u ∈ [0,1], the diagonal of the copula C, i.e. C(u, . . . ,u), is a strictly increasing function
of u;

- for any i ∈ I, the marginal FXi is continuous and strictly monotonic distribution function.

In this setting, we introduce the notion of critical layer (see, e.g., Salvadori et al., 2011, Salvadori
et al., 2012, Gräler et al., 2013).

Definition 1.1 (Critical layer). The critical layer ∂L(α) associated to the multivariate distribution
function FX of level α ∈ (0,1) is defined as

∂L(α) = {x ∈ Rd : FX(x) = α}.

Then ∂L(α) is the iso-hyper-surface (with dimension d−1) where F equals the constant value α .
Thus, ∂L(α) is a (iso)line for bivariate distributions, a (iso)surface for trivariate ones, and so on.
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Estimation of multivariate critical layers: Applications to rainfall data 13

The critical layer ∂L(α) partitions Rd into three non-overlapping and exhaustive regions:
L<(α) = {x ∈ Rd : FX(x)< α},
∂L(α) = the critical layer itself,
L>(α) = {x ∈ Rd : FX(x)> α}.

Practically, at any occurrence of the hydrological considered phenomenon, only three mutually
exclusive events may happen: either a realization of the considered hydrological event lies in one
of these 3 Borel sets L<(α), ∂L(α), or L>(α).

In the applications, usually, the event of interest is of the type {X ∈A }, where A is a non-empty
Borel set in Rd collecting all the values judged to be “dangerous” according to some suitable
criterion. A natural choice for A is the set L>(α) (see Salvadori et al., 2011, Gräler et al.,
2013). The first random index N where Xk reaches the set L>(α) is N = mink∈N {Xk ∈ L>(α)}.
Assuming P [X ∈ L>(α)] ∈ (0,1), one easily shows that N is a geometric random variable. The
Return Period is defined as the average time required for reaching the set L>(α), that is:

RP>(α) = ∆t ·E [N] =
∆t

P [X ∈ L>(α)]
, (1)

where ∆t > 0 is the (deterministic) average time elapsing between Xk and Xk+1, k ∈ N. The
probability that a realization of this vector belongs to L<(α) is given by the Kendall’s function,
which only depends on the copula C of this random vector, i.e.,

KC(α) = P
[
X ∈ L<(α)

]
= P [C(U1, . . . ,Ud)≤ α] , for α ∈ (0,1). (2)

Then, the considered Return Period can be expressed using Kendall’s function in (2), RP>(α) =
∆t · 1

1−KC(α) . Obviously, Return Periods can naturally be associated to other sets than L>(α), the
interested reader is referred for example to Salvadori et al. (2011).

This paper aims at:
– giving a parametric representation of the multivariate distribution F of a random vector X, here

representing rain measurements (for applications see Section 6),
– giving direct estimation procedure for this representation,
– giving closed parametric expressions, both for critical layers in Definition 1.1 and Return

Periods in (1),
– adapting this methodology to some asymmetric dependencies (as, for instance, non-exchangeable

random vectors; for a possible investigation in this sense see Section 7).
In the next section, we introduce the model used to answer the issues introduced above.

1.2. The model

We consider the following model, which is detailed in Di Bernardino and Rullière (2013a),

F̃(x1, . . . ,xd) = T ◦C0(T−1
1 ◦F1(x1), . . . ,T−1

d ◦Fd(xd)), (3)
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14 E. Di Bernardino and D. Rullière

or equivalently 
F̃(x1, . . . ,xd) = C̃(F̃1(x1), . . . , F̃d(xd)), with
C̃(u1, . . . ,ud) = T ◦C0(T−1(u1), . . . ,T−1(u1))

F̃i(x) = T ◦T−1
i ◦Fi(x), for i ∈ I,

(4)

where F1, . . . ,Fd are given parametric initial marginal cumulative distribution functions, and
where C0 is a given initial copula. Hence the distribution F̃(x1, . . . ,xd) is built from transformed
marginals F̃i, i ∈ I and from a transformed copula C̃, under regularity conditions. Transformation
T permits to transform the initial dependence structure C0. For a given T , transformations Ti

permit to transform marginals, i ∈ I. All these transformations are described hereafter.

As we will see in the following, the initial copula C0 in (3) is not estimated but it is chosen at
the beginning of the estimation procedure. So it can represent some kind of a priori belief on
dependence structure of the data or on the considered problem, that will be transformed in order
to improve the fit.

Furthermore, as in Di Bernardino and Rullière (2013b), we will assume in the following that C0 is
an Archimedean copula. This means that in this paper, we mainly consider copulas that can be
written as

Cφ (u1, . . . ,ud) = φ(φ−1(u1)+ . . .+φ
−1(ud)),

where the function φ is called the generator of the Archimedean copula Cφ . Some conditions like
d−monotony are given in McNeil and Nešlehová (2009). Here we choose strict generator, i.e.,
φ(t)> 0, ∀ t ≥ 0 and lim

t→+∞
φ(t) = 0, with proper inverse φ−1 such that φ ◦φ−1(t) = t.

The function T : [0,1]→ [0,1] is a continuous and increasing function on the interval [0,1], with
T (0) = 0, T (1) = 1, with supplementary assumptions that will be chosen to guarantee that C̃
is also a copula (detailed hereafter). Internal transformations Ti : [0,1]→ [0,1] are continuous
non-decreasing functions, such that Ti(0) = 0, Ti(1) = 1, for i ∈ I. Conditions on transformations
such that C̃ is a copula are discussed for example in Durante et al. (2010), Di Bernardino and
Rullière (2013a), Di Bernardino and Rullière (2013b).

Remark that among problems generated by transformations of Archimedean copulas, one can
point out in particular the problem of uniqueness. Transformations of a given initial copula
leading to a given target copula are not unique. This raises some problems for the analysis
of the convergence of estimators of the transformation. This also causes problems to compare
transformations and to understand their impact on the dependence structure. A further analysis
shows that also a generator of an Archimedean copula is not unique, causing the same kind of
problems. Then in Di Bernardino and Rullière (2013b), the definition of equivalence classes for
both transformations and generators is provided to select some standardized forms for practical
use, for the comparison and the interpretation of obtained distribution functions. Firstly equivalent
classes for transformations can be characterized. Furthermore one can ensures the uniqueness of
the transformation T by passing through the point (x0,y0), among the invariant class for trans-
formations (see Lemma 2.2 and Corollary 2.1 of the aforementioned paper). Obviously, in an
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Estimation of multivariate critical layers: Applications to rainfall data 15

iterative procedure of estimation, the uniqueness of the transformation T is essential in order to
permit the convergence of the procedure and the identifiability of the considered transformation
model.

In the following we detail the proposed semi-parametric estimation procedure in order to easily fit
the model in (3). We show in particular how to estimate the transformations T and Ti, i ∈ I.

Organization of the paper
The paper is organized as follows. In Section 2 we developed the estimation procedure for the
chosen model in (3). In Section 2.1 we focus on a central tool in our estimation procedure: the
estimation of the diagonal section of a copula. This estimated diagonal section is used in the
non-parametric estimation of the external transformation T and the internal transformations Ti (see
Section 2.2). The parametric estimation using composite hyperbolic transformations is detailed
in Section 3. Then in Section 4 we propose the parametric form for the desired quantities: the
multivariate distribution function F , its critical layers ∂L(α) and the associated Kendall’s function
KC(α), for α ∈ (0,1). Finally, Section 6 is devoted to a detailed study of a 5−dimensional rainfall
data-set. Furthermore, a nested model is proposed for this 5−dimensional data-set, using the
whole estimation procedure presented in the paper (see Section 7). Finally we provide a simulation
study in Section 8. Directions for future research and the conclusion are in Section 9.

2. Nonparametric estimation

2.1. Initial diagonal section estimation

In order to give a non-parametric estimation of the external transformation T , we will propose a
non-parametric estimator of the copula within the Archimedean class of copulas. Several non-
parametric estimators of the generator of an Archimedean copula are available. One can cite for
example those of Dimitrova et al. (2008) or Genest et al. (2011) both based on empirical Kendall’s
function. Here, proposed estimations will rely on an initial estimation of the diagonal section of
the empirical copula. Firstly, we propose some (classical) estimators of the diagonal section δ1 of
a copula,

δ1(u) =C(u, . . . ,u) , u ∈ [0,1].

Remark that if (U1,U2, . . . ,Ud) has as distribution function the copula C then

P[U1 ≤ u, . . . ,Ud ≤ u] =C(u, . . . ,u) = P[max{U1,U2, . . . ,Ud} ≤ u] = δ1(u).

As a consequence, estimators based on the diagonal section of a copula are relying on the
distribution of the maximum of U1, . . . ,Ud , as explained in Sungur and Yang (1996). As pointed
out in Di Bernardino and Rullière (2013b), the diagonal of an Archimedean copula, under some
suitable conditions, is essential to describe the copula. So, in the following we recall important
assumptions (which are fulfilled for many Archimedean copulas, including the independent
copula) for the unique determination of an Archimedean copulas starting from its diagonal section
(see, for instance, Erdely et al., 2014 and references therein). Some constructions of copulas
starting from the diagonal section are given for example in Nelsen et al. (2008) and Wysocki
(2012).

Journal de la Société Française de Statistique, Vol. 156 No. 1 11-50
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



16 E. Di Bernardino and D. Rullière

Proposition 2.1 (Identity of Archimedean copulas, Theorem 3.5 by Erdely et al., 2014). Let C a
d−dimensional Archimedean copula whose diagonal section δ1 satisfies δ

′
1(1
−) = d. Then C is

uniquely determined by its diagonal.

Condition in Proposition 2.1 is referred to as Frank’s condition in Erdely et al. (2014) (see
their Theorems 1.2 and 3.5). Note that if |φ ′(0)| < +∞ then the condition on the diagonal in
Proposition 2.1 is automatically satisfied. In this case, the function φ can be reconstructed from
the diagonal δ (see also Segers, 2011). As pointed out by Embrechts and Hofert (2011) a possible
limitation is that if φ has finite right-hand derivative at zero, the Archimedean copula generated by
φ has upper tail independent structure. To show that the situation of many Archimedean copulas
having the same diagonal is far from exceptional, a recipe to construct further examples is given
in Segers (2011). For further details the interested reader is referred to Section 3 in Di Bernardino
and Rullière (2013b).
It has been shown however that if one aims at fitting both lower and upper tail dependence,
then some specific dependence structures can be suited to this purpose, see Di Bernardino and
Rullière (2014). Here we will not focus on very extreme tail behavior, but on the main part of the
distribution. Using the necessary few data in the tails would require some specific estimators of
tail dependence coefficients, as detailed in above mentioned article.

In the following we present different estimation of the diagonal section. Some empirical copula
estimators for δ1 are given in Deheuvels (1979). A comparison between several more recent
estimators is presented in Omelka et al. (2009).

