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Abstract

The SAEM-MCMC algorithm is a powerful tool for computing maximum likelihood estimators
in the wide class of nonlinear mixed effects models. We propose in this article an adaptation of
this algorithm to the estimation of heterogeneous variances in such models. Two residual variance
models are considered: a linear mixed model on the log-variance, with fixed and random effects,
and a mean-variance relationship. As compared to other procedures implemented in R, SAS and
Monolix, our algorithm provides more flexibility in modelling variance functions and reliability of
the estimates. This algorithm was numerically validated in the case of a heteroskedastic linear mixed
model by comparing its results with those of a standard EM algorithm applied to Pothoff and Roy’s
data. Finally, an application to real data involving a selection experiment on growth in chickens
is presented in which that algorithm was compared to results of SAS-Nlmixed, nlme, Monolix and
WinBUGS softwares.
Keywords : heteroskedasticity, maximum likelihood estimation, nonlinear mixed models, SAEM-
MCMC algorithm

Résumé

L’algorithme SAEM-MCMC est un outil puissant en vue de l’estimation des paramètres, par max-
imum de vraisemblance, dans les modèles non linéaires mixtes. Dans cet article, nous proposons
une adaptation de cet algorithme pour estimer les paramètres dans le cadre des modèles linéaires
mixtes à variances hétérogènes. Nous considérons, ici, deux modélisations possibles des variances :
un modèle structural (incluant des effets fixes et aléatoires) basé sur les log-variances et un modèle
s’appuyant sur une liaison moyenne-variance. En comparaison à d’autres procédures mises en œuvre
dans les logiciels R, SAS et Monolix, notre algorithme s’avère beaucoup plus flexible pour modéliser
des fonctions de variance. L’algorithme que nous proposons a été numériquement validé dans le cas
d’un modèle linéaire mixte à variances hétérogènes en comparant les résultats obtenus avec ceux
relatifs à un algorithme EM analytique sur le jeu de données standard de Pothoff et Roy. Enfin,
nous présentons une application sur des données réelles concernant une expérience de sélection sur
la croissance de poulets. Sur ces données, nous avons comparé les résultats de notre algorithme à
ceux obtenus avec les procédures suivantes : SAS-NLMIXED, nlme, Monolix et WinBUGS.
Mots-clés : Hétéroscédasticité, Maximum de vraisemblance, modèle non linéaire mixte, algorithme
SAEM-MCMC
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66 Heterogeneous variances in non linear mixed models

1 Introduction

Nonlinear mixed models (NLMM) are the tools of choice for analyzing unbalanced repeated
data arising from complex biological mechanisms such as growth curves or pharmacokinetic
and pharmacodynamics (PKPD) trials. Moreover, as compared to linear models, parameters
of such models provide a better biological interpretation of the mechanisms involved, and the
corresponding models are also more parsimonious.

Most studies based on these models asssume that variances are homogenous across strata
within the sampled population. However, this assumption turns out to be unrealistic in many
practical situations encountered in various areas of applied statistics, e.g. biostatistics [34] and
economics [18, 11]. In particular, heteroskedasticity arises naturally in within-group or residual
variances. There are different ways to model heterogeneous variances including, among others,
mean-variance relationships [3] and linear models on log-variances: see Davidian and Carroll
[6] for a general discussion. This study will deal with estimation methods of such variance
functions in the context of nonlinear models with random effects.

To that effect, several procedures have already been proposed and investigated to estimate
parameters of NLMM. The first were based on linearization of the data model such as first-order
(FO) approximations [38], or better, first-order conditional expectation (FOCE) approximations
[24] or equivalently, Laplace’s approximations [42]. Since these methods can produce inconsis-
tent estimates, alternatives based on exact maximum likelihood (ML) have been implemented
involving either Gaussian quadratures or stochastic tools. However, integration via Gaussian
quadratures can be extremely difficult or inaccurate, in particular in cases with high dimension-
ality. Due to the complex form of the likelihood function, proper inference for non linear mixed
models requires the use of stochastic procedures [30]. Stochastic EM is a powerful alternative
to the latter, especially the so-called Stochastic Approximate EM procedure (SAEM) intro-
duced by Delyon et al. [8] and applied initially to NLMM with an additional MCMC step by
Kuhn and Lavielle [19, 20]. These authors show that the SAEM algorithm is very efficient for
computing the maximum likelihood estimate in homogeneous non linear mixed models. This
iterative procedure consists at each iteration, in successively simulating the random effects with
the conditional distribution, and updating the unknown parameters of the model. This method
has the very nice advantage to converge quickly to a neighborhood of the maximum likelihood
estimate. Most software for NLMM already include heterogeneous variances in their syntax,
but, either they rely on approximate inference procedures (e.g. nlme) or, if not, they often fail
to converge (e.g. SAS-Nlmixed) or offer a limited choice of variance functions (e.g. Monolix).

Thus, the objective of this paper is two fold: (i) to propose a general algorithm involving both
a more diversified assortment of variance functions and more reliable estimating procedures
for computing ML estimation of parameters in heteroskedastic NLMM via the SAEM-MCMC
algorithm ; (ii) to show how incorporating variance functions can improve the efficiency of
growth modes with an application to poultry.

