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Abstract: Let Y be an I×Q ratings data set, where Q represents the number of items, and I represents the number of
rated objects or the number of individuals expressing their opinions on the Q items. This paper considers two kinds of
data codings before the application of correspondence analysis (CA) or taxicab correspondence analysis (TCA), where
TCA is a L1 variant of CA: the doubled data set YD of size I×2Q, and the data set Ynega of size I× (Q+1) where a
column named nega is added representing the cumulative complementary columns. The interpretation of maps in CA
of YD is based on the lever principle. We use the law of contradiction to interpret maps of CA and TCA of Ynega. We
provide necessary and sufficient conditions for TCA of Ynega or YD so that the first factor score is an affine function of
the sum score of the ratings; and, if this is true for a dataset, then following Cox we suggest the use of the sum score of
ratings either to reduce the Q ratings into a single index, or to summarize the underlying latent variable. This ordinal
inference can be of two types: weak or strong. In the case of a rankings dataset, the proposed approach corresponds to
Borda count rule or modified Borda count rule. Examples are provided.

Résumé : Soit Y un tableau de notes sur I×Q; où I est un ensemble d’individus, et la ième ligne représente les notes
attribuées par l’individu i sur Q variables ou attributs. Dans cet article nous étudions deux codages du tableau Y avant
de le traiter par analyse des correspondances (AC) ou analyse des correspondances du taxi (ACT), ACT étant une
variante robuste de AC basée sur la norme L1 : Le tableau dédoublé YD de dimension I×2Q, et le tableau Ynega de
dimension I× (Q+ 1) où une colonne nommée nega est ajoutée à Y representant la note complémentaire globale.
L’interprétation des diagrammes du tableau YD par AC ou ACT est basée sur le principe du bras de levier. Nous
utilisons la loi de contradiction pour interpréter les diagrammes du tableau Ynega par AC ou ACT. Une condition
nécessaire et suffisante pour que l’analyse du tableau Ynega par ACT et l’analyse du tableau YD par ACT soient
equivalentes est que le 1er facteur est une fonction affine du total de notes. Et si cette condition est satisfaite, suivant
Cox, nous utilisons le 1er facteur comme un résumé de la variable latente. Cette inférence peut être de deux sortes,
faible ou forte. Dans le cas de données des rangs représentant des préférences individuelles, la méthode correspond à la
règle de Borda ou une version modifiée. Deux exemples de natures différentes sont exposés.

Keywords: Total de notes, nega, dédoublement, principe du bras de levier, loi de contradiction, équation personnelle,
point aberrant, règle de Borda, codage de Nishisato, analyse des correspondances du taxi, analyse d’items
Mots-clés : Sum score, nega, doubling, lever principle, law of contradiction, personal equation, response styles, rogue
items, strategic voters, Borda count, Nishisato mapping, taxicab correspondence analysis, IRT
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1. Introduction

Cox (2006) titled his talk “In praise of the simple sum score“ at the International Conference on
“Statistical Latent Variables in the Health Sciences“ held in Perugia, Italy; see also Cox (2008)
and Cox and Wermuth (2002). Cox assumed the following:
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2 V. Choulakian

(A1) Let Y = (yiq) for i = 1, ..., I and q = 1, ...,Q be a data set, where a sample of I individuals
are described by Q broadly similar measurements or scores.

(A2) The Q variables point in the same direction.
Then, he proposed the use of the simple sum score of the rows, yi∗, either as a summary of the

data by a single index, or, as a representative of the underlying latent unobserved variable. As
examples, Cox cited data sets having for subject study: true-false questions in an arithmetic test,
and, items in health-related quality of life questionnaire. He concluded with the following:

(C1) When all items point in the same direction, communicability and statistical efficiency
often point to simple sum score.

(C2) It is desirable to define items to make simple sum reasonably efficient.
Assumption A2 is very general but crucial; at a first glance, it seems transparent and based on

the common sense; it has the important consequence that each item should contribute a positive
part to the sum score. So, the major problem is how to know that (A2) is true: The approach
proposed in this paper is direct and geometric based on the most robust matrix norm, named
taxicab matrix norm.

The aim of this paper is to show that taxicab correspondence analysis (TCA) is a tool that can
accomplish points (C1) and (C2) for a ratings data set Y, because the first principal factor score
of TCA of Y properly coded is intimately related to the sum score of ratings, as will be seen. This
extends the main result in Choulakian et al. (2013), where they showed that for Q polytomous
items, the first principal factor score of multiple TCA can always be interpreted as a sum score of
Q Bernoulli random variables. TCA is a L1 variant of correspondence analysis (CA) proposed by
Choulakian (2006b).

CA is a popular and well established method to analyze questionnaires using rating scales.
Cazes (1990) presented a panorama of different coding schemes of ratings for the application of
correspondence analysis (CA). Essentially there are three kinds of codings of a ratings data set
Y = (yiq) for i = 1, ..., I and q = 1, ...Q, where Q represents the number of items, and I represents
the number of rated objects or the number of individuals expressing their opinion on the Q items.
It is customery to represent the positive pole of an item q by q+ and its negative or complementary
pole by q−. Further, let us suppose that the minimum value of q+ is 0 and its maximum value
is mq; thus for any item q, (q+)+(q−) = mq. Let 1I be the vector having I components of ones
and m = (mq) the column vector with Q coordinates. We define YD = (Y|1I m′−Y) the doubled
dataset of dimension I×2Q, and, Ynega = (Y|nega) of dimension I× (Q+1), where the vector
nega = (1I m′−Y)1Q represents the cumulative of the complementary columns. The coding YD

is very well known, and it is quite old, see Benzécri (1973), page 25. The interpretation of maps
produced by CA of YD are based on the well-known lever principle, see for instance, Greenacre
(1984), page 175.

The coding Ynega is the most recent, and it has been applied only twice in the statistical
literature by Adames (1993) and Esmieu et al. (1993); Murtagh (2005), page 79, mentions it
but provides no applications. There are some issues in the interpretation of maps produced by
CA of Ynega. In this paper, we use the law of contradiction to interpret maps produced by CA
and TCA of Ynega. According to Eves (1997), the method of reductio ad absurdum, which was
brillantly used by Euclid, is based on two complementary principles of classical logic: the law of
contradiction and the law of excluded middle. The law of contradiction shows that, in section 4,
at most the first dimension of CA of Ynega is interpretable.
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Taxicab Correspondence Analysis of Ratings and Rankings 3

The third is Ypers, where the data are coded according to Benzécri’s personal equation mapping
for Likert type data, see Benzécri and Benzécri (1989), or Cazes (1990). Dual scaling is similar
to CA; within the context of dual scaling, Nishisato (1980) proposed a nonlinear mapping of
ratings of data by ranking them; we consider Nishisato’s coding of ratings a variant of Ypers,
and its analysis by TCA is related to YD or Ynega via the well-known Borda count or modified
Borda count rule in voting theory. de Borda (1781) suggested assigning Q− 1, Q− 2, , ...,1,0
points to the Q candidates, respectively, where the top-ranked candidate receives Q−1 credits, the
second-ranked candidate receives Q−2 credits, and the last ranked candidate 0 credit. Summing
the credits over the voters corresponds to the Borda count rule to rank the candidates according to
the received credits from top to bottom.