Empirical diagonal
We present here an estimator that is detailed in Omelka et al. (2009), and directly inspired by the
one of Deheuvels (1979). Consider observations {X(k) = (X (k)

1 , . . . ,X (k)
d )}k∈{1,...,n} of the random

vector X. Define pseudo-observations U(k) = (U (k)
1 , . . . ,U (k)

d ) by setting every component i for
observation number k to

U (k)
i =

1
n+1

n

∑
j=1

1{
X ( j)

i ≤X (k)
i

},
with i ∈ I, k ∈ {1, . . . ,n}. One can check that for any i ∈ I, k ∈ {1, . . . ,n}, U (k)

i ∈ (0,1).
The empirical estimator Ĉ of the copula of vector X, is

Ĉ(u1, . . . ,ud) =
1
n

n

∑
k=1

1{
U (k)

1 ≤u1,...,U
(k)
d ≤ud

}.
We thus obtain for any u ∈ [0,1], the empirical estimation for the diagonal of C and its inverse,
i.e., {

δ̂
emp
1 (u) = Ĉ(u, . . . ,u) ,

δ̂
emp
−1 (u) = arginf

{
x ∈ [0,1]; δ̂

emp
1 (x)≥ u

}
.

Smooth empirical diagonal
We do not present here all possible smooth estimators of a copula and the associated smoothed
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estimates of the diagonal section. We will restrict ourselves in estimators based on transforma-
tions, in the same spirit as the other parts of this paper. These estimators perform reasonably well
(see Omelka et al., 2009), especially considering Cramér-von Mises distance.

Using a smooth estimation of the empirical cumulative distribution of U could create some
bias since the distribution support must be [0,1], this is the reason why we consider a trans-
formation of pseudo-observations. For given smoothing coefficients h1, . . . ,hd , we can define
L(k) = (L(k)

1 , . . . ,L(k)
d ) where

L(k)
i = G−1(U (k)

i ),

with i ∈ I, k ∈ {1, . . . ,n}, and where G−1 is the inverse of a cumulative distribution function,
for example G−1(x) = logit(x), and one can check that ((G)′(x))2/G(x) is bounded, which is a
required condition detailed in Omelka et al. (2009).
A smooth version of Ĉ can be defined by:

C(u1, . . . ,ud) =
1
n

n

∑
k=1

∏
i∈I

K

(
G−1(ui)−L(k)

i
hi

)
,

where K is a suited kernel function (we took here a multiplicative multivariate kernel).
We thus obtain for any u ∈ [0,1], a smooth estimator δ̂ of the diagonal section of C, and a smooth
estimator δ̂−1 of the inverse function of this diagonal section:{

δ̂1(u) = C(u, . . . ,u)

δ̂−1(u) = arginf
{

x ∈ [0,1]; δ̂1(x)≥ u
}
.

(5)

Note that initial pseudo-data can also be smoothed, by defining

U (k)
i =

1
n+1 ∑

j∈{1,...,n}
Φ

(
X (k)

i −X ( j)
i

hi

)
.

Discussions on this last choices can be found in Chen and Huang (2007) and Omelka et al. (2009).
A discussion on the possible choices for h1, . . . ,hd is given in Chiu (1996)(for d = 1), Wand and
Jones (1993), Wand and Jones (1994), Zhang et al. (2006) (for d ≥ 2) and references therein.
However, according to Omelka et al. (2009), “a good bandwidth selection rule is missing, for the
moment, and is subject of further research.”

A summary of the needed input parameter and the estimation of δ1 and δ
−1
1 is given in Algorithm 1.

2.2. Nonparametric estimation of transformations T and Ti, i ∈ I

A non parametric estimator of the external transformation T in (3) is given in Di Bernardino and
Rullière (2013b), for x ∈ (0,1), by

T̂ (x) = δ̂r(x)(y0), (6)

with r(x) such that δ 0
r(x)(x0) = x,
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18 E. Di Bernardino and D. Rullière

Algorithm 1 Smooth initial diagonal estimation

Input parameters
Choose G−1 inverse of a cdf, e.g., G−1(x) = logit(x)
Choose hi, i ∈ I bandwidth sizes, e.g., the ones proposed by the Silverman’s Rule of Thumb

Estimation
For any x ∈ [0,1], get δ̂1(x) and δ̂−1(x) by Equation (5)

where δ̂r refers to the estimator of the self-nested diagonal δr of the target copula C, and δ 0
r(x)(x0)

refers to the self-nested diagonal of the initial copula C0. These estimators δ̂r and self-nested
diagonals are defined hereafter.

In the case where the initial copula C0 is an Archimedean copula of generator φ0, then

δ
0
r(x)(x0) = φ0

(
dr(x)

φ
−1
0 (x0)

)
and r(x) =

1
lnd

ln

(
φ
−1
0 (x)

φ
−1
0 (x0)

)
.

In particular, if C0 is the independence copula, with generator φ0(x) = exp(−x), and setting for
example x0 = y0 = exp(−1), then

T̂ (x) = δ̂ln(− ln(x))/ lnd(e−1).

Let δ̂1 be an estimator of δ1, and δ̂−1 be an estimator of the inverse function δ−1 as in Equation (5).
At a relative integer order k ∈ Z, the self-nested diagonals estimators are defined as

δ̂k(u) = δ̂1 ◦ . . .◦ δ̂1(u), (k times), k ∈ N
δ̂−k(u) = δ̂−1 ◦ . . .◦ δ̂−1(u), (k times), k ∈ N
δ̂0(u) = u.

(7)

At any real order r ∈ R, an estimator δ̂r of the self-nested diagonal is

δ̂r(x) = z
((

z−1 ◦ δ̂k(x)
)1−α (

z−1 ◦ δ̂k+1(x)
)α
)
, x ∈ [0,1]

with α = r−brc and k = brc, where brc denotes the integer part of r, and where z is a function
driving the interpolation, ideally (if known) the generator of the considered copula C. Some
consistency results about this estimator T̂ are detailed in Di Bernardino and Rullière (2013b).

For invertible marginal transformations Ti, one easily shows

Ti = Fi ◦ F̃−1
i ◦T, i ∈ I. (8)

Then, by replacing the transformed marginal distribution F̃i in (8) by an estimator of the target i-th
marginal distribution, denoted by F̂i (e.g., empirical cdf), and given the external transformation or
its consistent estimation T̂ , a non-parametric estimation of Ti, for i ∈ I, is provided by

T̂i(u) = Fi ◦ F̂−1
i ◦ T̂ (u), u ∈ (0,1), (9)
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Estimation of multivariate critical layers: Applications to rainfall data 19

where Fi is the chosen i−th initial marginal.
Following Definition 2.1 summaries the expression of non parametric estimators for both T and
Ti, i ∈ I.

Definition 2.1 (Non-parametric estimators of T and Ti). For a given arbitrary couple (x0,y0) ∈
(0,1)2, a non-parametric estimator of T is given by

T̂ (x) = δ̂r(x)(y0), for all x ∈ (0,1)

with r(x) such that δ 0
r(x)(x0) = x,

where δ 0
r(x) refers to the self nested diagonal of the initial copula C0. In particular, if the initial

copula C0 is the independence copula, r(x) = 1
lnd ln

(
− lnx
− lnx0

)
. For any i ∈ I, non-parametric

estimators Ti are
T̂i(x) = Fi ◦ F̂−1

i ◦ T̂ (x).

A summary of the steps for the non-parametric estimation of T and Ti is given in Algorithm 2.

Algorithm 2 Non-parametric estimation of T̂ and T̂i

Input parameters
Choose (x0,y0) in (0,1)2, initial copula C0 and initial marginals Fi, for i ∈ I
Choose kmax pre-computation range

Eventual pre-calculations
Get δ̂1 and δ̂−1 by Algorithm 1
Calculate and store δ̂k(y0), k ∈ {−kmax, . . . ,0, . . . ,kmax} by Equation (7)

Non-Parametric estimation
Get T̂ by Equation (6), using previous precomputations
Get T̂i by Equation (9)

2.3. Subset of points of transformations

In practice, we will propose in Section 3 some parametric estimators for the transformations T and
Ti, by requiring that these transformations are passing through a finite set of points. The interested
reader is also referred to Di Bernardino and Rullière (2013a). We aim here at determining some
good set of points to be chosen.

Firstly, we define some sets of points to be chosen, starting from given sets of quantile levels. The
chosen expressions for these sets is motivated by several interesting properties (see Proposition 2.2
below).

Definition 2.2 (Set Ω). Let J ⊂ N be a finite set of indexes and Q =
{

q(T )j

}
j∈J

be a given set of

targeted percentiles, q(T )j ∈ (0,1), j ∈ J. One defines Ω(Q) =
{
(α j,β j)

}
j∈J , with{

α j = q(T )j

β j = T̂ (α j),
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20 E. Di Bernardino and D. Rullière

where T̂ is the estimator in Equation (6).

Definition 2.3 (Sets Ωi, i ∈ I). Let Ji ⊂ N be finite sets of indexes and Qi =
{

q(i)j

}
j∈Ji

be finite

given sets of targeted percentiles, q(i)j ∈ (0,1), j ∈ Ji, i ∈ I. For a given transformation τ , one

defines the sets Ωi(Qi,τ) =
{
(α i

j,β
i
j)
}

j∈Ji
where

{
α i

j = τ−1(q(i)j ),

β i
j = Fi ◦ F̂−1

i (q(i)j ),
(10)

where F̂−1
i is an estimator of the target i-th marginal distribution, denoted by F̂i.

Given Ω and Ωi, for i ∈ I, some set of points as in Definitions 2.2 and 2.3, we firstly derive some
properties of some parametric transformations TΩ and TΩi , i ∈ I that are chosen to pass through
these sets Ω and Ωi, for i ∈ I (see Proposition 2.2 below). Theses properties justify the choice of
sets Ω and Ωi in our estimation procedure.

Proposition 2.2 (Set of points for Ti). Assume that estimators T̂ and F̂i are given continuous and
invertible functions. Let Ji ⊂N be finite sets of indexes and Qi =

{
q(i)j

}
j∈Ji

be a finite given set of

targeted percentiles, q(i)j ∈ (0,1), j ∈ Ji, i ∈ I. Then for transformations T̂i defined in Equation (9),
i ∈ I

T̂i is passing through all points of Ωi(Qi, T̂ ),

where Ωi(Qi, T̂ ) is defined as in Definition 2.3. Furthermore, for any invertible transformation
TΩi passing through all points of Ωi(Qi, T̂ ), i ∈ I

F̃−1
Ωi

(q) = F̂−1
i (q) for all q ∈Qi, (11)

where F̃Ωi = T̂ ◦T−1
Ωi
◦Fi is the transformed marginal distribution which uses TΩi .

Proof: Let i ∈ I, for any q ∈ Qi, one can define (α,β ) ∈ Ωi(Qi, T̂ ) by Equation (10), with
α = T̂−1(q) and β = Fi ◦ F̂−1

i (q). We assume here that all estimators are continuous and invertible
functions, so that for example T̂ ◦ T̂−1 = Id.
Firstly, one can check that T̂i(α) = T̂i ◦ T̂−1(q) and from Equation (9), T̂i(α) = Fi ◦ F̂−1

i ◦ T̂ ◦
T̂−1(q) = Fi ◦ F̂−1

i (q) = β , so that T̂i(α) = β and the first result holds.
Secondly, assuming all estimators are invertible, one can write F̃−1

Ωi
= F−1

i ◦TΩi ◦ T̂−1, so that
F̃−1

Ωi
(q) = F−1

i ◦TΩi(α). By assumption TΩi(α) = β since TΩi is passing through all points of
Ωi(Qi, T̂ ), so that finally F̃−1

Ωi
(q) = F−1

i (β ) = F−1
i ◦Fi ◦ F̂−1

i (q) and F̃−1
Ωi

(q) = F̂−1
i (q) which

gives the second result. �

Once chosen the thresholds q(i)j , j ∈ Ji, for which we want to identify the transformed margins
with targeted margins, one thus get a finite set of passage points for Ti. Indeed, Proposition 2.2
shows that, using Ωi from Definition 2.3, one can select a further parametric estimator TΩi passing
trough points of Ωi and such that quantiles of the target F̂i are identified with quantiles of the
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FIGURE 1. Graphical illustration of procedure described in Proposition 2.2, for d = 1. Here an univariate data-set
and the set Q = {0.1,0.5,0.9} are chosen. The black line represents the empirical cdf of data, F̂, and the red one the
cdf F̃ using the procedure in Proposition 2.2. As proved before, the quantiles of F̂ are identified with quantiles of the
obtained transformed F̃ for each quantile level q ∈Q (black points and associated dotted lines).

transformed margin using TΩi (see Equation (11)), for each quantile level q ∈Qi and for any i ∈ I.
Figure 1 illustrates this identification of quantile levels.
Such a result would be difficult to establish for the external transformation T . A weaker form is
given by following Proposition 2.3.