The paper is organized as follows. In section 2, we introduce a general class of NLMM
with different residual variance functions. Then in section 3, the SAEM-MCMC algorithm is
described. In section 4, we present two numerical applications. The first is a validation of our
algorithm on a linear mixed model. The second is an application to a real data set of growth
curves in chickens, the results of which are compared to those of other methods and softwares.
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2 The heteroskedastic nonlinear mixed Model

Let us consider the general class of the following nonlinear mixed models (NLMM):

yij = f(zij,β,φi) + g(wij, δ,ψi)ε
∗
ij (1)

where yij is the j-th observation, j ∈ {1, .., ni}, of the i-th individual, i ∈ {1, ..., I}.
f(zij,β,φi) describes the mean response as a function f of zij , a vector of explanatory vari-
ables (for instance, time) and φi a (m × 1) vector of random effects pertaining to individual i.
It is assumed that φi are i.i.d. Gaussian random variablesN (Aiµ,Γ) with mean Aiµ and vari-
ance Γ. Aiµ specifies the link between the expectation of φi and p covariates Ai (m× p) (for
instance, gender, treatment) with coefficients µ. The variance covariance matrix Γ quantifies
the inter-individual variation. Vector β corresponds to additional fixed effects involved in some
elements of individual coefficients (similar to vector φi) but having no random counterpart. In
this model, the intra-individual variation is accounted for by the product g(wij, δ,ψi)ε

∗
ij where

ε∗ij are i.i.d. N (0, 1) random errors and σij = g(wij, δ,ψi) stands for the square root of the
variance funtion described with arguments in the same way as in function f .

More specifically, we are considering the two following variance functions to describe
heteroskedasticity in residual variances. The first approach consists of modelling residual
variances as a structural linear mixed model involving explanatory covariates wij , qij and the
corresponding fixed and random effects δ, v via a log-link function:

log(σ2
ij) = w′ijδ + q′ijv (2)

where v ∼ N (0,Λ).
This model was proposed initially by Foulley et al. [12] as a mixed model extension of the
classical linear model for log-variances. It can be viewed as part of the multilevel mixed linear
models developed by Goldstein [15] and was also investigated later on by Lin et al. [23],
Brown et al. [4], Rigby and Stasinopoulos [36], Lu et al. [28] and Lee and Nelder [22] in the
context of linear and generalized linear mixed models. It provides great flexibility in modelling
potential sources of variation in the residual variances with the key idea of parsimony due to the
introduction of random effects. The second approach assumes that the variance is proportional
to a power of the (conditional) mean [3, 6]:

σ2
ij = δ1f(zij,β,φi)

δ2 (3)

This model is very popular for taking into account, in an easy way, a scale effect linking the
variance to the mean, e.g., with growth curve data [2], household expenditures [1] and in PKPD
analysis [7]. Notice that for δ2 = 2, it reduces to the case of a constant coefficient of variation
which in turn is usually handled via a log-transformation of the data. The power transformation
may be a very reasonable assumption but in most cases, the coefficient δ2 remains unknown and
has to be estimated.
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68 Heterogeneous variances in non linear mixed models

3 A monitored SAEM-MCMC algorithm

3.1 Computation of the ML estimations

Let θ = (β, µ,Γ, δ,Λ) denote the vector of parameters of model (1). We have to compute the
maximum likelihood (ML) estimates of these parameters by maximizing the log-likelihood of
the data vector considered as a function of θ. This can be done conveniently in mixed models
via the EM algorithm [9] using the random effects as missing data u and proceeding accord-
ing to the following two steps. The E-step evaluates Q(θ,θ∗) = E[log p(θ; y,u)|y,θ = θ∗]
defined as the conditional expectation of the log-likelihood of the complete data vector (y,u)
given the observed data y and the current value θ∗ of the parameter vector whereas the M-step
maximises it with respect to the parameters so as to update the values of θ∗.

More precisely, as far as the variance function (2) is concerned, using u = (φ,v),

log p(θ; y,u) = const−
∑

ij log g(wij, δ,ψi)− 1
2

∑
ij

(yij−f(zij ,β,φi))
2

g(wij ,δ,ψi)
2

− I
2

log(|Γ|)− 1
2

∑I
i=1(φi −Aiµ)′Γ−1(φi −Aiµ)

−1
2

log(|Λ|)− 1
2
v′Λ−1v

and similarly for variance function (3), using just u = φ

log p(θ; y,u) = const−
∑

ij log g(wij, δ,ψi)− 1
2

∑
ij

(yij−f(zij ,β,φi))
2

g(wij ,δ,ψi)
2

− I
2

log(|Γ|)− 1
2

∑I
i=1(φi −Aiµ)′Γ−1(φi −Aiµ)

Unfortunatly in NLMM’s, Q(θ,θ∗) is not in closed form and we have to rely upon a stochastic
version of it. Namely, this refers to the SAEM algorithm, defined by Delyon et al. [8] which
proved to be more efficient than a classical Monte Carlo EM due to a recycling of simulations
from one iteration to the next. When simulation cannot be performed directly, it is replaced by
a MCMC procedure (e.g. Metropolis-Hastings algorithm) as proposed by Kuhn and Lavielle
[19]. In practice the main problem of this SAEM-MCMC algorithm is to adequately calibrate
its parameters. Here, we proceed along the same lines as defined by Duval and Robert-Granié
[10] for homoskedastic NLMM’s (see details in appendix).

