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Goodness-of-fit tests for the Weibull distribution
based on the Laplace transform
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Abstract: The aim of this paper is to develop new goodness-of-fit (GOF) tests for the two-parameter Weibull distribution
based on the Laplace transform. The principle of the tests relies on the measure of the closeness between the theoretical
Laplace transform and its empirical version. Three estimation methods are used to simplify the building of the statistics.
The paper also introduces a new version of Cabaña and Quiroz statistic using the maximum likelihood estimators of the
parameters. All these tests are not asymptotic and can be used for small samples size. A comprehensive comparison
study is presented. Among all the proposed GOF tests, the best ones are identified. The results strongly depend on the
shape of the underlying hazard rate.

Résumé : L’objectif de cet article est de développer de nouveaux tests d’adéquation à la loi de Weibull à deux
paramètres basés sur la transformée de Laplace. Le principe de ces tests consiste à mesurer la proximité entre la
transformée de Laplace théorique et sa version empirique. Trois méthodes d’estimation des paramètres de la loi de
Weibull sont utilisées pour simplifier la construction des statistiques. L’article propose aussi une nouvelle version de la
statistique de Cabaña et Quiroz utilisant les estimateurs de maximum de vraisemblance des paramètres. Ces tests ne
sont pas asymptotiques, ils peuvent être utilisés pour des échantillons de petite taille. Une comparaison exhaustive des
tests proposés est présentée. Parmi tous les tests d’adéquation utilisés, les meilleurs tests sont identifiés. Les résultats
dépendent fortement de la forme du taux de hasard de la loi sous-jacente.

Keywords: Reliability, Goodness-of-fit tests, Weibull distribution, Extreme Value distribution, Laplace transform
Mots-clés : Fiabilité, Tests d’adéquation, Loi de Weibull, Loi des valeurs extrêmes, Transformée de Laplace
AMS 2000 subject classifications: 62N05, 62F03

1. Introduction

Risk management of industrial facilities needs to accurately predict system reliability. This
requires, as a first step, the building of relevant probabilistic models in order to reflect the
randomness of the occurrence of failures. In a second step, statistical inference of the developed
models must be made, based on operation feedback data. A final step is firstly to validate the fitted
models using statistical criteria and secondly to compare the different competing models.

Goodness-of-fit (GOF) tests are a useful tool to check the validity of models used in reliability.
The exponential distribution is widely used in life testing, but it represents the disadvantage of
having a constant failure rate. The Weibull distribution is a more flexible model since it allows
decreasing, constant and increasing failure rates. It is then essential to be able to check its relevance
for a given data set. There is a wide literature on GOF tests for the exponential distribution (Ascher,
1990; Henze and Meintanis, 2005), but GOF tests for the Weibull distribution have been much
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less studied (Mann et al., 1973; Tiku and Singh, 1981; Liao and Shimokawa, 1999; Cabaña and
Quiroz, 2005). Reviews are presented in chapter 5 of Murthy et al. (2004) and chapter 22 of of
Rinne (2009). Different approaches were used: tests based on regression, empirical distribution
function, normalized spacings and likelihood based tests...

The use of the empirical Laplace transform or characteristic function in GOF testing has
attracted a lot of attention (Baringhaus and Henze, 1991; Henze, 1993; Jimenez-Gamero et al.,
2009; Henze et al., 2012; Meintanis et al., 2013). When testing exponentiality, the tests based on
the Laplace transform seem to be among the most powerful ones (Baringhaus and Henze, 1991).
The first study of GOF tests for the Weibull distribution based on the Laplace transform was done
by Cabaña and Quiroz (2005). The principle of these tests relies on the measure of the closeness
between the empirical Laplace transform and the theoretical one.

In this paper, we propose new GOF tests for the Weibull distribution mixing the ideas of Cabaña
and Quiroz (2005) and those introduced by Henze (1993) for testing the exponential distribution.

The paper also introduces new versions of the two statistics of Cabaña and Quiroz using the
maximum likelihood estimators instead of the moment estimators. The asymptotic convergence
of the distribution of one of these statistics to the chi-squared distribution is established. The
proposed tests are not asymptotic and can be applied to small samples. Finally a comprehensive
comparison study is done.

Section 2 gives some important preliminary results. Section 3 is a reminder of both the works of
Cabaña and Quiroz and of Henze. Section 4 details the building of the new statistics by combining
both approaches and using three estimation methods of the parameters. We will detail in Section
5 the second version of Cabaña and Quiroz statistics using the maximum likelihood estimators
and we prove the asymptotic convergence of the distribution of one of the statistics.