Proposition 2.3 (Set of points for T ). Let J ⊂ N be a finite set of indexes and Q =
{

q(T )j

}
j∈J

be

a given set of targeted percentiles, q(T )j ∈ (0,1), j ∈ J. Define Ω(Q) as in Definition 2.2. Then
obviously

T̂ is passing through all points of Ω(Q) .

Furthermore, if TΩ is another transformation passing through all points of Ω(Q), then

max
(α j,β j)∈Ω

∥∥∥Ĉ(β j, . . . ,β j)−C̃Ω(β j, . . . ,β j)
∥∥∥≤ sup

u∈[0,1]

∥∥∥T̂ (u)−TΩ(u)
∥∥∥

where C̃Ω(u1, . . . ,ud) = TΩ ◦C0(T−1
Ω

(u1), . . . ,T−1
Ω

(ud)) is the transformed copula using transfor-
mation TΩ, ĈΩ(u1, . . . ,ud) = T̂ ◦C0(T̂−1(u1), . . . , T̂−1(ud)) is the transformed copula using the
full non-parametric transformation T̂ and C0 is the initial copula.

Proof: From Definition 2.2, it is obvious that T̂ is passing through all points of Ω(Q). For
any (α j,β j) ∈Ω(Q), C̃Ω(β j, . . . ,β j) = TΩ ◦C0(T−1

Ω
(β j), . . . ,T−1

Ω
(β j)) and ĈΩ(β j, . . . ,β j) = T̂ ◦

C0(T̂−1(β j), . . . , T̂−1(β j)). Since both T̂ and TΩ are passing trough all points of Ω(Q), it follows
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22 E. Di Bernardino and D. Rullière

that T−1
Ω

(β j)= T̂−1(β j)=α j. As a consequence,
∥∥∥Ĉ(β j, . . . ,β j)−C̃Ω(β j, . . . ,β j)

∥∥∥=∥∥∥T̂ (v j)−TΩ(v j)
∥∥∥,

with v j =C0(α j, . . . ,α j), v j ∈ [0,1]. Hence the result. �

Proposition 2.3 gives an interpretation of the set Q defined in Definition 2.2. Indeed, Q can
be interpreted as a set of percentiles for which we want to minimize the difference between
diagonals of the transformed non-parametric copula and a transformed parametric copula using a
transformation TΩ instead of T̂ .

Once obtained these finite sets of reaching points for T̂i and T̂ , one can find parametric estimators
without any optimization procedure. A summary of the estimation procedure for obtaining piece-
wise linear estimators of T and Ti, i ∈ I, is given in Algorithm 3.

Algorithm 3 Subsets from non-parametric estimation

Input parameters
Choose Q and Qi, i ∈ I, initial set of quantile levels, e.g. Q = Q1 = . . .= Qd = {0.25,0.5,0.75}.
Subsets of points
Get T̂ and T̂i, i ∈ I, by Algorithm 2
Get Ω(Q) by Definition 2.2
Get Ωi(Qi, T̂ ) by Definition 2.3

We have seen that, starting from given thresholds q(i)j ∈ (0,1), it was possible to propose some set
of points Ωi, i ∈ I and Ω, as in Proposition 2.2 and 2.3, such that each T̂i is passing trough points
of Ωi, and each T̂ is passing trough points of Ω. Starting from these considerations, one can also
introduce in the following definition for some piecewise linear estimators of T and Ti, i ∈ I.

Definition 2.4 (Piecewise linear estimators of T and Ti). One can define two piecewise linear
estimators of the external and internal transformations T and Ti, i ∈ I.
– T̂ PL is defined as a piecewise linear function passing trough the points (0,0), all points of

Ω(Q), and (1,1), where Ω(Q) is given in Definition 2.2.
– for each i ∈ I, T̂ PL

i is defined as a piecewise linear function passing through the points (0,0),
all points of Ωi(Qi, T̂ PL), and (1,1), where Ωi(Qi, T̂ PL), i ∈ I is given in Definition 2.3.

Piecewise linear estimators T̂ PL and T̂ PL
i , i ∈ I, are estimators relying on a chosen finite number of

parameters. However, these estimators are not differentiable everywhere on (0,1). In the following,
we will try to find differentiable parametric estimators passing through the points of considered
subsets Ω and Ωi, i ∈ I.

3. Parametric estimation

3.1. Composite hyperbolic transformations

As initially defined in Bienvenüe and Rullière (2011) and Bienvenüe and Rullière (2012) we recall
here the definition of hyperbolic composite transformations.
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Definition 3.1 (Conversion and transformation functions). Let f any bijective increasing function,
f : R→ R. It is said to be a conversion function. Furthermore the associated transformation
function T to f is defined by: Tf : [0,1]→ [0,1] such that

Tf (u) =


0 if u = 0,
logit−1( f (logit(u))) if 0 < u < 1,
1 if u = 1.

Remark that Tf is a continuous non-decreasing function, such that Tf (0) = 0, Tf (1) = 1. Further-
more we remark that the transformation functions in Definition 3.1 are chosen in a way to be easily
invertible. In particular in a way such that Tf ◦Tg = Tf◦g, T−1

f = Tf−1 . When f is easily invertible,
these readily invertible transformations help sampling transformed distributions (see Bienvenüe
and Rullière, 2011).

In this section we consider the following particular class of hyperbolic conversion function (for
further details see Bienvenüe and Rullière, 2012).

Definition 3.2 (A class of hyperbole). The considered hyperbole H is

Hm,h,ρ1,ρ2,η(x) = m−h+(eρ1 + eρ2)
x−m−h

2
− (eρ1− eρ2)

√(
x−m−h

2

)2

+ eη− ρ1+ρ2
2 ,

with m,h,ρ1,ρ2 ∈ R, and one smoothing parameter η ∈ R.

After some calculations, one can check that

H−1
m,h,ρ1,ρ2,η

(x) = Hm,−h,−ρ1,−ρ2,η(x).

Functions H in Definition 3.2 are thus readily invertible: a simple change of the sign of some pa-
rameters leads to the inverse function. As a consequence, transformations TH based on conversion
functions H will also be readily invertible. In the following, we consider the generic hyperbolic
conversion function defined in Definition 3.2. First remark that when the smoothing parameter η

tends to −∞, the hyperbole H tends to the angle function:

Am,h,ρ1,ρ2(x) = m−h+(x−m−h)
(
eρ11{x<m+h}+ eρ21{x>m+h}

)
. (12)

As remarked in Bienvenüe and Rullière (2011), it thus appears that hyperbolic transformations
have the advantage of being smooth versions of angle functions. They show in their paper that
initial parameters for the estimation are easy to obtain with angle compositions. Another advantage
of the consider hyperbolic transformations is the flexibility in the tail parameters estimation. We
discuss this point in Remark 1.

Remark 1 (Tail behavior). In Di Bernardino and Rullière (2014), it is shown that for the
hyperbolic transformations defined above (see Definition 3.2) and starting from some particular
initial Archimedean copulas C0, it is possible to produce Archimedean copulas having tunable
regular variation properties, and thus to get specific targeted multivariate lower and upper
tail coefficients. Indeed using the hyperbolic conversion functions H, the aforementioned paper
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proposes a generic way to construct families of Archimedean generators presenting a chosen
couple of lower and upper tail coefficients. This construction is based on the fact that the
conversion function H in Definition 3.2 has an asymptote ax+ b at −∞ with a = eρ1 , and an
asymptote αx+β at +∞ with α = eρ2 . Illustrations proposed in Section 4 in the above mentioned
article show that, when fitting some data, it is thus possible to propose a fit that respects some
estimated tail dependence coefficients, by deducing parameters ρ1 and ρ2 from tail coefficients
and by estimating other parameters m, h and η .

For sake of clarity, we recall below some definitions in Di Bernardino and Rullière (2013a). These
definitions of composite transformations and suited parameters will be useful in the following.

Definition 3.3 (Composite transformations). Let k ∈ N. Consider η ∈ R and a given parameter
vector θ = (m,h,ρ1,ρ2,a1,r1, . . . ,ak,rk) if k ≥ 1, or θ = (m,h,ρ1,ρ2) if k = 0. We define the
angle composite transformation Aθ as:

Aθ = Tfθ
, with fθ =

{
Aak,0,0,rk ◦ · · · ◦Aa1,0,0,r1 ◦Am,h,ρ1,ρ2 if k ≥ 1,
Am,h,ρ1,ρ2 if k = 0,

and the hyperbolic composite transformation Hθ ,η as:

Hθ ,η = Tfθ ,η
, with fθ ,η =

{
Hak,0,0,rk,η ◦ · · · ◦Ha1,0,0,r1,η ◦Hm,h,ρ1,ρ2,η if k ≥ 1,
Hm,h,ρ1,ρ2,η if k = 0,

with Am,h,ρ1,ρ2 as in Equation (12) and Hm,h,ρ1,ρ2,η as in Definition 3.2.

Remark 2 (Inverse composite transformations). Let k ∈N. Consider η ∈R and a given parameter
vector θ = (m,h,ρ1,ρ2,a1,r1, . . . ,ak,rk) if k≥ 1, or θ = (m,h,ρ1,ρ2) if k = 0. Since T−1

f = Tf−1 ,
the angle composite transformation A −1

θ
is such that:

A −1
θ

= Tfθ
, with fθ =

{
Am,−h,−ρ1,−ρ2 ◦Aa1,0,0,−r1 ◦ · · · ◦Aak,0,0,−rk if k ≥ 1,
Am,−h,−ρ1,−ρ2 if k = 0.

The hyperbolic inverse composite transformation Hθ ,η is such that:

H −1
θ ,η = Tfθ ,η

, with fθ ,η =

{
Hm,−h,−ρ1,−ρ2,η ◦Ha1,0,0,−r1,η ◦ · · · ◦Hak,0,0,−rk,η if k ≥ 1,
Hm,−h,−ρ1,−ρ2,η if k = 0.