In addition, we achieve the M step via a Levenberg-Marquardt algorithm instead of a classi-
cal Newton-Raphson algorithm by introducing an adaptive sequence (λk)k of real numbers [29].
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This algorithm interpolates between the Gauss-Newton algorithm and the method of gradient
descent. It is more robust than the Gauss-Newton algorithm, which means that in many cases it
finds a solution even if it starts very far off the final solution. The non-negative damping factor
(λk) is adjusted at each iteration. A similar damping factor appears in Tikhonov regularization
[39] which is used to solve linear ill-posed problems.

Given θ(k), the value of θ at iteration k, the SAEM algorithm is implemented as follows:

• Simulation step: draw L random vectors (u(k,l); l = 1, ..., L) from the conditional dis-
tribution p(u|y,θ(k,l)) using L independent Metropolis-Hastings chains (see details in
appendix).

• Stochastic approximation step:
Let us define S(k)

1,i = E[φi|y,θ(k)], S(k)
2,i = E[φiφ

′
i|y,θ(k)] and S(k)

3,i = E[vv′|y,θ(k)] with

S̃
(k)

1,i , S̃
(k)

2,i and S̃
(k)

3,i being their corresponding stochastic estimations, these quantities are
updated as follows:

S̃
(k)

1,i = S̃
(k−1)

1,i + γk
[ L∑
l=1

φ
(k,l)
i /L− S̃(k−1)

1,i

]
(4)

S̃
(k)

2,i = S̃
(k−1)

2,i + γk
[ L∑
l=1

φ
(k,l)
i φ

(k,l)
i

′/L− S̃(k−1)

2,i

]
(5)

S̃
(k)

3,i = S̃
(k−1)

3,i + γk
[ L∑
l=1

v(k,l)v(k,l)′/L− S̃(k−1)

3,i

]
(6)

where γk is a decreasing sequence of positive real scalars such that γk = 1 if k < K and
γk = (k −K)−1 otherwise.
The three previous formulae pertain to parameters (µ,Γ,Λ). Regarding η = (β, δ), we
evaluate via stochastic approximation the following quantities:

D̃(k) =
L∑
l=1

∂η log p(y,u(k,l);θ(k))/L (7)

B̃(k) =
L∑
l=1

∂2
η log p(y,u(k,l);θ(k))/L (8)

• Estimation step:
Maximisation of the Q function with respect to the parameters gives

µ(k) =

( I∑
i=1

A′i
(
Γ(k−1)

)−1
Ai

)−1 I∑
i=1

A′i
(
Γ(k−1)

)−1
S

(k)
1,i (9)

Γ(k) =
1

I

I∑
i=1

(
S

(k)
2,i −Aiµ

(k)S
(k)′

1,i − S
(k)
1,i µ

(k)′A′i +Aiµ
(k)µ(k) ′A′i

)
(10)

Λ(k) = S
(k)
3,i (11)
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70 Heterogeneous variances in non linear mixed models

Regarding η(k), maximisation is performed according to the Gradient-EM procedure based
on a second order algorithm [21]. In this case, we use a Levenberg-Marquardt algorithm defined
as:

η(k) = η(k−1) − ((M̃
(k−1)

)−1D̃
(k−1)

) (12)

where M̃(k) = B̃(k) + λkdiag(B̃(k)) and λk is an adaptative sequence (λk ; k = 1, . . . , K) of
real numbers which is increasing if Q(θ(k);θ(k−1)) is itself increasing from one iteration to the
next, and decreasing otherwise. More precisely, if Q(θ(k);θ(k−1)) > Q(θ(k−1);θ(k−2)) then
λk = λk−1/10, otherwise λk = 10λk−1.
These are the formulae for the variance function defined in (2). As far as the second variance
function is concerned (3), the same formulae apply ignoring equations (6) and (11) pertaining
S3,i

(k) and Λ(k).

3.2 Estimations of the log-likelihood and standard errors

The integration with respect to the random effects of the model involved in the likelihood of the
observed data p(θ; y) can be estimated conveniently via an importance sampling scheme

p̂(θ; y) =
1

S

S∑
s=1

p(y|us,θ)
p(us,θ)

p̃(us,θ)

where p(u,θ) is the distribution of the missing data and u1,...,us,...,uS are drawn from the im-
portance distribution p̃(us,θ).
Here we choose for p̃(us,θ), a Gaussian distribution with mean E(us|y,θ) and variance
Var(us|y,θ) calculated from draws of us obtained at the simulation step of the SAEM al-
gorithm when convergence is reached for θ.
This choice should be efficient as this distribution is expected to be close to the true conditional
distribution p(us|y,θ) which is known to be the one providing a minimum variance estimator
of p(θ; y) [37].