This paper considers only YD and Ynega; that is why we did not define Ypers. It is well known
that CA applied to these three codings of the same data set produces different numerical results,
and there is no equivalence relationship between any two of them. Deniau et al. (1979) compared
CA dispersion measures of two correspondence matrices, where one is obtained from the other
by grouping of columns or rows; using their result we get λ D

α ≥ λ
nega
α for α ≥ 1, where λα is the

inertia (dispersion measure) of the αth principal axis.

In this paper we provide a necessary and sufficient condition for TCA of Ynega or YD so that
the first factor score is an affine function of the sum score of the ratings. And, if this is satisfied by
a dataset, then following Cox, we suggest the use of the sum score of ratings either to reduce the Q
ratings into a single index, or to summarize the underlying latent variable. This ordinal inference
can be of two types: weak or strong, the former based on TCA of Ynega and the latter based on
TCA of YD. Furthermore, if TCA of Ynega is not related to the sum score statistic, and we want
absolutely to use the sum score statistic (this is Cox’s point C2 above concerning the efficiency of
the sum score), then TCA can identify the rogue or incoherent items, items that do not point in
the same direction as the rest, that have to be deleted so that the sum score statistic calculated on
the remaining items can be used. This shows that TCA of Ynega is completely related to the sum
score statistic; while TCA of YD is related to the sum score statistic if and only if it is equivalent
to TCA of Ynega. We can rephrase this otherwise in the following way: If there are rogue items,
then the maps or biplots obtained by CA or TCA of Ynega are useless and senseless by the law
of contradiction; while the maps obtained by CA or TCA of YD can be useful and meaningful,
because they can be interpreted by the lever principle.

The importance of applying CA or TCA to the coded data set YD or Ynega, and not to the
original data set Y stems from the following consideration. Suppose that all Q ratings of two
distinct rows in Y are linearly related, that is, yiq = α yi1q for α > 0; this implies that the rows i
and i1 have identical profiles, and by CA or TCA they can be merged together into one, which
will be misleading.

This paper is organized as follows: In section 2 we present a general criterion for the assumption
(A2); section 3 presents an overview of TCA; section 4 presents the main theoretical results; in
section 5 we present the law of contradiction and its application to CA and TCA of Ynega; in
section 6 we present 2 applications; and we conclude in section 7.

We suppose that the theory of correspondence analysis (CA) is known, which can be found,
among others, in Benzécri (1973), Benzécri (1992), Greenacre (1984), Gifi (1990), Nishisato
(1994), Le Roux and Rouanet (2004) and Murtagh (2005).
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4 V. Choulakian

2. A general criterion

Suppose we have a set of Q random variables x′=(X1,X2, ...,XQ) with variance covariance matrix
Σ such that for 2 distinct variables cov(Xi,X j) = 0 with zero probability. Then it is transparent
that (X1,X2) point in the same direction when the covariance cov(X1,X2)> 0.

We consider the centered random variable S(ε)= ε1(X1−EX1)+ε2(X2−EX2)+...+εQ−1(XQ−1−
EXQ−1)+ (XQ−EXQ) = u′(x−Ex), where ε ∈ {−1,+1}Q−1, u′ = (ε 1), E is the averaging
operator and define the centered dispersion measure

λα(ε) = E|S(ε)|α for α ≥ 1.

The content of this paper is based on the following general criterion
Definition 1: The Q random variables (X1,X2, ...,XQ) point in the same direction if u = 1Q =

argmaxλα(ε) over ε ∈ {−1,+1}Q−1.
An important consequence of Definition 1 is: If the Q random variables (X1,X2, ...,XQ) point

in the same direction then the random variable

S(ε) = S(1Q−1)

=
Q

∑
i=1

(Xi−EXi)

is the centered sum score statistic. Two prominent values of α are 1 and 2.
For α = 2,

maxλ2(ε) = variance(S(ε))

= u′Σu over ε ∈ {−1,+1}Q−1,

corresponds to the centroid method of component analysis, which preceded Hotelling’s PCA, see
(Choulakian (2003), Choulakian (2005), Choulakian (2006a)): The centroid method of principal
component analysis was used extensively in the psychometric literature before the advent of the
computers. It was first proposed by Burt (1917) and developed by Thurstone (1931). The centroid
method is discussed in every major book in quantitative psychology treating factor analysis of
data, such as Thurstone (1947), Horst (1965) and Harman (1967). In this case, if the Q random
variables (X1,X2, ...,XQ) point in the same direction, then we have ∑i< j cov(Xi,X j)> 0; and, in
particular, for Q = 2, we have the evident result cov(X1,X2)> 0. However, note that the condition,
for two distinct variables cov(Xi,X j)> 0, is sufficient, but not necessary, for ∑i< j cov(Xi,X j)> 0.

For α = 1,
maxλ1(ε) = E|S(ε)| over ε ∈ {−1,+1}Q−1

corresponds to the taxicab principal components approach, which will be used in this paper.

3. Taxicab Correspondence analysis: An overview

Let X = (xi j) be a contingency table cross-classifying two nominal variables with I rows and
J columns, and P = X/x∗∗ be the associated correspondence matrix with elements pi j, where
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Taxicab Correspondence Analysis of Ratings and Rankings 5

x∗∗ = ∑
J
j=1 ∑

I
i=1 xi j is the sample size. We define as usual pi∗ = ∑

J
j=1 pi j , p∗ j = ∑

I
i=1 pi j, the

vector r = (pi∗) ∈ RI, the vector c = (p∗ j) ∈ RJ , and Dr = Diag(r) a diagonal matrix having
diagonal elements pi∗, and similarly Dc = Diag(c). Let k = rank(P)−1. TCA is computed in
two steps: In the first step we compute the taxicab singular value decomposition (TSVD) of
P, which is a stepwise matrix decomposition method based on a particular matrix norm, see
below equation (3); similar to SVD, TSVD produces an ordered sequence of basic coordinates
(aα ,bα ,λα) ∈ RI×RJ×R+ for α = 1, ...,k. In the second step, by reweighting the pair of basic
coordinates (aα ,bα) by respective weights of the columns, Dr, and the rows, Dc, we obtain TCA.

3.1. Taxicab singular value decomposition

Let P(α) be the residual data matrix at the αth iteration, where, P(0) = P for α = 0. TSVD
consists of maximizing the L1 norm of the linear combination of the columns of the matrix P(α)

subject to L∞ norm constraint, where the L1 norm of a vector v = (v1, ...,vm)
′ is defined to be

||v||1 = ∑
m
i=1 |vi| and ||v||

∞
= maxi |vi| is the L∞ norm; more precisely, it is based on the following

optimization problem
max

∣∣∣∣∣∣P(α)u
∣∣∣∣∣∣

1
subject to ||u||

∞
= 1; (1)

or equivalently, it can also be described as maximization of the L1 norm of the linear combination
of the rows of the matrix P(α)

max
∣∣∣∣∣∣P(α)′v

∣∣∣∣∣∣
1

subject to ||v||
∞
= 1. (2)

Equation (1) is the dual of (2), and they can be reexpressed as matrix operator norms

λα = max
u∈RJ

∣∣∣∣P(α)u
∣∣∣∣

1
||u||

∞

,

= max
v∈RI

∣∣∣∣P(α)′v
∣∣∣∣

1
||v||

∞

, (3)