Definition 3.4 (Suited parameters from Ω). Let k∈N. Consider one given set Ω= {ω1, . . . ,ω3+k},
ω j ∈ (0,1)2. Denote by u j and v j the two respective components of each ω j in the logit scale,
such that ω j = (logit−1u j, logit−1v j), j ∈ {1, . . . ,3+ k}. Assume that u j and v j are increasing
sequences of j. We define:

Θ(Ω) =

{
(m,h,ρ1,ρ2,a1,r1, . . . ,ak,rk) if k ≥ 1,
(m,h,ρ1,ρ2) if k = 0,

where m = u2+v2
2 , h = u2−v2

2 , ρ1 = ln
(

v2−v1
u2−u1

)
, ρ2 = ln

(
v3−v2
u3−u2

)
, rk = ln

(
v3+k−v2+k
u3+k−u2+k

u2+k−u1+k
v2+k−v1+k

)
, ak =

v2+k, k ≥ 1.
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Proposition 3.1 (Suited composite transformations). Let k ∈ N. Consider one given set Ω =
{ω1, . . . ,ω3+k}, ω j ∈ (0,1)2 and a smoothing parameter η ∈ R. Set θ = Θ(Ω), then
- the transformation Aθ (x) is piecewise linear in the logit scale and will be called logit-piecewise

linear. It links point (0,0), points of Ω, and point (1,1).
- the transformation Hθ ,η converges pointwise to Aθ as η tends to −∞. It results that the

continuous and differentiable transformation Hθ ,η can fit as precisely as desired the set of
points Ω when η tends to −∞.

Proof: The first result is proved in Bienvenüe and Rullière (2011). It simply comes from the
fact that AΘ(Ω)(u j) = v j for all j ∈ {1, . . . ,3+ k}, where ω j = (logit−1u j, logit−1v j). The conver-
gence of the hyperbole composite transformation toward the angle composite transformation is
straightforward and also evoked in Bienvenüe and Rullière (2011). �

3.2. Smoothed parametric estimators

For the estimation of transformations T and Ti, we assume that are given:
– Initial estimators of δ and δ−1 (see Section 2.1).
– The sets of quantile levels Q =

{
q(T )j

}
j∈J

, Qi =
{

q(i)j

}
j∈Ji

, i ∈ I (see Section 2.3).

– Some smoothing parameters η ∈ R and ηi ∈ R, i ∈ I (see Section 3.1).
In the following we introduce the smooth parametric estimators T and T i, i ∈ I, for external and
internal transformations respectively.

Estimation of T
Using estimators of δ and δ−1 (see Section 2.1), one easily gets the resulting set Ω(Q) by
Proposition 2.3 and suited parameters by Definition 3.4:

θ̂ = Θ(Ω̂(Q)). (13)

Then one defines: T = H
θ̂ ,η

.

Estimation of Ti, i ∈ I
Once T estimated by T , one gets the passage set Ωi, for i ∈ I by Proposition 2.2 and suited
associated parameters θi by Definition 3.4, i.e.,

θ̂i = Θ(Ω̂i(Qi,T )). (14)

Note that once given thresholds sets Q and Qi and smooth parameters η and ηi, all estimated
parameters are directly and analytically defined, so that we do not need here any inversion or
optimization procedure.
Then one defines: T i = H

θ̂i,ηi
, for i ∈ I.

A summary of the expressions of smooth estimators T and T i, i∈ I, is given in following definition.

Definition 3.5 (Smooth estimation of T and Ti, i∈ I). Let Q and Qi, i∈ I be given sets of quantile
levels. Let η ∈ R and ηi ∈ R, i ∈ I be given smoothing parameters. One defines{

T = H
θ̂ ,η

,

T i = H
θ̂i,ηi

, i ∈ I,
(15)
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where parameters θ̂ and θ̂i are given by{
θ̂ = Θ(Ω̂(Q)),

θ̂i = Θ(Ω̂i(Qi,T )), i ∈ I.

The sets Ω and Ωi are defined in Definitions 2.2 and 2.3. The function Θ is defined in Definition 3.4.

Estimation procedure for obtaining smoothed parametric estimators T and T i, i ∈ I is gathered in
Algorithm 4.

Algorithm 4 Parametric estimation

Input parameters
Choose Q and Qi, i ∈ I the sets of quantile levels, e.g. Q = Q1 = . . .= Qd = {0.25, 0.5, 0.75},
Choose smoothing parameters η ∈ R and ηi ∈ R, i ∈ I,

Parametric estimation
Get Ω̂(Q) and Ω̂i(Qi,T ), i ∈ I by Algorithm 3
Get θ̂ by Equation (13)
Get θ̂i by Equation (14)
Get smooth estimators T and T i, i ∈ I by Equation (15).

One can define the complete vector parameter presented in Algorithms 3 and 4:

ΘΘΘ = (θ̂1, . . . , θ̂d , θ̂ ,η1, . . . ,ηd ,η).

What is noticeable here is that given thresholds Q, Qi and smoothing parameters η , ηi, one have
direct expressions for the parametric estimators θ̂ and θ̂i, i ∈ I. The estimation can also change,
depending on some other estimation choices (generator among its equivalence class (x0,y0),
bandwidths hi, i ∈ I or kernel function K), but one aims here at finding good estimators whatever
the choice of any reasonable value of these parameters. In numerical Section 6 we will illustrate
this point. Finding a global optimum in high dimension would lead to a curse a dimensionality
and numerical problems. As a consequence, it is very important to get correct estimators without
jointly optimizing a lot of parameters in high dimension.

4. Final parametric results

Once all parameters estimated as in Section 3, the previous parametric model allows to get various
analytical results for both the multivariate distribution function, its associated critical layers,
Kendall’s function and multivariate return periods.

Firstly we obtain the parametric expression for the transformed copula C̃:

C̃(u1, . . . ,ud) = φ̃(φ̃−1(u1)+ . . .+ φ̃
−1(ud)), (16)

where φ̃ is the final parametric transformed Archimedean generator (see (4)). This generator can
be easily written in terms of the external transformation T , i.e.,
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φ̃(t) = T (φ0(t)), (17)

where φ0 is the generator associated to the initial copula C0 in (4) and T is the smooth estimator
of the external transformation presented in Section 3.2.

Using model in (4), the corresponding estimated transformed multivariate distribution is given by:

F̃ΘΘΘ(x1, . . . ,xd) = H
θ̂ ,η
◦C0(H

−1
θ̂1,η1
◦F1(x1), . . . ,H

−1
θ̂d ,ηd
◦Fd(xd)), (18)

where ΘΘΘ is the complete estimated vector parameter presented in Algorithms 3 and 4.

Furthermore, using expression in (18) for the estimated transformed multivariate distribution F̃ ,
the associated parametric α critical-layers are given by

∂ L̃ΘΘΘ(α)= {(F−1
1 ◦Hθ̂1,η1

(u1), . . . ,F−1
d ◦Hθ̂d ,ηd

(ud)),(u1, . . . ,ud)∈ (0,1)d ,C0(u1, . . . ,ud)=H −1
θ̂ ,η

(α)},

where a direct analytic expression H −1
θ̂ ,η

is given by Remark 2 (see also Proposition 2.4 in Di Bernardino
and Rullière, 2013a).

As presented in the introduction, we aim at providing a parametric estimation of the multivariate
Return Period

RP>(α) = ∆t · 1
1−KC(α) .

Genest and Rivest (2001) obtained the following explicit expression for the Kendall distribution
in the case of multivariate Archimedean copulas with a given generator ϕ , i.e.,

KC(α) = α +
d−1

∑
i=1

1
i!
(
−ϕ

−1(α)
)i

ϕ
(i) (

ϕ
−1(α)

)
, for α ∈ (0,1),

where the notation f (i) corresponds to the i−th derivatives of a function f .

Consider the case of transformed generator φ̃(t) = T (φ0(t)), in (16)-(17). Then, the analytical
formula for the estimated transformed Kendall distribution K̃C can be easily written as:

K̃C(α) = α +
d−1

∑
i=1

1
i!

(
−φ
−1
0 (T−1

(α))
)i (

T ◦φ0
)(i)(

φ
−1
0 (T−1

(α))
)
, for α ∈ (0,1).(19)

Remark that the hyperbolic transformation T = H
θ̂ ,η

, in this paper are chosen in a way to be

easily invertible. Then estimated smooth inverse transformation T−1 in (19) is straightforwardly
obtained by changing the signs of some parameters of the hyperbolic composition (see Remark 2).
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5. Comprehensive scheme of the estimation procedure

The method presented in this paper involves different notations progressively introduced in
different sections. Moreover, the final scheme of the procedure relies in many tuning parameters.
To improve clarity, a comprehensive scheme of the estimation procedure is presented below (see
Table 1). The relationship between the different algorithms presented above is pointed out using
arrows and implications. Moreover, the nature of considered parameters is specified, in particular,
we distinguish between tuning parameters and estimated/calculated quantities.

Scheme of the estimation procedure
Chosen tuning parameters in Algorithm Calculated quantities

1) G−1 (inverse of a cdf)

2) hi, i ∈ I bandwidth sizes

3) Point (x0,y0) in (0,1)2

4) Initial copula C0

5) Initial marginals Fi, for i ∈ I

6) Q and Qi, i ∈ I
(initial set of quantile levels)

7) η ∈ R and ηi ∈ R, i ∈ I
(smoothing parameters)

a) Using 1) and 2), estimate diagonal
δ̂1(x) and δ̂−1(x), for any x ∈ [0,1].

b) Using 3), 4) and a), get T̂

c) Estimate of the target i-th marginal
distribution, F̂i for i ∈ I (e.g., empirical
cdf)

d) Using 5), b) and c), get T̂i, for i ∈ I

e) Using 6) and b), get Ω(Q)

f) Using 5), 6), b) and c), get Ωi(Qi, T̂ ),
for i ∈ I

g) Using 7), e) and f),
– Get θ̂ = Θ(Ω̂(Q)).

– Get θ̂i = Θ(Ω̂i(Qi,T )) for i ∈ I,
where T = H

θ̂ ,η
.

h) Using 4), 5) and g), finally get
F̃ΘΘΘ(x1, . . . ,xd) = H

θ̂ ,η
◦C0(H

−1
θ̂1,η1
◦F1(x1), . . . ,H

−1
θ̂d ,ηd

◦Fd(xd)),

where ΘΘΘ = (θ̂1, . . . , θ̂d , θ̂ ,η1, . . . ,ηd ,η).

TABLE 1. Comprehensive scheme of the global estimation procedure. We distinguish between tuning parameters (left
column) and estimated/calculated quantities (right column).

As one can see in Table 1 (left column), the algorithm depends on many tuning parameters, we
discuss here the sensitivity of the results on these choices. The results expressed below refer
to variations of mean absolute errors and are based on our simulation study (see Section 8,
case n = 1000, using as a reference x0 = y0 = e−1, Q = Q1 = Q2 = {0.25,0.5,0.75}, η =−1,
η1 = η2 =−3, with very small bandwidths).
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– We always used in our numerical illustrations (see Sections 6, 7 and 8), G−1 = logit(x) in order
to simplify inversion procedures and C0 the independent copula. We believe that these choices
might have more important implications for the tails. A deep analysis in this sense is developed
in Di Bernardino and Rullière (2014).

– The use of positive bandwidth sizes hi ensures continuity and possible inversion of fitted copula
diagonal section and marginals distributions. Using small bandwidth sizes may increase the
variance of some non-parametric estimators, but in practice this leads to estimate parametric
copula and margins using empirical diagonal and empirical margins instead of smoothed ones.
The impact is thus limited on the parametric estimation. As an example in further simulation
study (see Section 8), using a bandwidth given by classical rule of thumb or dividing this
bandwidth by 100 leads to an absolute variation of 0.6% on resulting mean absolute errors.