We can also obtain an estimate of the Fisher information matrix using Louis formula [27].
Let us define the following quantities obtained by simulation:

R1 =
L∑
l=1

∂θ log p(y,u(k,l);θ(k))/L

R2 =
L∑
l=1

∂2
θ log p(y,u(k,l);θ(k))/L

R3 =
L∑
l=1

(
∂θ log p(y,u(k,l);θ(k))

) (
∂θ log p(y,u(k,l);θ(k))

)′
/L

Then we calculate at the stochastic approximation step

∆(k) = ∆(k−1) + γk[R1 −∆(k−1)]

Journal de la Société Française de Statistique, 150(2), 65-83,
http://smf.emath.fr/Publications/JSFdS/

c© Société Française de Statistique et Société Mathématique de France, 2009, ISSN 2102-6238



Duval et al. 71

G(k) = G(k−1) + γk[R2 +R3 −G(k−1)]

H(k) = G(k) −∆(k)(∆(k))′

and we approximate the Fisher information matrix by the inverse of−H(k) at convergence of θ̂.

4 Numerical applications

The proposed SAEM-MCMC algorithm was applied to two data sets. The first one described
by a linear model allows us to validate the algorithm in comparison with an analytical EM. The
second one deals with growth data in chickens modelled via a Gompertz function and illustrates
the potential of the algorithm for analyzing real data sets via NLMM’s.

4.1 Verification on a linear model: Pothoff and Roy’s data

A validation of our algorithm was first carried out on the growth data presented originally by
Pothoff and Roy [35] and analyzed later on in more detail by Jenrich and Schulter [17] and
Verbeke and Molenberghs [41].
Here, the data set analyzed is the incomplete data set conceived by Little and Rubin [26] after
deleting nine observations at age 10. Among all the possible models envisioned with respect to
mean and covariance structures, we restricted our attention to the random intercept model (or
compound symmetry) which turned out to be the simplest one consistent with the data according
to Verbeke and Molenberghs [41]. This model can be written as:

yhij = Ahi +Bhitj + σhijε
∗
hij

where yhij is the j-th measurement (distance from the center of the pituary to the pteryomaxil-
lary fissure in 1/10 mm) made on the i-th individual nested within the h-th gender (h=1,2 for
males and females respectively) at age tj (8, 10, 12 and 14 years); Ahi represents the individual
intercept assumed i.d. N (µh, τ

2) andBhi stands for the slope. In a compound symmetry model,
Bhi reduces to its fixed components term Bhi = βh, the regression coefficient of response on
age for gender h. σhij designates the residual standard deviation for observation hij and the
corresponding error term ε∗hij are supposed i.i.d. N (0, 1).

Attention here was restricted to variance functions comprising purely fixed effects since only
such functions are analytically tractable in EM theory applied to LMM’s [12]. We consider a
general variance function involving variation with respect to age and gender as follows:

log σ2
hij = δh + δ∗htj

This allows us to describe several sub-models of interest e.g.:
- M0: “Homogeneity”: δ1 = δ2, δ∗1 = δ∗2 = 0;
- M1: “Age effect”: δ1 = δ2, δ∗1 = δ∗2;
- M2: “Gender effect”: δ1 6= δ2, δ∗1 = δ∗2 = 0;
- M3: “Age + Gender effects”: δ1 6= δ2, δ∗1 = δ∗2;
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72 Heterogeneous variances in non linear mixed models

- M4: “Age + Gender+ Age*Gender effects”: δ1 6= δ2, δ∗1 6= δ∗2;

The SAEM-MCMC algorithm corresponding to this model was implemented according to Du-
val and Robert-Granié [10]: see details in the appendix about the criteria values used to calibrate
the algorithm. Results for the different submodels are shown in table 1. Likelihood ratio tests
clearly highlight the significant effect of gender on the residual variance. Results of the SAEM-
MCMC algorithm for Model M4 were compared with those of models M2 and M3 based on an
analytical EM algorithm derived along the same lines as in Foulley et al. [12] (table 2). As can
be expected, the two algorithms gave very similar results in terms of parameter estimates and
their SE (i.e., standard error estimates). In addition, we checked that these values also agreed
with the results obtained via SAS-Proc Mixed (results not presented here) which is based not
on EM but on a second order algorithm (Newton-Raphson or Fisher scoring).

4.2 Application to a non linear mixed model : growth curves in poultry

Data come from a selection experiment on growth in broiler chickens carried out at INRA,
Nouzilly station, France, by F Ricard. A divergent selection, described in Mignon-Grasteau et
al. [32], was applied to weights at 8 (W8) and 36 (W36) weeks of age and resulted into the
following 5 lines: +- (high at W8, low at W36); -+ (low at W8, high at W36); ++ (high at
both W8 and W36), - - (low at both W8 and W36) and a control (C) unselected. The data set
analyzed concerns a subsample of 10 females per line born at the last generation and recorded
at 12 different times (0,4,6,8,12,16,20,24,28,32 and 40 weeks of age).