= max
u∈RJ ,v∈RI

v′P(α)u
||u||

∞
||v||

∞

,

which is a well known and much discussed matrix norm related to Grothendieck problem, see for
instance, Alon and Naor (2006). The solution to (3), λα , is a combinatorial optimization problem
given by

max ||P(α)u||1 subject to u ∈ {−1,+1}J . (4)

Equation (4) characterizes the robustness of the method, in the sense that, the weights affected to
the columns (similarly to the rows by duality) are uniform ±1. The αth principal axes, uα and
vα , are computed by

uα = argmax
u

∣∣∣∣∣∣P(α)u
∣∣∣∣∣∣

1
such that ||u||

∞
= 1, (5)

and
vα = argmax

v

∣∣∣∣∣∣P(α)′v
∣∣∣∣∣∣

1
such that ||v||

∞
= 1. (6)
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6 V. Choulakian

Let aα represent the αth TSVD coordinates of the rows of P(α) by projecting the rows of P(α)

on the principal axis uα , and bα represent the αth TSVD coordinates of the columns of P(α) by
projecting the columns of P(α) on the principal axis vα . These are given by

aα = P(α)uα and bα = P(α)′vα ; (7)

and
||aα ||1 = v′αaα = ||bα ||1 = u′αbα = λα . (8)

Equations (7) are named transition formulas, because vα and aα , and , uα and bα , are related by

uα = sgn(bα) and vα = sgn(aα), (9)

where sgn(bα) = (sgn(bα(1)), ...,sgn(bα(J))′, and sgn(bα( j)) = 1 if bα( j) > 0, sgn(bα( j)) =
−1 otherwise.

To obtain the (α +1)th TSVD row and column coordinates aα+1 and bα+1, and corresponding
principal axes uα+1 and vα+1, we repeat the above procedure on the residual dataset

P(α+1)= P(α)−aαb′α/λα . (10)

We note that the rank(P(α+1)) = rank(P(α))−1, because by (7), (8) and (9)

P(α+1)uα = 0 and P(α+1)′vα = 0; (11)

which implies that
u′α−1bα = 0 and v′α−1aα = 0 for α = 1, ...,k. (12)

From which one gets the data reconstitution formula for the correspondence matrix P as a function
of the basic coordinates (aα ,bα) for α = 1, ...,k associated with the dispersion measures λα

pi j = pi.p. j +
k

∑
α=1

aα(i)bα( j)/λα . (13)

In TCA of P both basic vectors aα and bα for α = 1, ...,k satisfy the equivariability property, see
Choulakian (2008b). This means that aα and bα are balanced in the sense that

λα

2
= ∑

i
[aα(i)|aα(i)> 0]

= −∑
i
[aα(i)|aα(i)< 0] (14)

= ∑
j
[bα( j)|bα( j)> 0]

= −∑
j
[bα( j)|bα( j)< 0] ;

this easily follows from (9) and (12).
In TSVD, the optimization problems (3), (5) or (6) can be accomplished by two algorithms.

The first one is based on complete enumeration (4); this can be applied, with the present state
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Taxicab Correspondence Analysis of Ratings and Rankings 7

of desktop computing power, say, when min(I,J) ' 25. The second one is based on iterating
the transitional formulas (7), (8) and (9), similar to Wold (1966)’s NIPALS (nonlinear iterative
partial alternating least squares) algorithm, also named criss-cross regression by Gabriel and
Zamir (1979). It is easy to show that this is also an ascent algorithm. The criss-cross nonlinear
algorithm can be summarized in the following way, where b is a starting value:

Step 1: u =sgn(b), a = P(α)u and λ (a) = ||a||1 ;
Step 2: v =sgn(a), b = P(α)′v and λ (b) = ||b||1 ;
Step 3: If λ (b)−λ (a)>0, go to Step 1; otherwise, stop.
This is an ascent algorithm; that is, it increases the value of the objective function λ at

each iteration. The convergence of the algorithm is superlinear (very fast, at most two or three
iterations); however it could converge to a local maximum; so we restart the algorithm I times
using each row of P(α) as a starting value. The iterative algorithm is statistically consistent in
the sense that as the sample size increases there will be some observations in the direction of the
principal axes, so the algorithm will find the optimal solution.

3.2. Taxicab correspondence analysis

A simple reweighting of the basic coordinates (aα ,bα) produces TCA factor scores

fα = D−1
r aα and gα = D−1

c bα ; (15)

and (8) becomes
v′αDrfα = u′αDcgα = λα . (16)

One gets the data reconstitution formula both in TCA and CA for the correspondence matrix P as
a function of the factor coordinates (fα ,gα) for α = 1, ...,k associated with the eigenvalues λα

pi j = pi.p. j

[
1+

k

∑
α=1

fα(i)gα( j)/λα

]
. (17)

The visual maps are obtained by plotting the points ( fα(i), fβ (i)) for i = 1, ..., I or (gα( j),gβ ( j))
for j = 1, ...,J, for α 6= β .

TCA does not admit a distance interpretation between profiles; there is no chi-square like
distance in TCA. Fichet (2009) described it as a general scoring method. This paper shows that
for ratings and rankings data sets TCA is related to the sum score.

More technical details about TCA and a deeper comparison between TCA and CA is done in
Choulakian (2006b). Further results can be found in Choulakian et al. (2006), Choulakian (2008b),
Choulakian (2008a), Choulakian and de Tibeiro (2013), Choulakian et al. (2013), Choulakian
(2013) and Choulakian et al. (2014).

4. Main theoretical results

4.1: Notation
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8 V. Choulakian

Let

PD =
(Y | 1I m′−Y)

I m∗
,

and

Pnega =
(Y | (1I m′−Y)1Q)

I m∗
,

be the correspondence matrices associated with YD and Ynega, where m∗ = ∑
Q
q=1mq = m′1Q.

We designate TCA residual correspondence matrices in block form by P(α)
D = (P(α)

D1 |P
(α)
D2 )

and P(α)
nega = (P(α)

nega1|p
(α)
nega) for α = 0, ...,k, where k = rank(PD)−1 = rank(Pnega)−1, P(0)

D = PD

and P(0)
nega = Pnega. Similarly we designate by (fα ,gα ,λα) ∈ RI ×RJ ×R+ for α = 1, ...,k the

ordered sequence of TCA factor scores and dispersion measures. In block notation, we write:
gnega

α = (gnega
1α
′ | gnega

2α
)′ and gD

α = (gD
1α
′ | gD

2α
′ )′. As usual yi∗ = ∑

Q
q=1 yiq designates the sum score

of the ith row, and ytot = ∑
I
i=1 yi∗.

The transposed vector of column masses in Pnega is

c′nega = (1′I Pnega)

= (
1′I Y
I m∗

| 1− ytot

I m∗
) (18)

= (c′1 | c2),

and the transposed vector of column masses in PD is

c′D = (1′I PD)

= (1′I Y | I m′−1′I Y)/(I m∗) (19)

= (c′D1|c′D2).