– Concerning the choice of the point (x0,y0), we observed absolute variations of order 4% in mean
absolute errors compared to the choice of x0 = y0 = e−1 (which simplifies some calculations).

– Concerning the choice of quantile levels set Q, Qi, for i∈ I, using regular thresholds Q =Q1 =
Q2 = {0.25,0.5,0.75}, without any optimization, leads to mean absolute error of MAE = 3.6%
(instead of approx. 1% for optimized thresholds), which is still reasonable for non optimized
parameters.

– At last, choices of η and ηi, i∈ I, mostly depend on the desired smoothness of the final resulting
distribution. Except for clearly excessive smoothing, the impact on resulting distribution is
quite small. As an example on simulated data of Section 8, using η = 0 and η1 = η2 = −2
or using η = −2 and η1 = η2 = −4 leads to absolute variations of 0.5% on resulting mean
absolute errors.

This quite small sensitivity of these parameters is important. Indeed in high dimension, due to
the curse of dimensionality, it is not possible in practice to find the global optimum of a function.
It is thus essential that any chosen tuning parameter lead to small average errors, in order that
calculated quantities are near a local optimizer of the considered error, and in order to reduce the
difference between local optima and global one. Resulting calculated parameters like (m,h,ρ1,ρ2)
for each transformation can still be optimized once they are close to one optimizer.

In further numerical illustrations (see Sections 6, 7 and 8), we never optimize resulting calculated
quantities, but we sometimes choose tuning parameters that permit to get reduced final errors.

6. Numerical results on the rainfall real data

In the following we illustrate our methodology presented in the previous sections using a
5−dimensional rainfall data-set.

6.1. Presentation of the data-set

Data comes from the website CISL Research Data Archive (RDA), http://rda.ucar.edu, and
is available for registered users. The user is granted the right to use the Site for non-commercial,
non-profit research, or educational purposes only, without any fee or cost, as specified in the
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terms of use of the website (January 2014). The name of the data in this website is: ds570.0, and
the direct url to this data is http://rda.ucar.edu/datasets/ds570.0/. The whole citation
information for this data is:

National Climatic Data Center/NESDIS/NOAA/U.S. Department of Commerce, Harvard
College Observatory/Harvard University, Meteorology Department/Florida State Univer-
sity, and Climate Analysis Section/Climate and Global Dynamics Division/National Cen-
ter for Atmospheric Research/University Corporation for Atmospheric Research (1981):
World Monthly Surface Station Climatology. Research Data Archive at the National Center
for Atmospheric Research, Computational and Information Systems Laboratory. Dataset.
http://rda.ucar.edu/datasets/ds570.0. Accessed 08 nov 2013.

We detail here data selection in order to help researchers to retrieve the same dataset. We have
taken all monthly rainfall data available from CSV files for five chosen stations of India and
Sri-Lanka. After a first importation step, only numerical or missing values of the field Precip(mm)
were kept, and the field Date was considered as a numerical primary key in order to avoid repeated
data. Considered stations and corresponding lines number after this step are:
– X1: Colombo (station Id: 434660, 1722 lines from 1870-01 to 2013-06, 0 lines excluded)
– X2: Pamban (station Id: 433630, 1470 lines from 1891-01 to 2013-06, 3 lines excluded)
– X3: Puttalam (station Id: 434240, 1734 lines from 1869-01 to 2013-06, 3 lines excluded)
– X4: Thiruvananthapuram (station Id: 433710, 1926 lines from 1853-01 to 2013-06, 8 lines excluded)
– X5: Trincomalee (station Id: 434180, 1734 lines from 1869-01 to 2013-06, 4 lines excluded)
In a second step, all five stations were grouped by date, and we have selected dates for which all
fields Precip (mm) of the five station were non-missing and non-zero (the suppression of zero
precipitation data aims at easing the parametric representation of margins, as detailed in Koning
and Philip (2005)). At last precipitations have been expressed in decimetres: all fields Precip
(mm) have been divided by 100. As a result, the data has 797 lines giving monthly precipitation in
decimetres, for some dates in the period from 1893-01 to 2013-06. Excluded dates in this period
are those for which at least one field Precip (mm) was missing, zero or non-numerical.

As one can see part of the data is very old and should certainly be interpreted with caution. We
have drawn on Figure 2 the autocorrelation functions to show that a small autocorrelation is still
remaining in considered data. Indeed as remarked in Reiss and Thomas (2007), on the one hand,
considering annual data is a way to avoid the problems of serial correlation and seasonal variation.
On the other hand, it may represent a lost of information contained in the data. A compromise can
be to base the inference on seasonal or monthly maxima (see Reiss and Thomas, 2007, Section
14.1). This is the approach followed in this paper. Remark that there is some significant seasonality
in the considered rainfall real data (see Figure 2). To overcome this type of problem it could be
possible to fit the following model : Xi,t = ai St +Yi,t , for i = {1, . . . ,5} where St represents some
cycle (that might be non-parametric) and Yi,t represents the deviation to the cycle. However this
type of study is beyond the scope of the present paper. Geographical position of 5 stations and the
scatter plot of ranks of data are provided in Figure 3.

Remark that the numerical illustrations presented here aims at showing the feasibility of the
estimation but do not aim at furnishing a complete hydrological study, which would require
more data treatments for handling seasonality, analysis of peak and durations of rainfall, etc. The
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FIGURE 2. Estimates of the autocorrelation functions for the considered 5−dimensional rainfall data. Dotted horizontal
lines give indicative 10% autocorrelation thresholds.

FIGURE 3. Left: Scatter plot of ranks for the considered 797 monthly rainfall measurements (in decimeter) in 5 stations
of Sri-Lanka and India between January 1893 and June 2013. Right: Geographical positions of 5 considered stations.

interested reader is referred to Salvadori et al. (2011), Salvadori et al. (2012), Gräler et al. (2013).

6.2. Estimation results

We consider the model as in Equation (3). For the sake of clarity, each transformation is here
involving only one hyperbola, thus requiring the choice of three quantiles thresholds per hyper-
bola for the estimation. We take as initial copula C0 the independent one, and the initial margins
Fi(x) = 1−e−x, i ∈ I. Concerning the impact of the choice of the initial copula C0 on transformed
generator φ̃ , the interested reader is referred to Proposition 3.12 in Di Bernardino and Rullière
(2013b).

For the estimation, we have chosen very small smoothing bandwidths hi, i ∈ I (see Equation (5)).
Diagonal section of the copula and smooth empirical margins are thus very close to empirical
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ones, but small smoothing allows to get proper invertible functions. As stated in Algorithm 2, the
estimation relies on an arbitrary chosen initial point (x0,y0), which corresponds to the arbitrary
choice of one point of the Archimedean generator among its equivalence class (see Remarks 7 and
8 in Di Bernardino and Rullière, 2013b). The choice of this point has an impact on the estimation,
and given an arbitrary abscissa x0 = 0.5, we have kept the value of y0 giving the best results,
here y0 = 0.24. The non-parametric estimation relies on the choice of quantile thresholds (see
Algorithm 3). Here we have chosen:

Q = {5%,50%,95%} and Qi = {20%,50%,80%} , i ∈ I = {1, . . . ,5} .

At last, for the parametric estimation (see Algorithm 4), one have to choose smoothing parameters.
Selected smoothing parameters are:

η =−1 and ηi =−3, i ∈ I = {1, . . . ,5} ,

(see Table 2 below). It would be naturally possible to optimize all these parameters, Q, Qi, η , ηi,
for i ∈ I, but we have chosen here fixed threshold and smoothing parameters in order to show the
feasibility of the estimation. This also shows that it is possible to get good fits with non optimized
parameters, which is important when the dimension is high, since a global optimization procedure
would have to face a curse of dimensionality.

As presented in Sections 2 and 3, we obtain the complete estimated vector of parameters ΘΘΘ

given in Table 2. Then we get the transformed multivariate copula C̃ and distribution function F̃ΘΘΘ,
obtained by Equations (16) and (18) respectively.

TABLE 2. Complete estimated vector of parameters ΘΘΘ.

Parameters ΘΘΘ m h ρ1 ρ2 η

θ for external T -0.576 0.576 -0.0566 -0.185 -1

θ for T1 1.509 -0.089 -0.211 0.0624 -3

θ for T2 0.532 0.888 0.216 0.244 -3

θ for T3 0.921 0.499 -0.0057 -0.083 -3

θ for T4 1.097 0.323 0.067 -0.001 -3

θ for T5 1.147 0.274 -0.102 0.116 -3

We perform a goodness-of-fit test based on the empirical process in order to test the quality of the
adjustment of copula C̃ on these multivariate data. In the large scale Monte Carlo experiments
carried out by Genest et al. (2009), the statistic Sn gave the best results overall (see Section 4
in Ivan Kojadinovic and Jun Yan, 2010). An approximate p-value for Sn can be obtained by means
of a parametric bootstrap-based procedure (see Section 4.1 in Ivan Kojadinovic and Jun Yan,
2010), and whose validity was recently shown by Genest and Rémillard (2008).

In order to apply the bootstrap-based procedure, we need to generate random samples from the
transformed copula C̃ with generator as in (17). To this aim we use the Marshall and Olkin’s
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algorithm with a numerical inversion of the Laplace Transform of generater φ̃ using the Talbot
method. We obtain a p−value= 0.37129. Furthermore, we test different competitor copula
families, with maximum likelihood estimated parameters. Obtained p−values, with different
goodness-of-fit tests, are gathered in Table 3. Therefore, among all the copula families that we
have tested, the transformed copula C̃ is the only one that is not rejected at the 5% significance
level (see Ivan Kojadinovic and Jun Yan, 2010).

TABLE 3. The bootstrapped p−values for different goodness-of-fit tests (see Genest et al., 2009) for competitor copula
families on the considered 5-dimensional rainfall data, with n = 797. In all cases, the number of Monte Carlo
experiments is fixed at N = 1000.

Copula under H0 Sn SB
n SC

n An

Gumbel-Hougaard 0.00331 0.00495 0.00454 0.03465
Clayton 0.00381 0.00980 0.00704 0.00981
Frank 0.00617 0.00941 0.00819 0.08416

t-Student 0.00495 0.00592 0.00498 0.00963
Normal 0.00980 0.00719 0.00454 0.00205

Joe 0.00819 0.00495 0.00454 0.00916

To appreciate the quality of multivariate parametric adjustments we evaluate the Supremum
Absolute Error on a lattice G (see (20)) and the Mean Absolute Error on the data (see (21)),
respectively defined as:

SAE = sup
(x1,x2,x3,x4,x5)∈G

|F(x1,x2,x3,x4,x5)−Fn(x1,x2,x3,x4,x5)| , (20)

MAE =
1
n

n

∑
k=1

∣∣∣F(X (k)
1 ,X (k)

2 ,X (k)
3 ,X (k)

4 ,X (k)
5 )−Fn(X

(k)
1 ,X (k)

2 ,X (k)
3 ,X (k)

4 ,X (k)
5 )
∣∣∣ , (21)

with n = 797, Fn the 5−dimensional empirical distribution function and F a parametric model
on the multivariate rainfall data. The first SAE criterion is a classical Kolmogorov-Smirnov
statistic evaluated on a particular lattice G, and the same choice of an absolute value (L1-norm)
has been done for the second MAE criterion in order to use comparable norms, and to get re-
sults in accordance with further Figures 4-6 showing absolute differences. This second criterion
can be linked to L1-variant Cramér-von-Mises distances like

∫
|F(x)−Fn(x)|dF(x), where the

continuous measure dF(x) has been replaced by the empirical one dFn(x) thus leading to a sum.
This way, the MAE criterion can be efficiently computed without integration on a multivariate
domain, while the difference between the sum and the integral can be bounded using the difference
|F(x)−Fn(x)|.