Following Mignon-Grasteau et al. [32] and Meza et al. [31], these data were analyzed using a
Gompertz function corresponding to the following model:

yhij = Ahi exp
(
−Bhi exp(−Chitj/100)

)
+ σhijε

∗
hij (13)

where yhij is the weight performance of the i-th (i=1,...,10) hen within the h-th (h=1,...,5) line
at age tj . Ahi represents the asymptotic mature weight of animal hi; Bhi is a parameter linking
the adult weight to the birth weight and Chi is the so called “maturation rate”. We assumed that
the Ahi’s are i.i.d. Ahi ∼ N (ah, τ

2
a ), the Chi’s are i.i.d. Chi ∼ N (ch, τ

2
c ), and correlated to

the Ahi’s according to τac = Cov(Ahi, Chi). Here, due to convergence problems encountered
with some softwares, Bhi was restricted to its fixed line effect βh. σhij is the residual standard
deviation for observation hij and the error terms ε∗hij are assumed i.i.d. with ε∗hij ∼ N (0, 1)
independent of the Ahi’s and the Chi’s.

Among all possible variance functions involving the effects of age, line and individual, we
considered the five ones defined as follows:

V0: log(σ2
hij) = δ for the homogeneous case;

V1: log(σ2
hij) = δ1 + δ2t

∗
j + δ3t

∗ 2
j , i.e. a quadratic adjustement of log-variances according to

age defined here for computing convenience as t∗j = (tj − 20)/100;
V2: log(σ2

hij) = δ1h + δ2ht
∗
j + δ3ht

∗ 2
j , the same as V1 but with line specific adjustements;

V3: log(σ2
hij) = δ1hi + δ2ht

∗
j + δ3ht

∗ 2
j , the same as V2 but with a random intercept component

δ1hi ∼ N (δ1h, τ
2
d );

Journal de la Société Française de Statistique, 150(2), 65-83,
http://smf.emath.fr/Publications/JSFdS/
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V4: σ2
hij = rf phij , with fhij = Ahi exp

(
−Bhi exp(−Chitj/100)

)
.

Functions V0, V1, V2 and V3 are special cases of linear models on log-variances defined in
(2) while V4 corresponds to the power of the mean model defined in (3).

Global performance of the five variance functions are reported on table 3. As shown by all
the criteria displayed (deviance, AIC and BIC) modelling residual variances using any of the
four functions mentioned considerably improves the efficiency of the analysis. The addition
of the line effect over that of age is especially critical making models more effective as indi-
cated by the very small P-value of the log-likelihood ratio test, and the large change in the AIC
(-134.7) and BIC (-111.8) values when contrasting models V1 and V2 respectively. An addi-
tional improvement of the AIC (-10.5) and BIC (-8.6), when models V2 and V3 are compared,
can also be obtained by considering the intercept δ1h of this function as random (V3) which
clearly illustrates the potential interest of using random effects in the variance functions. On the
other hand, the power of the mean function (V4), which is the most common function used to
take heteroskedasticity into account in commercial softwares does not perform better than the
Age × Line fixed function V2.

An important aspect of this study consisted in contrasting the use of different softwares on this
real data application. Softwares listed for the output comparison in addition to our SAEM-
MCMC algorithm were the Nlmixed procedure of SAS [25], Monolix running on Matlab
(http://www.monolix.org/), nlme for Splus and R [34] and finally WinBUGS (http://www.mrc-
bsu.cam.ac.uk/bugs/). SAS-Nlmixed and Monolix are based on “exact” ML procedures via
Gaussian quadratures and Stochastic EM algorithms respectively. nlme is a FOCE approxima-
tion method while WinBUGS performs Bayesian Posterior Inference via Gibbs sampling.

All these softwares do not provide the same flexibility in variance modelling, so it was not
possible to make a complete comparison in their outputs for all variance functions. V4 can be
used in all these softwares, but V1 and V2 cannot be set up in Monolix while V3 -which in this
example was the best model- is only available in our SAEM-MCMC algorithm and WinBUGS.
The estimates of parameters for this model are shown in table 4 under these two procedures.
ML and Bayes estimates are in good agreement, especially for fixed effects of both location
and dispersion parameters. Regarding variance components, as expected Bayes estimates are
somewhat higher than ML estimates due to the well known bias of the latter [31].

Table 5 provides a comparison of outputs for the V2 variance function using SAEM-MCMC,
Nlmixed, nlme and WinBUGS. We observe that the SAEM-MCMC and Nlmixed estimates
are very consistent with one another, and this provides a verification of our algorithm in the
nonlinear case. nlme outputs are also very close to the previous estimates which indicates a
good behaviour of this FOCE algorithm in such an example. The largest comparison between
softwares is shown on table 6 for the power variance function. Again, the SAEM-MCMC and
Nlmixed estimates coincide perfectly whereas some differences occur with nlme and Monolix
results. Regarding standard errors problems arise with Nlmixed, Monolix and nlme due to either
non positive definite Hessian matrices (Nlmixed, nlme) or the way some parameters are handled
(βh treated as random with a small variance in Monolix). As in the former table, WinBUGS
produces higher variance components estimations for that model V4 than the other algorithms.
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Finally, SAEM-MCMC and WinBUGS turn out to be the most flexible and secure softwares
among those compared to estimate parameters using either ML or Bayes inference.