So the metric matrix defined on the rows of PD is

DD
c = Diag(cD)

= (
Dc1| 0
0 | Dc2

), (20)

and the metric matrix defined on the rows of Pnega is

Dnega
c = Diag(cnega)

= (
Dc1| 0
0 | c2

). (21)

Note that the submatrix Dc1 is common to both DD
c in (20) and Dnega

c in (21).
In both datasets PD and Pnega the vector of row masses is

r = 1I/I, (22)

so the metric matrix defined on the columns is

Dr = II/I (23)

where II is the identity matrix of size I.
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Taxicab Correspondence Analysis of Ratings and Rankings 9

4.2 Main results

The following lemma is fundamental

Lemma 1: P(α)
D2 = −P(α)

D1 for α = 1, ...,k. Further, this result implies that the law of lever or
the lever principle applies; that is

Dc1gD
1α +Dc2gD

2α = 0 for α = 1, ...,k,

where gD
α = (

gD
1α

gD
2α

) contains the αth factor scores of the column categories. Or in terms of basic
coordinates (15)

bD
1α +bD

2α = 0 for α = 1, ...,k,

where bD
α = (

bD
1α

bD
2α

) contains the αth basic vector coordinates of the column categories.

The proofs of all new results can be found in the appendix. Note that the lever principle is
well known in CA, see for instance, Greenacre (1984), page 175. We have the following three
theorems.

Theorem 1 (PD): The first principal row factor score f D
i1 is an affine function of the sum score

yi∗ iff uD
1 = (1Q | −1Q), where

f D
i1 =

2
m∗

(yi∗−
ytot

I
) or corr(fD

1 ,s) = 1,

where s = (yi∗). Note that the way uD
1 = (1Q | −1Q) is defined in Theorem 1 eliminates the sign

indeterminacy of the 1st taxicab principal axis.

Corollary 1: The first nontrivial TCA dispersion measure equals

λ
D
1 =

2
I m∗

I

∑
i=1
|(yi∗−

ytot

I
)|.

If a data set satisfies Theorem 1, then uD
11 = 1Q; that is, the weight of each item q+ is 1. From

which we have

Definition 2: If a dataset satisfies Theorem 1, then the Q variables strongly point in the same
direction, or they are strongly coherent or strongly consistent.

Theorem 2 (Pnega): Properties a, b, c are true iff unega
1 = (1Q | −1).

a) The first principal row factor score f nega
i1 is an affine function of the sum score yi∗; that is,

f nega
i1 =

2
m∗

(yi∗−
ytot

I
) or corr(fnega

1 ,s) = 1.
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10 V. Choulakian

b) The first nontrivial TCA dispersion measure equals twice taxicab norm of the vector p(1)
nega

λ
nega
1 = 2 ||p(1)

nega||1,

=
2

I m∗

I

∑
i=1
|(yi∗−

ytot

I
)|.

c) The nega column p(2)
nega of the residual matrix P(2)

nega is zero

P(2)
nega = (P(2)

nega1|0).

Property b shows that the nega column of P(1)
nega accounts for 50% of the first nontrivial taxicab

dispersion λ
nega
1 . Property c shows that the residual matrix P(2)

nega does not contain any information
on the heavyweight nega column. Properties b and c imply that the first nontrivial factor is
completely determined by the nega column, which plays a dominant heavyweight role, see
Choulakian (2008b). Such a context in CA is discussed by Benzécri (1979) using asymptotic
theory, and in dual scaling by Nishisato (1984), who named it forced classification.

We note that if a data set satisfies Theorem 2, then unega
11 = 1Q; that is, the weight of each item

is 1. From which we have

Definition 3: If a data set satisfies Theorem 2, then the Q variables weakly point in the same
direction, or they are weakly coherent or weakly consistent.

It is evident that: If Q items are strongly coherent, then they are weakly coherent. In section 6,
we present a real data set, which satisfies Theorem 2 but not Theorem 1.

Theorem 3 (equivalence): TCA of YD is equivalent to TCA of Ynega iff uD
11 = unega

11 = 1Q;
where equivalence means

a1) fD
1 = fnega

1 = f1 = ( fi1), where fi1 =
2

m∗
(yi∗− ytot

I ) or corr(f1,s) = 1.
a2) λ

nega
1 = λ D

1 = 2
I m∗ ∑

I
i=1 |(yi∗− ytot

I )|.
a3) gD

11 = gnega
11 and 1′Q Dc2 gD

21 = c2 gnega
21 .

b) For α ≥ 2, P(α)
D1 = P(α)

nega1 =−P(α)
D2 and p(α)

nega = 0.
c1) For α ≥ 2, fD

α = 2fnega
α .

c2) For α ≥ 2, λ D
α = 2λ

nega
α .

c3) For α ≥ 2, gD
1α

= gnega
1α

and gnega
2α

= 0.

4.3: TCA of a rankings dataset
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Taxicab Correspondence Analysis of Ratings and Rankings 11

Let R = (ri j) for i = 1, ..., I and j = 1, ...,J represent a rankings data set, where J objects
have been ranked by I individuals. In voting theory, J represents the number of candidates, I the
number of voters, and ri j is the preference ranking, usually taking values 0, ...,J−1, provided
by the jth voter to the ith candidate. The well known Borda count (BC) ranking of candidates
or the products is obtained by summing over the rows of R, see for instance, Saari (1990) for
some optimal properties of BC. But it is well known that the BC ranking is influenced by strategic
voting, which in our case corresponds to the rankings provided by the rogue individuals; Borda
names the rogue voters "dishonest": a minority of the individuals that do not rank in the same
direction as the majority. Following, Torres and Greenacre (2002), we can apply TCA to the row
doubled RD table of size (2I)× J, and of course similarly to the Rnega table of size (I +1)× J.
Theorems 1, 2 and 3 are also valid for TCA of RD and Rnega where the roles of the columns and
rows are interchanged; for instance, property a) in the 3 theorems now concerns the 1st column
factor score: g j1 is an affine function of the jth column sum r∗ j. So, in the case of a rankings data
set, the proposed approach corresponds to the Borda count rule if all the voters point in the same
direction; or modified Borda count (MBC) rule, because it applies the Borda’s rule for preference
ranking by using the largest number of consistent voters chosen by TCA. This is similar in spirit
to Johnson (1983)’s approach.

5. The law of contradiction

Let S+ be a statement and and S− its negation; then the law of contradiction states that S+ and
S− oppose each other: they can not both hold together, see Eves (1997). We shall use the law
of contradiction as a basis for the interpretation of the maps produced by CA and TCA of Ynega

in the following way. First, we recall that there are Q items, and we represented the positive
pole of an item q, for q = 1, ...Q, by q+ and its negative or complementary pole by q− . By the
law of contradiction, q+ and q− oppose each other. Which in its turn also implies that q+ and
nega = ∪Q

q=1q− oppose each other or they are not associated at all, because the nega contains
q− . For the interpretation of the results by CA and TCA of Ynega we can have the following two
complementary scenarios:

Scenario one happens when

g11(q+)≥ 0 for all q and g1(nega)< 0; (Scen1)

then by the law of contradiction, the first principal dimension is interpretable and it shows the
opposition between the positive poles of the items to their negative poles. Conditional on Scen1,
the principal factor coordinates of the higher dimensions can take two forms:

Form one given by

gα(nega)< 0 and g1α(q+)< 0 for some q and α ≥ 2; (Scen1F1)

which shows that for some items the positive and negative poles are positively associated; this
contradicts the law of contradiction, which implies that, for α ≥ 2 the dimensions are not
interpretable. But this, Scen1F1, happens only for CA of Ynega; for an example see subsection
6.1. For TCA of Ynega the condition Scen1F1 never happens, because Theorem 2 states that if the
condition Scen1 holds, then we will have Form two given by

g2(nega) = 0 and g1α(q+)< 0 for some q and α ≥ 2; (Scen1F2)
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12 V. Choulakian

which states that the nega column is completely eliminated from the rest of the analysis.
Scenario two happens when

g1(nega)< 0 and g1α(q+)< 0 for some q and α ≥ 1; (Scen2)

then for both methods CA and TCA of Ynega, the results are not interpretable by the law of
contradiction.