We consider our transformed model (see (18)) and three different parametric models using Frank,
Gumbel and Clayton copulas and parametric marginals. The dependence parameters of copulas,
fitted by Maximum likelihood, are: θ = 2.45 (Frank copula), θ = 1.33 (Gumbel copula) and
θ = 0.47 (Clayton copula). For marginals we have tested 15 different classes of distributions and
we have fitted the best model using the Akaike Information Criterion. Following this criterion, the
best parametric marginals were Gamma distributed. We recall here that zero valued precipitations
have been excluded from this data. Results are gathered in Table 4.
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TABLE 4. Shape and rate MLE parameters of fitted marginal Gamma distributions for Xi for i = 1, . . . ,5.

Gamma distributions X1 X2 X3 X4 X5
shape 1.7553 0.6344 0.9600 1.0373 1.0116
rate 0.7994 0.5968 0.7844 0.6724 0.5799

Then the obtained Supremum Absolute Error in (20) and Mean Absolute Errors in (21) are given
in Table 5. As one can see, our model performs better both on the Supremum Absolute Error
(SAE) and the Mean Absolute Error (MAE) criteria. However, quantifying the goodness of fit on
a multivariate data is a difficult problem. Some models with small Mean Absolute Error criteria
may behave poorly when considering a specific projection of the 5-dimensional space. A control
of the performance of the model for the distribution fit of each pair of random variable is highly
recommended.

TABLE 5. Supremum Absolute Errors (SAE) and Mean Absolute Errors (MAE) as in (20)-(21) for the considered
parametric 5−dimensional models. Best results are indicated in bold font.

Models F̃ Frank Gumbel Clayton
SAE 0.0791 0.0941 0.0995 0.1367
MAE 0.0095 0.0138 0.0169 0.0236

Using parametric multivariate models introduced above, we now consider the fit of the bivariate
distributions F(Xi,X j) and of the marginals FXi , for i, j = 1, . . . ,5. They are particular projections
of the 5−dimensional distribution. We consider the errors in (20)-(21) for (Xi,X j) data, for
i, j = 1, . . . ,5, i.e.,

SAEi, j = sup
(x,y)∈G

∣∣∣F(Xi,X j)(x,y)−Fn(x,y)
∣∣∣ , (22)

MAEi, j =
1
n

n

∑
k=1

∣∣∣F(Xi,X j)(X
(k)
i ,X (k)

j )−Fn(X
(k)
i ,X (k)

j )
∣∣∣ , (23)

with Fn the bivariate empirical distribution function and F(Xi,X j) the projection of the multivariate
parametric model on (Xi,X j). Errors in (22)-(23), evaluated using our transformed model F̃ and
classical parametric models on the considered rainfall data, are gathered in Tables 6 and 7.
Remark that, without any optimization procedure, the transformed model performs better in
terms of errors in (22)-(23) for almost all the couples (Xi,X j). In order to make the reading of the
Tables 6 and 7 easier, we give in Table 8 the associated synthetic statistics. As we can seen the
best values (displayed in bold font) are provided by the transformed model F̃ .
As remarked above, some graphical illustrations of Tables 6 and 7 are provided in Figures 4
for (X1,X4), Figure 5 for (X2,X5) and Figure 6 for (X3,X4). The maximal range for these figures
corresponds to the 95th percentile of each random variable, in order to focus on main part of the
data and to preserve the readability of each figure.
Furthermore, from (4), we get F̃i = T ◦T−1

i ◦Fi, for i ∈ I. Then, using the smooth estimation
of external and internal transformations T and T−1

i , for i ∈ I, one can obtain the transformed
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TABLE 6. Left: Supremum Absolute Errors SAEi, j in (22) (first lines) and Mean Absolute Errors MAEi, j in (23)
(second lines) using the transformed model F̃5 with parameters as in Table 2. Right: Errors using parametric model
with Frank copula θ = 2.450 and Gamma marginals with parameters as in Table 4. Best results are indicated in bold
font.

Errors model F̃
X1 X2 X3 X4 X5

X1
0.0110
0.0052

X2
0.0306 0.0157
0.0088 0.0078

X3
0.0316 0.0677 0.0247
0.0138 0.0327 0.0076

X4
0.0328 0.0643 0.0536 0.0193
0.0117 0.0247 0.0160 0.0060

X5
0.0437 0.0643 0.0356 0.0867 0.0299
0.0155 0.0296 0.0123 0.0318 0.0115

Errors Frank copula and Gamma marginals
X1 X2 X3 X4 X5

X1
0.0119
0.0053

X2
0.0410 0.0389
0.0195 0.0225

X3
0.0363 0.0742 0.0351
0.0147 0.0362 0.0175

X4
0.0396 0.0567 0.0672 0.0282
0.0137 0.0180 0.0205 0.0129

X5
0.0493 0.0838 0.0344 0.0882 0.0246
0.0174 0.0356 0.0101 0.0323 0.0055

TABLE 7. Supremum Absolute Errors SAEi, j in (22) (first lines) and Mean Absolute Errors MAEi, j in (23) (second
lines) using parametric model using Gumbel copula θ = 1.33 (left), and Clayton copula θ = 0.47 (right) and Gamma
marginals with parameters as in Table 4. Best results are indicated in bold font.

Errors Gumbel copula and Gamma marginals
X1 X2 X3 X4 X5

X1
0.0119
0.0053

X2
0.0406 0.0389
0.0121 0.0225

X3
0.0401 0.0820 0.0351
0.0168 0.0373 0.0175

X4
0.0462 0.0521 0.0621 0.0282
0.0170 0.0172 0.0195 0.0129

X5
0.0444 0.0880 0.0352 0.0798 0.0246
0.0161 0.0379 0.0102 0.0309 0.0055

Errors Clayton copula and Gamma marginals
X1 X2 X3 X4 X5

X1
0.0119
0.0053

X2
0.0482 0.0389
0.0158 0.0225

X3
0.0621 0.0959 0.0351
0.0229 0.0448 0.0175

X4
0.0583 0.0403 0.0429 0.0282
0.0221 0.0119 0.0144 0.0129

X5
0.0456 0.1104 0.0534 0.0628 0.0246
0.0114 0.0437 0.0187 0.0237 0.0055

TABLE 8. Syntectic statistics associated to Tables 6 and 7, where SSAE= supi j SAEi j , SMAE= supi j MAEi j , MSAE=
meani jSAEi j and MMAE= meani jMAEi j .

Model F̃ Frank Gumbel Clayton
SSAE 0.086 0.088 0.088 0.110
MSAE 0.011 0.012 0.012 0.012
SMAE 0.032 0.036 0.039 0.045
MMAE 0.004 0.005 0.005 0.005
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FIGURE 4. Errors |F(X1,X4)(x,y)−Fn(x,y)|, for (x,y) in a lattice of 100× 100 points, where Fn is the empirical
distribution function and F(X1,X4) is parametric model with Gamma marginals and Clayton copula (left), Frank copula
(centre panel). Errors of our transformed model F̃ are displayed in the right plot. Black cross represents the maximum
error SAE1,4 in the considered lattice (see (22)). Black dots represent the associated rainfall data (X1,X4).
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FIGURE 5. Errors |F(X2,X5)(x,y)−Fn(x,y)|, for (x,y) in a lattice of 100× 100 points, where Fn is the empirical
distribution function and F(X2,X5) is parametric model with Gamma marginals and Clayton copula (left), Frank copula
(centre panel). Errors of our transformed model F̃ are displayed in the right plot. Black cross represents the maximum
error SAE2,5 in the considered lattice (see (22)). Black dots represent the associated rainfall data (X2,X5).

parametric marginal distributions. Results for some margins are presented in Figure 7 below
(results for other margins are completely analogous).

Finally we consider another projections of F̃ , i.e. the 5−dimensional diagonal. In Figure 8 (left)
we present the parametric estimation of the 5−dimensional diagonal using the transformed model
and the classical parametric competitors introduced above.

In Figure 8 (right) we present the Kendall distribution for the considered 5-dimensional rainfall
data-set using our transformed generator φ̃(t) = T ◦exp(−t). We also display KC(α), for Gumbel,
Frank and Clayton copulas.
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FIGURE 6. Errors |F(X3,X4)(x,y)−Fn(x,y)|, for (x,y) in a lattice of 100× 100 points, where Fn is the empirical
distribution function and F(X3,X4) is parametric model with Gamma marginals and Clayton copula (left), Frank copula
(centre panel). Errors of our transformed model F̃ are displayed in the right plot. Black cross represents the maximum
error SAE3,4 in the considered lattice (see (22)). Black dots represent the associated rainfall data (X3,X4).
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FIGURE 7. Fit of marginals. Black full lines are the empirical marginal tail distribution functions (in log scale). The
vertical lines show estimates of 90% and 95% univariate marginal quantiles. Red lines the Gamma distribution with
parameters as in Table 4. Green lines are ln(1− F̃i), for i = 1,4,5 as in the 5−dimensional transformed model with
parameters as in Table 2.

7. A nested model on the rainfall real data

7.1. Choice of clusters

In this section we intend to show the flexibility of the proposed model and associated estimation
procedure. In particular, we adapt our methodology in the case of some asymmetric dependencies
(as, for instance, non-exchangeable random vectors). The correlation matrix of the considered
rainfall data is displayed in Figure 9 (left).
As we can see, some pairs of stations present a bigger correlation. To illustrate how our model
can be adapted to this situation we have decided to create 2 different clusters. We have grouped
together pairs of variables presenting correlation greater than 66%, this leads to a first (tri-variate)
cluster composed by stations (X2,X3,X5). The remaining second (bivariate) cluster is (X1,X4).
One can check that all correlations inside each cluster are greater than 50%. Figure 3 gives the ge-
ographical position of each station and helps visualizing each cluster. Furthermore an hierarchical
cluster analysis on the set of dissimilarities produce by the distance of the Xi is developed. We use
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FIGURE 8. Left: Estimation of the 5-dimensional survival diagonal in logarithmic scale. Right: Kendall distribution
function for the 5-dimensional rainfall data. Empirical diagonal and empirical Kendall (as in Barbe et al., 1996) are
presented in black thick line; diagonal of the transformed model F̃ and associated K

φ̃
with φ̃ = T ◦ exp(−t) in full red

line; diagonal of parametric Gumbel model and KφGumbel with φGumbel(t) = exp(−t1/1.33) in blue dashed line; diagonal
of parametric Frank model and KφFrank with φFrank(t) =−(log(exp(−x)(exp(−2.45)−1)+1))/2.45 in orange thick
dashed line; diagonal of parametric Clayton model and KφClayton where φClayton(t) = (1+ t)−1/0.47 in green dotted line.