5 Discussion - Conclusion

This paper represents a further step in the development of nonlinear mixed models by enriching
them with a large class of variance functions. The key idea is that heterogeneity of residual
variance is not an exception but should be part of model construction as it is for subclass means.
Doing so turns out to be very effective for improving the adequacy of the statistical analysis (as
well illustrated in the chicken example shown here) as in other practical instances.
In addition to the classical “power of the mean” function, we consider a mixed model extension
of the classical linear model on log-variances which provides much flexibility in modelling po-
tential sources of variation in residual variances. This approach is especially interesting as it
takes into account major sources of variation in situations with little information per subclass
or experimental unit in a very parsimonious way. Treating the source of variation as random
is equivalent to constructing a shrinkage estimator of variances combining a population and
subject (or subclass) specific estimators: see e.g., Jaffrézic et al. [16] for variance estimation
in differentially expressed gene studies. Nevertheless, other variance functions could been en-
visioned especially in the case of repeated data structures such as those based on stochastic
processes (ARCH models of Engle [11]) or on semi-parametric techniques (e.g. B-splines re-
ported by Torres [40]). An important issue that was not covered here consists of incorporating
heterogeneity in components of variance and covariance of random effects. This could be done
along the same lines as described in linear mixed models by Foulley and Quaas [13]).

Regarding inferential aspects, here the choice was made to rely on maximum likelihood in
contrast to other approximation techniques. In fact, we strongly believe that exact statistical
procedures are always to be preferred to approximations even though some of them, such as
FOCE (via here nlme) can work quite well in some examples. Unfortunately, this is not always
the case and it is difficult to know a priori in which conditions and with which models. Here,
our attention was focused on ML estimation of all the parameters of the model including disper-
sion parameters. Correction of bias induced by ML on such parameters could be achieved using
REML estimations by integrating fixed effects out the f(.) function. Again, there is conceptu-
ally no difficulty to do that via the EM algorithm as shown by Meza et al. [31] by including
those fixed effects as part of the missing data vector.

Finally, ML estimation was obtained with the SAEM-MCMC algorithm. This is a very sim-
ple algorithm which works quite well provided its parameters are well calibrated. It is also
clearly more reliable than Gaussian quadratures in this kind of model as illustrated here on ta-
ble 6. This does not mean that the story is over especially concerning the stochastic procedure
chosen for the integration step. To that goal, procedures based either on Population Monte Carlo
[5] on quasi Monte-Carlo integration [33] might deserve future testing.

Availability -The codes of SAEM-MCMC, SAS and Winbugs programmes can be availale
upon request to the corresponding author.
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6 Appendix

6.1 The Metropolis-Hastings algorithm

The simulation step of the SAEM-MCMC algorithm is implemented via a Metropolis-Hastings
algorithm [37]. This MCMC procedure produces Markov chains with stationary distribution
being the conditional distribution of the missing data u given the observations y and the vector
of parameters θ.

Let us define p(k)(u) the density of u, V(k) the variance of u at iteration k, and p(y|θ,u)
the density of the observations given the vector of the parameters θ and the missing values u.

Let m1 ∈ N, ρ1 ∈ R+, ρ2 ∈ R+, ρ2 > ρ1 and θ(k) the value of θ at iteration k of the
SAEM-MCMC algorithm.

Let x(t) = u(k,l,t−1) obtained at the (t − 1)th step of the lth chain of the Metropolis-Hastings
algorithm performed at the kth step of the SAEM-MCMC algorithm. The next step is imple-
mented as follows.

• If t < m1, then generate Wt from p(k−1)(u) with acceptance rate

α(x(t),wt) = min

(
p(y|wt,θ

(k))

p(y|x(t),θ(k))
, 1

)
• If t ≥ m1, then generate ρ ∼ U[ρ1,ρ2] and Wt from N (x(t), ρV(k))

with acceptance rate α(x(t),wt) = min

(
p(y|wt,θ

(k)) p(k)(wt)

p(y|x(t),θ(k)) p(k)(x(t))
, 1

)

• Finally u(k,l,t) =

{
wt with probability α(x(t),wt)
x(t) with probability 1− α(x(t),wt)

Then for the sake of simplicity, we note u(k,l) = u(k,l,T ), where T is the length of the chain.

6.2 Some criteria to calibrate the parameters of the SAEM-MCMC algo-
rithm

Duval and Robert-Granié [10] presented criteria to choose the parameter values of the SAEM-
MCMC algorithm. These parameters were calibrated as follows: we run a Markov chain using
the Metropolis-Hastings algorithm for one representative individual taking the initial value θ0

of the parameters and then the following criteria are used. Finally these parameters are used to
run the Metropolis-Hastings algorithm for all the individuals.