The above discussion shows that the nega coding is perfectly suited for TCA; but it is very
restrictive for CA, because at most the first dimension will be interpretable. Indeed, Adames
(1993) interpreted only the first dimension of CA of the Foie Canard dataset; in the next section,
we will be able to interpret the first two dimensions of TCA of the Foie Canard dataset. In the
next section, we consider only TCA of Ynega.

6. Examples

We present two examples of different kinds.

6.1. Example 1: Foie de Canard dataset

6.1.1: Introduction

Table 1 presents a three-way data set of ratings, X = (xq ji) for q = 1, , , ,4, j = 1, ...,5 and
i = 1, ...,10, where five judges have rated ten foie de canard (duck liver) products on four items
general appearance (A), cut look (C), odour (O) and taste (T). The data are bipolar ranging from
a negative extreme score of minimum value of 0 to a positive extreme score of mq for q = 1, ...,4,
where m1 = 20, m2 = 40, m3 = 40 and m4 = 150, obviously taste being the most important.
Originally, a weighted sum score statistic based on Table 3, where each judge had uniform weight,
was used to order the products from the best to the worst

f 4� f 8� f 6� f 3� f 7� f 10� f 1� f 9� f 2� f 5.

However, Lavialle et al. (1990) provided five classifications of the ten products using different
optimization criteria based on pairwise comparisons with thresholds; these are grouped in two
classes. The first class is composed of two preference orderings

f 8� f 6� f 4� f 10� f 7� f 1� f 3� f 9� f 2� f 5; (LQV1)

f 6� f 8� f 4� f 10� f 7� f 1� f 3� f 9� f 2� f 5, (LQV2)

where the difference between the two orderings LQV1 and LQV2 is that the first two products
have interchanged their positions. The second class, composed of three preference orderings, is
based on LQV4

f 4� f 6� f 8� f 10� f 7� f 1� f 3� f 9� f 2� f 5, (LQV3)

f 4� f 6� f 8� f 7� f 10� f 1� f 3� f 9� f 2� f 5, (LQV4)
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Taxicab Correspondence Analysis of Ratings and Rankings 13

TABLE 1. Foie de Canard ratings data set. Sscore − is the sum score without the ratings A3 and T3.

Item Product
Judge f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
A1 20 10 10 20 10 20 10 20 10 10
C1 20 20 30 40 10 40 20 30 10 20
O1 40 20 30 40 10 40 30 30 20 20
T1 120 60 120 130 100 120 100 100 90 100
A2 10 20 0 20 0 15 20 10 0 20
C2 20 30 20 40 5 10 15 30 0 10
O2 15 20 30 30 5 30 40 5 40 20
T2 50 30 70 80 10 50 70 40 50 40
A3 15 10 5 10 10 15 5 15 5 15
C3 25 20 20 30 20 35 10 25 20 25
O3 20 15 30 15 15 20 15 30 30 20
T3 80 50 110 70 90 30 70 60 110 85
A4 5 15 5 15 5 15 10 15 0 10
C4 10 15 30 30 30 20 20 35 10 10
O4 0 10 10 30 0 30 30 35 10 0
T4 50 80 20 50 0 80 50 100 50 50
A5 5 5 10 15 0 10 15 15 10 15
C5 10 10 20 20 0 20 15 25 10 20
O5 20 10 15 20 0 30 20 25 20 20
T5 40 40 65 50 40 80 70 70 60 85
Sscore− 480 430 535 675 260 665 560 640 440 495

f 4� f 6� f 8� f 7� f 10� f 3� f 1� f 9� f 2� f 5, (LQV5)

because only two products permute their positions in (LQV3 and LQV4) and in (LQV4 and
LQV5).

6.1.2: TCA

By TCA, we shall discuss the following 3 points concerning this data set:
First, using two different codings provide preference orderings of the products based on

Theorems 1, 2 and 3.
Second, reveal the existence of response styles or personal equations.
Third, see whether the judges are individually coherent (consistent) or not.
Let Y = (yi(q j) = xq ji) ∈ R10×20 for q = 1, , , ,4, j = 1, ...,5 and i = 1, ...,10 be the flattened

form of the three-way dataset X; to be precise, Y corresponds to the transpose of the data set of
ratings in Table 1. We shall consider only the analysis of Ynega. Figure 1 displays the principal
map obtained by TCA, where we see that two items by Judge 3, T3 and A3, are associated with the
nega column: By the law of contradiction, this is senseless, absurd and not interpretable, because
the opposing poles T 3+ and T 3− will be associated with each other, given that the nega column
contains the negative pole T 3−. Further, we have the following Pearson correlation values, and
for completeness we also present the corresponding values for CA:

Corr(fTCA
1 ,sum score) = 0.9851 and Corr(fCA

1 ,sum score) = 0.9497.
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14 V. Choulakian

We repeat the analysis of the data set by deleting only item T3; this produces

Corr(fTCA
1 ,sum score) = 0.9994 and Corr(fCA

1 ,sum score) = 0.9903.

By deleting both items T3 and A3 from the analysis we get a perfect TCA correlation:

Corr(fTCA
1 ,sum score) = 1 and Corr(fCA

1 ,sum score) = 0.9903;

consequently using the sum score statistic, Sscore-, shown in the last row of Table 1, we get the
following preference ordering of the products grouped into four classes according to the Sscore-
values

( f 4� f 6� f 8)� ( f 7� f 3)� ( f 10� f 1� f 9� f 2)� f 5. (TCA1)

The ordering is very similar to the ordering LQV5, where only two products, f10 and f3, have
interchanged their positions.

FIGURE 1. TCA biplot of Foie Gras
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Taxicab Correspondence Analysis of Ratings and Rankings 15

FIGURE 2. TCA biplot of Foie Gras without A3 and T3

Figure 2 displays the principal map obtained from TCA of Ynega−, where − designates the fact
that items T3 and A3 are completely eliminated from the Y dataset. The first factor represents the
sum score statistic, and the above preference ordering, TCA1, can be seen in Figure 2.

The second TCA factor is also interpretable and brings further insight on the judges in the
following way: The points (T5, O5, C5 and A5), which represent Judge 5, are found in the fourth
quadrant of Figure 2; while the points (T1, O1, C1 and A1), which represent Judge 1, are found in
the first quadrant of Figure 2. So the second factor opposes Judge 5 to Judge 1. What does this
mean? Let yiq j = x(q j)i for i = 1, ...,10, q = 1, ...,4 and j = 1, ...,5 represent the score of judge
j of product i on item q. We note that in Table 1, x(q1)i ≥ x(q5)i for all i = 1, ...,10, q = 1, ...,4
except for (q, i) = (1,7) and (1,10); that is, 38 out of 40 ratings of Judge 1 are superior or equal to
the corresponding ratings of Judge 5. This means that the Judges 1 and 5 have different response
styles, or different personal equations. Judge 1 has acquiscence response style-he is liberal and
provides high scores; while Judge 5 has disacquiscence response style-he is conservative and
provides low scores. This provides an answer to the second question.