X1 X2 X3 X4 X5

X1 1 0.377 0.552 0.504 0.207
X2 0.377 1 0.698 0.178 0.660
X3 0.552 0.698 1 0.276 0.523
X4 0.504 0.178 0.276 1 0.018
X5 0.207 0.660 0.523 0.018 1
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FIGURE 9. Left: Correlation matrix of the considered rainfall data. Correlations greater than 60% are indicated in
bold font. Right: Dendrogram resulting to the hierarchical cluster analysis on the set of dissimilarities produced by
the Euclidian distance on the rainfall data. Red boxes show the two considered clusters.

different types of distance to create the dissimilarities (Euclidian, maximum, Manhattan, Canberra,
Binary, Minkowski). In all cases we obtain the result in Figure 9. As one can see, whatever the
distance chosen for dissimilarities, the dendrogram gives a justification to chosen clusters of
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station indexes {2,3,5} and {1,4}. However, chosen nested structure has not been optimized;
the choice of an optimal nested structure is analyzed for instance in Segers and Uyttendaele (2014).

Then, following these considerations, we firstly fit a 3−dimensional model for the first group and
a 2−dimensional one for the second one. We generate the pseudo-data coming from these two
models and finally we construct the joint copula for these bivariate data-set. As in Section 6, in the
following we take as initial copula C0 the independent one, and the initial margins Fi(x) = 1−e−x,
i ∈ A,B.

The multivariate distribution for the cluster A = {2,3,5} is assumed to be written:

FA(x2,x3,x5) = TA ◦C0(T−1
A ◦ F̃2(x2), T−1

A ◦ F̃3(x3), T−1
A ◦ F̃5(x5)), (24)

with F̃i = TA ◦T−1
Ai
◦Fi , for i ∈ A.

The multivariate distribution for the cluster B = {1,4} is assumed to be written:

FB(x1,x4) = TB ◦C0(T−1
B ◦ F̃1(x1), T−1

B ◦ F̃4(x4)), (25)

with F̃i = TB ◦T−1
Bi
◦Fi , for i ∈ B.

The whole 5−dimensional distribution is assumed to be written:

F̃(x1,x2,x3,x4,x5) = T ◦C0
(
T−1 ◦FA(x2,x3,x5), T−1 ◦FB(x1,x4)

)
, (26)

where C̃(u, v) = T ◦C0
(
T−1(u), T−1(v)

)
is referred as the root copula at point (u,v). It is effec-

tively a proper copula if the transformation T satisfies admissibility conditions that are given
in Proposition 2.1 of Di Bernardino and Rullière (2013b), in order to satisfy 2−monotony as
detailed in McNeil and Nešlehová (2009). Model in (26) corresponds to a Nested Archimedean
Copula model, with two nested levels, as described in Hofert and Pham (2013). In this article
authors give also conditions such that the resulting nested copula is a proper distribution function.
Despite it may not be the case in general, we will assume that F̃ with expression as in (26) is a
proper multivariate distribution. In the following we will check the admissibility for considered
transformation (see Figure 12).

As one will see in Figure 13, conditions like the admissibility of used copulas and of the final
nested distribution should be carefully checked. Here the copula C̃ is used without uniform
margins to create a multivariate distribution when the final nested density remains positive on
the whole domain. Other constructions ensuring this admissibility could be investigated, like
the use of Hierarchical Kendall Copula, as in Brechmann (2014). However such supplementary
investigations are beyond the scope of this paper.

Remark that in the model presented here, for the sake of simplicity, the root copula C̃ in (26) has
only two arguments (two child copulas). The methodology detailed here is however applicable
with more arguments. The hierarchical copula detailed here is also a two-step hierarchical copula,
with only one imbrication level, but the methodology can be extended to more levels. The interest
reader is referred to Hofert and Pham (2013) or Brechmann (2014).
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7.2. Estimation results

The parameters of each cluster copula transformation TA and TB in (24) and (25) will be respec-
tively denoted by θA and θB. At last, parameter of marginal transformation TAi will be denoted
θAi , for i ∈ A, and parameter of marginal transformation TBi will be denoted θBi , for i ∈ B. The
obtained results are gathered in tables below.

Parameters FA in (24) m h ρ1 ρ2 η

θA -2.418 -0.168 -0.831 -0.517 -2
θA2 -0.262 0.747 -0.136 -0.135 -4
θA3 1.711 0.576 -0.389 -0.315 -4
θA5 2.061 0.300 -0.401 -0.104 -4

Parameters FB in (25) m h ρ1 ρ2 η

θB 0.168 0.776 -0.168 -0.271 -2
θB1 1.823 0.094 -0.277 -0.003 -4
θB4 -0.449 0.491 0.032 -0.029 -4

To estimate the external transformation T of model (26) we firstly construct a bivariate pseudo
data-set:

Z1 = FA(X1,X4),

Z2 = FB(X2,X3,X5).

Then we fit on this bivariate data-set a model

F̃(Z1,Z2)(z1,z2) = T ◦C0(T−1 ◦ F̃1(z1), T−1 ◦ F̃2(z2)), (27)

with F̃i = T ◦T−1
1 ◦Fi , for i = 1,2.

The parameter of transformation T in (27) will be denoted θ , parameters of transformation T1 and
T2 will be respectively denoted by θ1 and θ2. The obtained values are gathered in table below.

Parameters F̃(Z1,Z2) in (27) m h ρ1 ρ2 η

θ -1.225 0.126 -0.243 -0.150 -2
θ1 0.401 0.682 -0.055 -0.384 -4
θ2 0.478 0.864 0.081 -0.250 -4

Both data-set (Z1,Z2) and a graphical illustration of the fit of model (27) on this data using the
estimated parameters above, are given in Figure 10.

We evaluate the Mean Absolute Error in (21) for final model in (26) and we obtain MAE = 0.0088
and SAE = 0.0636. This value is smaller than all values in Table 5. Furthermore, as in Tables 6
and 7, we consider the fit of the bivariate distributions F(Xi,X j) and of the marginals FXi , for
i, j = 1, . . . ,5. To this aim we evaluate the SAEi, j and MAEi, j errors in (22)-(23) using the nested
model in (26). Results are gathered in Table 9. Remark that errors in Table 9 are smaller than all
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FIGURE 10. Left: Adjustment on the diagonal section for the pseudo-data (Z1, Z2); empirical estimation of the diagonal
F̂n,(Z1,Z2)(x,x) (dotted line) versus our parametrical model (full line). Right: Plot of the pseudo-data (Z1, Z2).

TABLE 9. Supremum Absolute Errors SAEi, j (first lines) and Mean Absolute Errors MAEi, j (second lines) using the
nested model F̃ in (26) with parameters as in table above. Better results than those in Tables 6 and 7 are indicated in
bold font.

Nested model F̃ in (26) with optimized thresholds
X1 X2 X3 X4 X5

X1
0.0088
0.0039

X2
0.0308 0.0146
0.0080 0.0051

X3
0.0305 0.0320 0.0209
0.0114 0.0066 0.0058

X4
0.0245 0.0393 0.0351 0.0139
0.0045 0.0100 0.0100 0.0053

X5
0.0342 0.0376 0.0342 0.0619 0.0237
0.0071 0.0079 0.0103 0.0204 0.0041

values previously obtained in Tables 6-7. Analogously to Figures 4-6, and for the same couples of
random variables, graphical illustrations of Table 9 are provided in Figure 11.
As one can see in Table 9, results with this nested model are very good. In particular, one can see
in Figure 11 and in Table 9 that absolute errors in every bi-dimensional projection remain very
small. This model is however a simple illustration to feasible improvements of the initial model,
when the dimension is greater than 2, without using heavy optimization algorithms.

As remarked above, one have to ensure that the Equations (24), (25) and (26) are proper distribu-
tion functions. We verify here the admissibility for external transformations T , TA and TB from
Proposition 2.1 in Di Bernardino and Rullière (2013b).
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FIGURE 11. Errors |F(Xi,X j)(x,y)−Fn(x,y)|, for (x,y) in a lattice of 100× 100 points, where Fn is the empirical
distribution function and F(Xi,X j) is the parametric nested model in (26) for (i, j)= (1, 4) (left), (i, j)= (2, 5) (centre
panel), (i, j)= (3, 4) (right). Black cross represents the maximum error SAEi, j in the considered lattice (see (22)). Black
dots represent the associated rainfall data (Xi,X j).

Consider an external transformation τ , as TA, TB or T in respective Equations (24), (25) and
(26). Denote by dτ the dimension of this external transformation, and τ(i) the i−th derivative of
the function τ , i = 1, . . . ,dτ . For any considered external transformation τ , the transformation is
admissible if and only if each quantity fτ,i(x) is nonnegative for x∈ (0,1) and for each i= 1, . . . ,dτ ,
where : 

fτ,1(x) = τ(1)(x)
fτ,2(x) = τ(1)(x)+ xτ(2)(x),
fτ,3(x) = τ(1)(x)+3xτ(2)(x)+ x2τ(3)(x).

In Figure 12 we have drawn, for x ∈ (0,1),

mτ = min{ln fτ,i(x), i = 1, . . . ,dτ} , (28)

for τ ≡ T in (26) and dτ = 2 (left), for τ ≡ TB in (25) and dτ = 2 (centre panel), for τ ≡ TA in (24)
and dτ = 3 (right).

When functions fτ,i are continuous, i ≤ dτ , their logarithm tends to −∞ before fτ,i becomes
negative, and a lower bound of the logarithm ensure that mτ is well-defined for x ∈ (0,1), so that
the quantity mτ helps checking the admissibility of τ , especially for very small values of fτ,i. As
one can see in Figure 12, for each transformation T, TB, TA, the quantity in (28) is well-defined
for each x ∈ (0,1) and inferiorly bounded. Then, we can deduce the admissibility for considered
external transformations T , TB and TA.
To illustrate the danger to use a single criterion, and the need to check admissibility conditions, we
propose in Figure 13 an illustration of situations that can happen with deliberately non admissible
transformations. In the left panel of the Figure 13, we have drawn the function mτ in (28) for a
typical non-admissible external transformation τ (in this example associated to the cluster A, see
(24)). What is noticeable is that this non-admissible transformation is however leading to a good
value of global MAE and SAE criteria for the final nested model in (26), MAE = 0.0057 and
SAE = 0.0654. These error values have to be compared with a MAE = 0.0088 and SAE = 0.0636
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FIGURE 12. Admissibility conditions in (28) for transformations T in (26) (left) and TB in (25) (centre panel) and TA
in (24) (right).

previously obtained using admissible transformations.

In the right panel of Figure 13, we have drawn errors |F(X3,X4)(x,y)− Fn(x,y)|, for (x,y) in
a lattice of 100× 100 points, where Fn is the empirical distribution function and F(X3,X4) is
the parametric nested model in (26) using this non-admissible external transformation τ . The
maximum error is SAE3,4 = 0.0906 in the considered lattice (at the black cross point). Furthermore
MAE3,4 = 0.0201. These values are larger then associated values in Table 9, i.e., SAE3,4 = 0.0351
and MAE3,4 = 0.0100. Despite good global criteria MAE and SAE, admissibility conditions
are not fulfilled, and projected criteria MAE3,4 and SAE3,4 are disappointing. This shows that
projected criteria may behave differently than global criteria, and that the admissibility conditions
have to be checked carefully to avoid undesirable behavior of the nested adjustment.

7.3. Critical Layers for nested model

Let α ∈ (0,1) be a targeted level for a critical layer. Let C0 be the initial copula to be transformed,
and assume that C0 is the independent copula.