• The iteration at which we switch to another instrumental distribution in the Metropolis-
Hastings algorithm, noted m1:
The different behaviors of the chain under the two instrumental distributions lead us to choose

Journal de la Société Française de Statistique, 150(2), 65-83,
http://smf.emath.fr/Publications/JSFdS/
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m1 = T/10, according to Duval and Robert-Granié [10].

• The second instrumental distribution of the Metropolis-Hastings algorithm:
ρ1 and ρ2 are chosen such that the acceptance rate is between 30% and 40 %, according to
Robert and Casella [37].

• The length of each chain in the Metropolis-Hastings algorithm, noted T :
We run long Markov chains in the Metropolis-Hasting, such as they are under the stationary
distribution. Convergence was tested according to the Gelman and Rubin criteria [14], by com-
paring within-chain and between-chain variances.

• The number of independent chains simulated in the Metropolis-Hastings algorithm,
noted L:
In practice we run several chains and compare the behavior of each of them. If their properties
(mean, variance) are significantly different, we may choose L = 5 or L = 10 chains, else,
L = 1 chain can be enough [20].

• Choice of the parameter K for the sequence (γk)k:
Let

e(k) = max
j

(
|θ(k)
j − θ

(k−1)
j |

|θ(k)
j |

)
(14)

We choose K as the first iteration k such that e(k) < 10−2.

• Stopping rule:
The SAEM-MCMC algorithm is stopped when e(k) < 10−4.

6.3 Parameters of the SAEM-MCMC algorithm used in Pothoff and Roy’s
data analysis

Criteria provided the following parameters: T = 300, m1 = 30, L = 5, ρ1 = 0.5, ρ2 = 1.5
and K = 222. An acceptance rate around 30% and a Gelman and Rubin criterion at 1.07 were
obtained. Our algorithm stopped at 362 iterations and the EM algorithm at 53 iterations.
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θ µ1 µ2 β1 β2 τ 2 δ1 δ2 δ∗1 δ∗2
θ0

(a) 200 200 5 12 300 2 7 -2 -2
M0
θ̂ 211.29 225.97 9.78 15.74 311 .38 5.30
SE 6.41 5.51 1.87 1.67 99.92 0.33

M1
θ̂ 211.47 225.77 9.74 15.91 313.50 5.51 -0.14
SE 6.70 5.62 1.94 1.67 101.66 0.33 0.20

M2
θ̂ 211.05 226.04 9.85 15.72 328.00 4.08 5.68
SE 5.84 5.88 1.06 1.93 101.64 0.26 0.21

M3
θ̂ 210.97 225.65 9.91 16.00 334.89 4.34 5.96 -0.19
SE 5.96 6.33 1.06 2.05 103.25 0.39 0.38 0.21

(a)θ0=initial value
M0: Homogeneous (δ1 = δ2 and δ∗1 = δ∗2 = 0), M1: Age (δ1 = δ2 and δ∗1 = δ∗2)
M2: Gender (δ∗1 = δ∗2 = 0), M3: Age+Gender (δ∗1 = δ∗2)

−2L(a) ∆(−2L)(b)

M0 857.23 0.00

M1 856.73 0.50 (P=0.48)

M2 838.87 18.36 (P=2E-5)

M3 838.13 19.10 (P=2E-5)
(a) − 2L = −2 log p̂(θ̂; y)
(b)∆(−2L) : variation of the value of −2L between Homogeneous Model and the corresponding Model M0, M1,
M1 and M3 ; and their corresponding p-values

Table 1 – SAEM-MCMC estimates (θ̂) and standard errors (SE) for the analysis of Pothoff and
Roy’s data for variance functions M0 to M3.
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θ µ1 µ2 β1 β2 τ2 δ1 δ2 δ∗1 δ∗2 −2L(a)

initial value 200 200 5 12 300 2 7 -2 -2 -
θ̂EM 210.89 225.71 9.94 15.97 336.37 4.37 5.94 -0.21 -0.18 838.13
SE 5.99 6.18 1.07 1.98 104.70 0.63 0.42 0.42 0.25 -

θ̂SAEM−MCMC 210.90 225.66 9.94 15.99 336.24 4.36 5.96 -0.20 -0.18 838.13
SE 6.01 6.22 1.08 1.99 104.74 0.63 0.42 0.43 0.25 -

(a) − 2L = −2 log p̂(θ̂; y)
M4: Age+Gender+Age*Gender

Table 2 – Comparison of EM and SAEM-MCMC estimates (θ̂) and standard errors (SE) for the
analysis of Pothoff and Roy’s set with the variance function M4.