Table 2 displays TCA dispersion measures, where we see that TCA of the coded Foie de Canard
complete data sets YD and Ynega are not equivalent, because λ D

1 = 0.1763> λ
nega
1 = 0.1552; while

TCA of the coded Foie de Canard data sets without (T3, A3), YD− and Ynega−, are equivalent,
because properties a2 and c2 of Theorem 2 are satisfied; in particular λ

D−
1 = λ

nega−
1 = 0.1796.
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16 V. Choulakian

TABLE 2. Dispersion measures of Foie de Canard data set.

Whole data set Data set without (T3, A3)
TCA of YD TCA of Ynega TCA of YD− TCA of Ynega−

α λα λα λα λα

1 0.1763 0.1552 0.1796 0.1796
2 0.1187 0.0752 0.1334 0.0667
3 0.1108 0.0631 0.1268 0.0634
4 0.0908 0.0523 0.0878 0.0439
5 0.0807 0.0461 0.0824 0.0412
6 0.0741 0.0381 0.0800 0.0400
7 0.0580 0.0330 0.0526 0.0263
8 0.0336 0.0167 0.0306 0.0153
9 0.0222 0.0113 0.0178 0.0089

Now we discuss the third point concerning the coherence or the consistency of the judges’
ratings by considering the five subtables Y j = (yiq( j)) of size 10×4 separately. Based on Theorems
1, 2 and 3, the calculations show that:

Judges 1, 4 and 5 are strongly consistent, because

Corr(fD
1 ,sum score) =Corr(fnega

1 ,sum score) = 1.

Judge 2 is weakly consistent, because

Corr(fD
1 ,sum score) = 0.449, but Corr(fnega

1 ,sum score) = 1.

Judge 3 is inconsistent, because

Corr(fD
1 ,sum score) = 0.935 and Corr(fnega

1 ,sum score) = 0.809.

6.3 TCA of rankings via Nishisato’s mapping of the ratings

Table 3 shows the total ratings given by the five judges to the ten products. We note that the
sums are quite different: The total score of Judge 1 is 1570 which is around 1.5 times larger than
the total scores provided individually by the Judges 2, 4 and 5. This means that the results obtained
in the previous subsection do not weigh uniformly the judges. Nishisato (1980)’s mapping of the
data transforms the initial ratings into rankings displayed in Table 4. This mapping is in the same
spirit as Benzécri’s personal equation mapping. In particular note that in Table 3, the ratings of
Judge 1 for the ten products are strictly superior to the corresponding ratings of Judges 2 and 5;
but this fact is no more true in Table 4. This means that the bias in the personal equations have
been reduced or completely eliminated.
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TABLE 3. Foie de Canard marginal ratings.

judge Product Sum
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 200 110 190 230 130 220 160 180 130 150 1570
2 95 100 120 170 20 105 145 85 90 90 1020
3 140 95 165 125 135 100 100 130 165 145 1300
4 65 120 65 125 35 145 110 185 70 70 990
5 75 65 110 105 40 140 120 135 100 140 1030

TABLE 4. Foie de Canard rankings.

judge Product Sum
f1 f2 f3 f4 f5 f6 f7 f8 f9 f10

1 7 0 6 9 1.5 8 4 5 1.5 3 45
2 4 5 7 9 0 6 8 1 2.5 2.5 45
3 6 0 8.5 3 5 1.5 1.5 4 8.5 7 45
4 1.5 6 1.5 7 0 8 5 9 3.5 3.5 45
5 2 1 5 4 0 8.5 6 7 3 8.5 45
BC 20.5 12 28 32 6.5 32 24.5 26 19 24.5
MBC 14.5 12 19.5 29 1.5 30.5 23 22 10.5 17.5

In Table 4 each judge has identical weight. Let R = (ri j) for i = 1, ...,5 and j = 1, ...,10
represent the dataset of rankings in Table 4. The well known Borda count (BC) ranking of the
products, displayed in Table 4, is obtained by summing over the columns of R, see for instance,
Saari (1990). But it is well known that the BC ranking is influenced by strategic voting, which in
our case corresponds to the ratings provided by the rogue judges: a minority of the judges that
do not rate in the same direction as the majority of the judges. Following, Torres and Greenacre
(2002), we can apply TCA to the row doubled RD table of size 10×10, and of course similarly to
the Rnega table of size 6×10. Theorems 1, 2 and 3 are also valid for TCA of RD and Rnega where
the roles of the columns and rows are interchanged. TCA of RD and Rnega reveal that Judge 3 is
deviant; so, we eliminate Judge 3, and denote the resulting data set of size 4×10 by R−. We find
that TCA of RD− and Rnega− are equivalent; so we can use its column sums to rank the products.
We name these column sums modified Borda count (MBC) displayed in Table 4, because it applies
the Borda’s rule for preference ranking by using the largest number of consistent voters chosen by
TCA. Using MBC we obtain the following robust ranking of the products:

( f 6� f 4)� ( f 7� f 8)� ( f 3� f 10)� ( f 1� f 2� f 9)� f 5. (Robust)

Among the seven preference rankings of the products displayed above, we prefer the last one
because of its robustness. Comparing the seven preference rankings listed above, we conclude
that the products, f 4 and f 6, are the best, and the product f 5 is the worst.

6.2. Example 2: Sum score in IRT

Evaluating student achievement is an important task in education, and sum score of items scores
play an important role in estimating a student’s position on the latent trait ability scale, denoted
by θ . There is a clear distinction between the observed sum score statistic and the unobservable
latent trait θ , in parametric item response theory (IRT), such as the Rasch (1PL) and the two
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18 V. Choulakian

parameter logistic (2PL) models, and in nonparametric IRT, such as the Mokken model; see for
instance Meijer et al. (1990). Three general assumptions of modern IRT, known under the name
of monotone homogeneity models, are local independence of the items, monotonicity of item
response functions, and unidimensionality of the latent trait, refer to Sijtsma and Junker (2006)
for a comprehensive review. If our aim, say, is only to order the students according to their ability,
no such assumptions are needed in TCA approach proposed in this paper: If the items point in the
same direction, then the sum score is the latent ability θ . Here, we consider three binary datasets
two of them simulated and one real. The two simulated datasets, each of size 1000× 100, are
from Pr. C. Anderson’s website http: //faculty. ed. uiuc. edu/ cja/ lma_as_irt/ index. html: The
first is generated from the Rash model, the second from the 2PL model. The third is the Fractions
dataset found at http: //www. blackwell publishers. co. uk/ rss/, and was used by Tatsuoka (2002);
it consists of correct-incorrect responses of 536 fifth grade students to 20 fraction addition and
subtraction problems; for instance item 11 is: 4 1

3 −2 4
3 . For the three data sets, we find

Corr(fD
1 ,sum score) =Corr(fnega

1 ,sum score) = 1,

which shows that the sum score is the unobservable latent variable in the three datasets, and all
the items in each dataset point in the same direction. Note that for random data

Pr{Corr(fnega
1 ,sum score) = 1}= 1

2Q−1 .