The analytical critical layers of the distributions FB and FA are easy to obtain. For FB in (25), we
have

∂LB(α) = {(x1,x4) : FB(x1,x4) = α}

=
{
(x1,x4) : TB ◦C0(T−1

B ◦ F̃1(x1),T−1
B ◦ F̃4(x4)) = α

}
=

{
(x1,x4) : T−1

B ◦ F̃1(x1) ·T−1
B ◦ F̃4(x4) = T−1

B (α)
}
.

Choosing p such that T−1
B ◦ F̃1(x1) = (T−1

B (α))p, one gets T−1
B ◦ F̃4(x4) = (T−1

B (α))1−p. Finally,

∂LB(α) =
{
(x1,x4) : x1 = F̃−1

1 ◦TB
(
(T−1

B (α))p) ,x4 = F̃−1
4 ◦TB

(
(T−1

B (α))1−p) , p ∈ (0,1)
}
.

Analytical expressions of the inverse of any transformed margins F̃i = T ◦T−1
i ◦Fi, for i ∈ B, are

available since inverse transformations are given and since the initial distribution Fi is chosen to
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FIGURE 13. Left: Function mτ in (28) for a typical non-admissible external transformation τ . This non-admissible
transformation τ corresponds here to a non-admissible external transformation TA in (24) however leading to a
good value of global MAE and SAE criteria for the final nested model in (26), MAE = 0.0057 and SAE = 0.0654.
Right: Errors |F(X3,X4)(x,y)−Fn(x,y)|, for (x,y) in a lattice of 100×100 points, where Fn is the empirical distribution
function and F(X3,X4) is the parametric nested model in (26) using the non-admissible external transformation τ for the
transformation TA. Black cross represents the maximum error SAE3,4 = 0.0906 in the considered lattice. Black dots
represent the associated rainfall data (X3,X4).

be readily invertible.

Analogously, we get, for FA in (24)

∂LA(α) = {(x2,x3,x5) : x2 = F̃−1
1 ◦TB

(
(T−1

B (α))p1
)
,x3 = F̃−1

3 ◦TB
(
(T−1

B (α))p2
)
,

x5 = F̃−1
5 ◦TB

(
(T−1

B (α))1−p1−p2
)
, p1, p2 ∈ (0,1), p1 + p2 < 1}.

For the nested distribution F̃ in (26), one can write,

∂L(α) =
{
(x1, . . . ,x5) : F̃(x1,x2,x3,x4,x5) = α

}
=

{
(x1, . . . ,x5) : T ◦C0

(
T−1 ◦FA(x2,x3,x5),T−1 ◦FB(x1,x4)

)
= α

}
=

{
(x1, . . . ,x5) : T−1 ◦FA(x2,x3,x5) ·T−1 ◦FB(x1,x4) = T−1(α)

}
Now choosing s1 ∈ (0,1) such that T−1◦FB(x1,x4)= (T−1(α))s1 , one must have (T−1FA(x2,x3,x5))

1−s1 =
(T−1(α))1−s1 , so that

∂L(α)=
{
(x1, . . . ,x5) : FB(x1,x4) = T

(
(T−1(α))s1

)
,FA(x2,x3,x5) = T

(
(T−1(α))1−s1

)
, s1 ∈ (0,1)

}
=
{
(x1,x2,x3,x4,x5) : (x1,x4) ∈ ∂LB

(
T
(
(T−1(α))s1

))
,(x2,x3,x5) ∈ ∂LA

(
T
(
(T−1(α))1−s1

))
, s1 ∈ (0,1)

}
.

An illustration of critical-layers ∂LA(α) and ∂LB(α) derived above is provided in Figure 14.

Journal de la Société Française de Statistique, Vol. 156 No. 1 11-50
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



Estimation of multivariate critical layers: Applications to rainfall data 45

FIGURE 14. Left: 2-dimensional critical-layers ∂LB(α) with α = 0.2,0.5,0.9. Associated non-parametric empirical
critical-layers are drawn in blue dashed lines. Right: 3-dimensional critical layers ∂LA(α) with α = 0.3,0.9. Black
dots represent rainfall data (X1,X4) (left) and (X2,X3,X5) (right).

8. Simulation study

In order to illustrate the replication of the good performances of the estimation procedure pro-
vide in Sections 6-7 in the case of rainfall real data, we develop in the following a simulation study.

Let (X ,Y ) be a bivariate vector follows a Copula 4.2.12 in Nelsen (1999) with θ = 3. Furthermore
X ∼ α Exp(1) + (1−α) Pareto(3) and X ∼ (1−α) Exp(1) + α Pareto(3). In the following we
consider α = 0.2 and M = 100 Monte Carlo bivariate independent samples S1, . . . ,SM, with
S j = {(Xi,Yi)}i∈{1,...,n} with sample size n = 500 and n = 1000 from the distribution presented
above. To illustrate the shape of the considered bivariate dependence, the pseudo-observations
from the sample S1 with n = 500 are displayed in Figure 15 (left panel).

For both marginal distributions X and Y , we tested 15 different classes of classical marginals
and we fitted the best model using the Akaike Information Criterion. The best fitted marginal
distributions are log-normal and the corresponding parameters for the sample S1 with n = 500
are gathered in Table 10. The adjustment on this considered sample S1 with n = 500 is illustrated
in Figure 15 (centre and right panel).

TABLE 10. Fitted parameters for log-normal marginal distributions X and Y on the sample S1 with n = 500.

Log-normal marginals X Y
µ 0.2429 0.3952
sd -0.1949 0.7627

As in Sections 6-7, to appreciate the quality of the adjustment we use the Supremum Absolute
Error (see Equation (20) in dimension 2) on a bivariate lattice G and the Mean Absolute Error on
the simulated data (see Equation (21) in dimension 2). In particular, in Tables 11- 12 we gathered
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FIGURE 15. Pseudo-observations from the sample S1 with n = 500 from Copula 4.2.12 in Nelsen (1999) with θ = 3
(left panel). The adjustment of marginals on the sample S1 is displayed in the centre and right panels using the
log-normal distributions with parameters in Table 10 (dashed red lines). The marginal empirical distributions are
represented using a black line.

the mean (denoted by SAE and MAE) and the standard deviation (denoted by sd(SAE) and
sd(MAE)) of these considered distances on the samples S1, . . . ,SM for M = 100, with n = 500
(Table 11) and n = 1000 (Table 12).

In Tables 11- 12 we tested different parametric models. In particular we choose a specific copula
structure (see columns in Tables 11- 12) and the associated log-normal marginals with maximum
likelihood estimated parameters (as discussed above, see Figure 15, centre and right panels) . In
the first column we displayed the results for the transformed distribution function F̃ obtained
using our estimation procedure (see Section 5). In the last column we gathered the results obtained
using the true copula model (Copula 4.2.12 in Nelsen, 1999 with θ = 3) and with estimated
log-normal marginals. Finally other copula models are illustrated in the remaining columns in
order to quantify the misspecification model error.

TABLE 11. Mean and Standard deviation of the Supremum Absolute Errors (SAE) and Mean Absolute Errors (MAE)
(see Equations (20)-(21) in dimension 2) for the considered 2−dimensional parametric models. Best results are
indicated in bold font. Here the sample size is n =500.

Models F̃ Frank Gumbel Clayton Ali-Mikhail-Haq Joe Copula Copula 4.2.12

SAE 0.1002681 0.1174508 0.1174527 0.1174563 0.1799419 0.1174562 0.1174524

sd(SAE) 0.0122472 0.0087554 0.0087524 0.0087497 0.0259653 0.0087466 0.0087530

MAE 0.0122261 0.0356336 0.0386076 0.0384325 0.1166529 0.0460649 0.0367786

sd(MAE) 0.0035945 0.0032964 0.0034439 0.0034859 0.0032843 0.0030135 0.0035753

In Figure 16 (right) we present the parametric estimation of the 2−dimensional diagonal for the
sample S1 with n = 500, using the transformed model and the classical parametric competitors
introduced above. Furthermore the admissibility conditions in (28) are verified for the transforma-
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TABLE 12. Mean and Standard deviation of the Supremum Absolute Errors (SAE) and Mean Absolute Errors (MAE)
(see Equations (20)-(21) in dimension 2) for the considered 2−dimensional parametric models. Best results are
indicated in bold font. Here the sample size is n =1000.

Models F̃ Frank Gumbel Clayton Ali-Mikhail-Haq Joe Copula Copula 4.2.12

SAE 0.0923287 0.1167403 0.1167405 0.1167439 0.1722203 0.1167402 0.1167401

sd(SAE) 0.0111054 0.0062205 0.0062206 0.0062198 0.0282795 0.0062203 0.0062201
MAE 0.0101135 0.0346139 0.0378465 0.0372831 0.1154758 0.0454735 0.0359502

sd(MAE) 0.0017111 0.0025339 0.0026389 0.0025753 0.0024937 0.0022598 0.0027549

tion T for the sample S1 with n = 500 (see Figure 16, left).
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FIGURE 16. Left: Admissibility conditions in (28) for transformation T for the S1 with n = 500. Right: Estimation
of the 2-dimensional survival diagonal in logarithmic scale for S1 with n = 500. Empirical diagonal is presented
in black thick line; diagonal of the transformed model F̃ in full red line; Gumbel model in blue dashed line; Frank
model in orange dashed line; Clayton model in green dotted line; AMH model in violet dashed line; Joe model in black
dashed-dotted line; Copula 4.2.12 in dashed dark red line.

9. Conclusion

We described an estimation procedure for multivariate distribution functions. This methodology
provides also parametric expressions of associated quantities as critical layers, Kendall’s func-
tion, return periods. The considered model is based on transformations of the marginals and of
the dependence structure within the class of Archimedean copulas. The proposed estimation is
straightforward, it has a tunable number of parameters and it does not rely on any optimization
procedure. Furthermore the proposed adjustment is flexible, it can be adapted to different types

Journal de la Société Française de Statistique, Vol. 156 No. 1 11-50
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2015) ISSN: 2102-6238



48 E. Di Bernardino and D. Rullière

of data (multimodal distribution or non-exchangeable vectors, see for instance illustration in
Section 7). Numerical illustrations are provided using a rainfall real data-set and using simulated
data.

Some perspectives for future work are the following ones. Firstly, as we remarked above our
procedure does not require any optimization procedure. However an optimization can improve the
quality of the estimation. Firstly the choice of thresholds Qi and the smoothing parameters ηi

can be optimized (in this paper these sets are arbitrarily chosen). Also the parameters linked to
the estimation of the Archimedean copula can be optimized, as the choice of a generator among
its equivalence class via the point (x0,y0), or the kernel for smoothing empirical diagonal of the
copula.

Furthermore, the impact on the tail of transformed copulas has to be investigated (see for in-
stance Durante et al., 2010). In particular the relationship between the asymptote of the parametric
transformation T and the regular variation of the transformed tails has been recently studied
by Di Bernardino and Rullière (2014). A good understanding of the tail behavior is indeed re-
quired to estimate the shape of the transformation near 0 and 1, in extreme quantiles where there
is a lack of data. More precisely in the aforemention paper is shown that some parameters of
hyperbola are linked to the upper and lower multivariate tail dependence coefficients. This implies
the possibility to modify the tail dependency of the transformed distribution without changing the
global adjustment. Using these results the derivation of a complete estimation procedure both for
the center of the distribution and for the tails is an open interesting point.
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