Model Parameters −2L(a) Comparison ∆(−2L) P-value AIC BIC
V0 19 7525.6 - - - 7563.6 7599.9
V1 21 7161.6 V0 vs V1 364.0 < 0.0001 7203.6 7243.8
V2 33 7002.9 V1 vs V2 159.6 < 0.0001 7068.9 7132.0
V3 34 6990.4 V2 vs V3 12.5 0.0008 7058.4 7123.4
V4 20 7053.1 V0 vs V4 472.5 < 0.0001 7093.1 7131.4

(a) − 2L = −2 log p̂(θ̂; y)
V0: “Homogeneous”, V1: “Age”, V2: “Age×Line”, V3: “Age × Line+Ind”, V4: “Power”

Table 3 – Comparison of models for residual variance functions based on ML estimation via
the SAEM-MCMC algorithm.

parameters initial value WinBUGS SAEM-MCMC
θ θ0 θ̂ SE θ̂ SE
a0 2500 3011.00 93.02 3025.50 93.61
β0 4 4.38 0.04 4.37 0.04
c0 15 11.96 0.52 11.90 0.48
τ2
a 50000 59960.00 13860.00 51972.00 11357.00
τ2
c 5 2.43 0.56 1.98 0.44
τac -100 -160.40 67.05 -160.77 55.33
τ2
d 10 0.14 0.01 0.10 0.10
δ10 5 10.53 0.14 10.96 0.60
δ20 10 16.36 1.31 16.53 1.35
δ30 -100 -114.60 20.65 -117.81 32.63
−2L(a) 6558.00(b) 6990.40

AIC 6814.00(c) 7058.40
(a) − 2L = −2 log p̂(θ̂; y)
(b) “Dhat” in WinBUGS terminology i.e. posterior expectation of deviance
(c) DIC criterion

Table 4 – Parameter estimates (θ̂) with their standard errors (SE) for the chicken data with
residual variance functions V3 using WinBUGS and SAEM-MCMC.
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Parameter initial value SAEM-MCMC Nlmixed nlme Winbugs

θ θ0 θ̂ SE θ̂ SE θ̂ SE θ̂ SE

a0 2500 3025.20 85.66 3027.06 86.07 3026.10 81.53 3018.00 93.47

β0 4 4.37 0.03 4.37 0.03 4.37 0.03 4.34 0.04

c0 15 11.88 0.48 11.88 0.48 11.88 0.47 11.93 0.53

τ2
a 50000 52230.00 11247.00 52167.00 11265.00 52168.00 60310.00 13870.00

τ2
c 5 1.96 0.43 1.96 0.43 1.95 2.42 0.56

τac -100 -159.21 54.69 -158.59 54.85 -158.31 -157.80 66.65

δ10 5 11.02 0.33 11.01 0.33 11.00 10.95 0.34

δ20 10 16.48 1.24 16.49 1.24 16.47 16.34 1.26

δ30 -100 -119.67 19.45 -118.85 16.68 -118.20 -113.10 20.39

−2L(a) 7002.88 7003.00 7002.88 6613.70(b)

AIC 7068.90 7069.00 7068.90 6834.95(c)

BIC 7132.00 7132.10 7132.00

(a) − 2L = −2 log p̂(θ̂; y)

(b) “Dhat” in WinBUGS terminology i.e. posterior expectation of deviance

(c) DIC criterion

Table 5 – Parameter estimates (θ̂) with their standard errors (SE) for residual variance function
V2 for SAEM-MCMC, Nlmixed, nlme procedures and WinBUGS software on chicken data.
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Parameter initial value SAEM-MCMC Nlmixed Monolix
θ θ0 θ̂ SE θ̂ SE θ̂ SE
a0 2500 3164.70 83.98 3164.60 83.66 3160.00 80.90
β0 5 4.43 0.03 4.43 0.03 4.41 0.03
c0 15 11.76 0.43 11.76 0.43 11.70 0.42
τ2
a 50000 54694.00 12941.00 54674.00 0.11(d) 48400.00 11100.00
τ2
c 5 1.58 0.40 1.58 0.39 1.55 0.38
τac -100 -137.15 53.30 -137.17 41.56 -120.51
r exp(-1) 0.04 0.06 0.03 0.01 0.01
p 1 1.75 0.12 1.75 0.06 1.90

−2L(a) 7053.10 7054.10 7061.04
AIC 7093.10 7094.40 7101.00
BIC 7131.34 7132.70 7139.30

Parameter initial value Winbugs nlme
θ θ0 θ̂ SE θ̂ SE
a0 2500 3139.00 88.11 3153.10 84.36
β0 5 4.43 0.03 4.42 0.03
c0 15 11.83 0.49 11.75 0.43
τ2
a 50000 64200.00 15740.00 54251.00
τ2
c 5 2.16 0.54 1.53
τac -100 -150.10 67.43 -130.83
r exp(-1) 0.04 0.02 0.03
p 1 1.72 0.06 1.74

−2L(a) 6719.20(b) 7055.20
AIC 6911.95(c) 7095.20
BIC 7133.40

(a) − 2L = −2 log p̂(θ̂; y)
(b) “Dhat” in WinBUGS terminology i.e. posterior expectation of deviance
(c) DIC criterion
(d) Warning of SAS: hessian not positive definite

Table 6 – Parameter estimates (θ̂) with their standard errors (SE) for residual variance function
V4 for SAEM-MCMC and Nlmixed procedures, Monolix and WinBUGS softwares, and nlme
procedure on chicken data.
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