7. Conclusion

Cazes (2011) described Data Analysis as an Experimental Science the way it was practiced at
Benzécri’s Laboratory in Paris during the seventies and eighties: All kinds of data were analyzed
using different kinds of codings; and it is remarkably unique in its kind that almost all the activities
were reported in Benzécri’s journal Les Cahiers de L’Analyse Des Données. The nega coding
was one of these codings experimented twice, and which did not take off in CA. The law of
contradiction showed that at most the first dimension of CA of Ynega is interpretable. This paper
shows that the nega coding is perfectly fit for TCA.

TCA of Ynega is completely related to the sum score statistic; while TCA of YD is related to
the sum score statistic if and only if it is equivalent to TCA of Ynega. In this case it is preferable
to use the coding Ynega, because the TCA maps will be less cluttered. We can rephrase this in
the following way: If there are rogue items, then the maps or biplots obtained by CA or TCA of
Ynega are useless and senseless; while the maps obtained by CA or TCA of YD can be useful and
meaningful. Moreover, for a rankings dataset the proposed method corresponds to the famous
Borda’s count rule or to its modified version

Further, the following conjecture seems to be true: λ D
α (TCA) ≥ λ

nega
α (TCA) for α ≥ 1. As

mentioned in the introduction, it is true for λ D
α (CA)≥ λ

nega
α (CA) for α ≥ 1.

7.1. Acknowleldgements:

Choulakian’s research is financed by NSERC of Canada. The author thanks the editor Pr. G.
Celeux, the associate editor, two anonymous reviewers and Pr. D. R. Cox for their constructive
comments.

Journal de la Société Française de Statistique, Vol. 155 No. 4 1-23
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



Taxicab Correspondence Analysis of Ratings and Rankings 19

References

Adames, G. (1993). Duck liver and tradition: analysis of ratings of a competition. Les Cahiers de L’Analyse des
Données, XVIII:389–398.

Alon, N. and Naor, A. (2006). Approximating the cut-norm via grothendieck’s inequality. SIAM Journal on Computing,
35:787–803.

Benzécri, J. (1973). L’Analyse des Données, L’Analyse des Correspondances, volume 2. Paris: Dunod.
Benzécri, J. (1979). On the analysis of a table with one heavyweight column (in french). Les Cahiers de L’Analyse des

Données, IV:413–416.
Benzécri, J. (1992). Correspondance Analysis Handbook. N.Y:Marcel Dekker.
Benzécri, J. and Benzécri, F. (1989). Codage linéaire par morceaux et équation personnelle. Les Cahiers de L’Analyse

des Données, XIV:203–210.
Burt, C. (1917). The Distribution and Relations of Educational Abilities. London:P.S. King and Son.
Cazes, P. (1990). Codage d’une variable continue en vue de l’analyse des correspondances. Revue de Statistique

Appliquée, 38(3):35–51.
Cazes, P. (2011). Some comments on correspondence analysis. www.youtube.com/watch?v=cisfaltVBTI.
Choulakian, V. (2003). The optimality of the centroid method. Psychometrika, 68:473–475.
Choulakian, V. (2005). Transposition invariant principal component analysis in l1 for long tailed data. Statistics and

Probability Letters, 71:23–31.
Choulakian, V. (2006a). L1 norm projection pursuit principal component analysis. Computational Statistics and Data

Analysis, 50:1441–1451.
Choulakian, V. (2006b). Taxicab correspondence analysis. Psychometrika, 71:333–345.
Choulakian, V. (2008a). Multiple taxicab correspondence analysis. Advances in data Analysis and CLassification,

2:177–206.
Choulakian, V. (2008b). Taxicab correspondence analysis of contingency tables with one heavyweight column.

Psychometrika, 73:309–319.
Choulakian, V. (2013). Advances in Latent Variables, chapter The simple sum score statistic in taxicab correspondence

analysis, page 6. Vita e Pensiero, Milan, Italy.
Choulakian, V., Allard, J., and Simonetti, B. (2013). Multiple taxicab correspondence analysis of a survey related to

health services. Journal of Data Science, 11(2):205–229.
Choulakian, V. and de Tibeiro, J. (2013). Graph partitionong by correspondence analysis and taxicab correspondence

analysis. Journal of Classification, 30:397–427.
Choulakian, V., Kasparian, S., Miyake, M., Akama, H., Makoshi, N., and Nakagawa, M. (2006). A statistical analysis

of synoptic gospels. JADT’2006, pages 281–288.
Choulakian, V., Simonetti, B., and Gia, T. (2014). Some new aspects of taxicab correspondence analysis. Statistical

Methods and Applications, 23:401–406.
Cox, D. (2006). In praise of the simple sum score. www.stat.unpg.it/forcina/shlav/.../Cox2.pdf.
Cox, D. (2008). On an internal method for deriving a summary measure. Biometrika, 95:1002–1005.
Cox, D. and Wermuth, N. (2002). On some models for binary variables parallel in compexity with the multivariate

gaussian distribution. Biometrika, 89:462–469.
de Borda, J. (1781). Mémoire sur les élections au scrutin. Histoire de l’Académie Royale des Sciences, 102:657–665.
Deniau, C., Oppenheim, G., and Benzécri, J. (1979). An effect of the refining of a partition on the eigenvalues arising

from a correspondence table (in french). Les Cahiers de l’Analyse des Données, IV(3):289–297.
Esmieu, D., Gopalan, T., and Maiti, G. (1993). On the use of ratings in marketing studies for the introduction of a new

product (in french). Les Cahiers de L’Analyse des Données, XVIII:399–426.
Eves, H. (1997). Foundations and Fundamental Concepts of Mathematics. N.Y. : Dover.
Fichet, B. (2009). Metrics of lp-type and distributional equivalence principle. Advances in Data Analaysis and

Classification, 3:305–314.
Gabriel, K. and Zamir, S. (1979). Lower rank approximation of matrices by least squares with any choice of weights.

Technometrics, 21:489–498.
Gifi, A. (1990). Nonlinear Multivariate Analysis. N.Y:Wiley.
Greenacre, M. (1984). Theory and Applications of Correspondence Analysis. London:Academic Press.
Harman, H. (1967). Modern Factor Analysis. Chicago:The University of Chicago Press.
Horst, P. (1965). Factor Analysis of Data Matrices. Holt Rinehart and Winston.

Journal de la Société Française de Statistique, Vol. 155 No. 4 1-23
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



20 V. Choulakian

Johnson, C. (1983). A characterization of borda’s rule via optimization. IMA preprint, 41.
Lavialle, O., Qannari, E., and Vidal, C. (1990). Order aggregation under constraints: Ordering of products by sensory

ratings (in french). Revue de Statistique Appliquée, 38(4):61–73.
Le Roux, B. and Rouanet, H. (2004). Geometric Data Analysis. From Correspondence Analysis to Structured Data

Analysis. Dodrecht:Kluewer-Springer.
Meijer, R., Sijtsma, K., and Smid, N. (1990). Theoretical and empirical comparison of the mokken and the rasch

approach to irt. Applied Psychological Measurement, 14:283–298.
Murtagh, F. (2005). Correspondence Analysis and Data Coding with Java and R. London:Chapman & Hall/CRC.
Nishisato, S. (1980). Analysis of Categorical Data: Dual Scaling and Its Applications. Toronto:University of Toronto

Press.
Nishisato, S. (1984). Forced classification: A simple application of quantification method. Psychometrika, 49:25–36.
Nishisato, S. (1994). Elements of Dual Scaling: An Introduction to Practical Data Analysis. Hillsdale NJ: Lawrence

Erlbaum.
Saari, D. (1990). The borda dictionary. Social Choice and Welfare, 7:279–317.
Sijtsma, K. and Junker, B. (2006). Item response theory: Past performance, present developments, and future

expactations. Behaviormetrika, 33(1):75–102.
Tatsuoka, C. (2002). Data-analytic methods for latent partially ordered classification models. Jornal of the Royal

Statistical Society Series C (Applied Statistics), 51:337–350.
Thurstone, L. (1931). Multiple factor analysis. Psychological Review, 31:406–427.
Thurstone, L. (1947). Multiple factor analysis. Chicago: The University of Chicago Press.
Torres, A. and Greenacre, M. (2002). Dual scaling and correspondence analysis of preferences, paired comparisons

and ratings,. International Journal of Research in Marketing, 19(4):401–405.
Wold, H. (1966). Multivariate Analysis, chapter Estimation of principal components and related models by iterative

least squares, pages 391–420. N.Y:Academic Press.

Appendix

We apply TCA to the correspondence matrice

PD =
(Y | (1I m′−Y))

I m∗
, (24)

where m∗ = ∑
Q
q=1 mq = m′1Q. Note that minq = 0 and maxq > 0 for q = 1, ...,Q. Let PD =

(PD1|PD2), and designate TCA of residual correspondence matrices by P(α)
D = (P(α)

D1 |D
(α)
D2 ) for

α = 0, ...,k, where k = rank(PD)−1.

Proof of Lemma 1

By induction. For α = 1, we have

P(1)
D = PD− r c′D

=
(Y− 1I1′IY

I | −(Y− 1I1′IY
I ))

I m∗
by (24, 22 and 19) (25)

= (P(1)
D1 | P

(1)
D2)

= (P(1)
D1 | −P(1)

D1). (26)

Equation (26) implies that the lever principle (28) applies, because let:

vD
1 = arg max

v∈{−1,+1}I

∣∣∣∣∣∣P(1)
D
′v
∣∣∣∣∣∣

1
,
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then the first basic coordinates of the columns (7) will be

bD
1 = P(1)′

D vD
1

= (
P(1)′

D1 vD
1

−P(1)′
D1 vD

1

) by (26) (27)

= (
bD

11
bD

21
).

But (27) implies
bD

11 +bD
21 = 0. (28)

Let us show P(α)
D2 =−P(α)

D1 for α = 2 and by induction it will be true for all α values. By (10)
the residual correspondence matrix is

P(2)
D = P(1)

D −aD
1 bD′

1 /λ
D
1

= (P(1)
D1 | P

(1)
D2)− (aD

1 bD′
11 |aD

1 bD′
21)/λ

D
1 by (27)

= (P(1)
D1 | −P(1)

D1)− (aD
1 bD′

11 | −aD
1 bD′

11)/λ
D
1 by (28)

= (P(2)
D1 | −P(2)

D1).

Using the same calculations as in the previous paragraph when α = 1, we get for α = 2

bD
1α +bD

2α = 0. (29)

By (15) and (20), equation (29) can be expressed as

Dc1gD
1α +Dc2gD

2α = 0 for α = 1...k,

which is the lever principle.

Proof of Theorem 1 and Corollary 1

In equation (26), we note that the second block matrix in P(1)
D is the negative of the first block

matrix, so uD
1 = (

uD
11

uD
21
) = (

uD
11
−uD

11
) that maximizes λ1 in (3). By (7)

aD
1 = P(1)

D uD
1

= 2P(1)
D1uD

11 by (26)

=
2

I m∗
(YuD

11−
1I1′IYuD

11

I
) by (25) (30)

=
2

I m∗
(Y1Q−

1I ytot

I
) iff uD

11 = 1Q, (31)

where ytot = 1′IY1Q. By (15) and (31) we have

fD
1 = D−1

r aD
1

=
2

m∗
(Y1Q−

1I ytot

I
) by (23) and (31),
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which coordinatewise is f D
i1 = 2

m∗
(yi∗− ytot

I ); that is, the 1st row factor score, fi1, is an affine
function of the sum score yi∗ iff uD

11 = 1Q.
To see what happens if some uD

11 j =−1, we consider the case when only one, say, uD
11Q =−1.

Then by (30), we have

f D
i1 =

2
m∗

[
Q−1

∑
j=1

(yi j−
y∗ j

I
)− (yiQ−

y∗Q
I
)

]

=
2

m∗

[
Q

∑
j=1

(yi j−
y∗ j

I
)−2(yiQ−

y∗Q
I
)

]

=
2

m∗

[
(yi∗−

ytot

I
)−2(yiQ−

y∗Q
I
)
]
. (32)

Equation (32) shows that the points ( f D
i1 ,yi∗) will locate on many parallel lines defined by the

rating of the ith respondent on item Q.
By (8)

λ
D
1 = ||aD

1 ||1

=
2

I m∗

I

∑
i=1
|(yi∗− ytot/I)| by (31),

which is Corollary 1.

Proof of Theorem 2

The proof is similar as in Theorem 1. First, we note that P(1)
D = (P(1)

D1 | −P(1)
D1) in (25) and P(1)

nega

are related by

P(1)
nega = (P(1)

nega1 | p
(1)
nega)

(P(1)
D1 | −P(1)

D11Q). (33)

Let unega
1 = (

unega
11

unega
21

) that maximizes λ
nega
1 in (3). By (7)

anega
1 = P(1)

negaunega
1

= P(1)
D1unega

11 −P(1)
D11Qunega

21 by (33) (34)

= 2P(1)
D11Q iff unega

11 = 1Q and unega
21 =−1

= −2p(1)
nega iff unega

11 = 1Q and unega
21 =−1 by (33) (35)

=
2

I m∗
(Y1Q−

1I ytot

I
) iff unega

11 = 1Q and unega
21 =−1. (36)

From (35, 36) properties a and b follow easily.
To see what happens if some unega

11 j =−1, we consider the case when only one, say, unega
11Q =−1.

Then by (34), we have
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f nega
i1 =

1
m∗

[
Q−1

∑
j=1

(yi j−
y∗ j

I
)− (yiQ−

y∗Q
I
)

]
+

1
m∗

[
(yi∗−

ytot

I
)
]

=
1

m∗

[
Q

∑
j=1

(yi j−
y∗ j

I
)−2(yiQ−

y∗Q
I
)

]
+

1
m∗

[
(yi∗−

ytot

I
)
]

=
2

m∗

[
(yi∗−

ytot

I
)− (yiQ−

y∗Q
I
)
]
. (37)

Equation (37) shows that the points ( f D
i1 ,yi∗) will locate on many parallel lines defined by the

rating of the ith respondent on item Q. However, (37) is different from (32).
The proof of property c follows from the following 2 facts:
Fact 1: We have

λ
nega
1 = ||anega

1 || by (8)

= 2||p(1)
nega|| by (35). (38)

Fact 2: Consider the basic vector bnega
1 = (

bnega
11

bnega
21

). By (9)

sign(bnega
21 ) = unega

21

= −1 by (36),

and
λ

nega
1 =−2bnega

21 by(14). (39)

We have

p(2)
nega = p(1)

nega−
anega

1 bnega
21

λ
nega
1

by (10)

= 0 by (35, 38, 39).

Proof of Theorem 3

The proof follows easily from Theorems 1 and 2 and Lemma 1.
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