We conclude in Section 6 by a comparison of all the proposed GOF tests with some of the
usual ones such as: Anderson-Darling (D’Agostino and Stephens, 1986), Tiku and Singh (1981),
Mann-Scheuer and Fertig test (Mann et al., 1973) and Cabaña and Quiroz (2005).

2. Preliminary results

The two-parameter Weibull distribution W (η ,β ) is defined by its cumulative distribution function
(cdf):

F(x;η ,β ) = 1− e−(x/η)β

, x≥ 0, η > 0, β > 0. (1)

Its probability density function (pdf) is:

f (x;η ,β ) =
β

η

(
x
η

)β−1

e−(x/η)β

, x≥ 0, η > 0, β > 0. (2)

When X is a random variable from the W (η ,β ) distribution, lnX has the type I extreme value
distribution E V 1(µ,σ) with cdf:

G(y; µ,σ) = 1− e−e(y−µ)/σ

, y ∈ R, µ ∈ R, σ > 0 (3)

where µ = lnη and σ = 1/β . Its pdf is:

g(y; µ,σ) =
1
σ

e(y−µ)/σ−e(y−µ)/σ

, y ∈ R. (4)
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Goodness-of-fit tests for the Weibull distribution based on the Laplace transform 137

Y = ln(X/η)β = β (lnX − lnη) = (lnX −µ)/σ has the standard extreme value distribution
E V 1(0,1), with pdf:

g(y;0,1) = ey−ey
, y ∈ R. (5)

Let X1, . . . ,Xn be n independent and identically distributed (i.i.d.) random variables with the
W (η ,β ) distribution. The order statistics of this sample are denoted X∗1 ≤ . . .≤ X∗n .

In this paper, we consider three methods for estimating the parameters η and β from the sample
X1, . . . ,Xn: the maximum likelihood, least squares and moment methods.

1. The maximum likelihood estimators (MLEs) of η and β , η̂n and β̂n, are solutions of the
following equations:

η̂n =

(
1
n

n

∑
i=1

X β̂n
i

)1/β̂n

(6)

n

β̂n
+

n

∑
i=1

lnXi−
n

n

∑
i=1

X β̂n
i

n

∑
i=1

X β̂n
i lnXi = 0. (7)

2. The Weibull probability plot (WPP) (Murthy et al., 2004) is the plot of points:

(lnX∗i ,ci) , i ∈ {1, . . . ,n} (8)

where ci = ln [− ln(1− pi)] and pi, i ∈ {1, . . . ,n}, are approximations of the order statistics
of a uniform sample. Usual choices are symmetrical ranks pi = (i− 0.5)/n and mean
ranks pi = i/(n+1). In all that follows we use the symmetrical ranks. Under the Weibull
assumption, these points should be approximately on a straight line (D’Agostino and
Stephens, 1986).
The least squares estimators (LSEs) based on the WPP, η̃n and β̃n, are defined as follows
(Liao and Shimokawa, 1999):

β̃n =

n

∑
i=1

(ci− c)2

n

∑
i=1

(lnXi− lnX)(ci− c)
(9)

ln η̃n = lnX− c

β̃n
(10)

where lnX =
1
n

n

∑
i=1

lnXi and c =
1
n

n

∑
i=1

ci.

3. The moment estimators (MEs), η̆n and β̆n, are defined as follows (Rinne, 2009):

β̆n =
π√
6

[
1

n−1

n

∑
i=1

(lnXi− lnX)2

]−1/2

(11)
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ln η̆n = lnX +
γ

β̆n
(12)

where γ = 0.577... is the Euler constant.

For all i ∈ {1, . . . ,n}, Yi = β ln(Xi/η) has the E V 1(0,1) distribution. The order statistics of
this sample are denoted Y ∗1 ≤ . . .≤ Y ∗n .

Since η and β are unknown, it will be useful in the following to replace them by the above
estimators. For all i, let Ŷi = β̂n ln(Xi/η̂n), Ỹi = β̃n ln(Xi/η̃n) and Y̆i = β̆n ln(Xi/η̆n). It is expected
that the distributions of Ŷi, Ỹi and Y̆i will not be far from the E V 1(0,1) distribution.

From Antle and Bain (1969), the distribution of (Ŷ1, . . . ,Ŷn) does not depend on η and β . From
Liao and Shimokawa (1999), it is also the case of the distribution of (Ỹ1, . . . ,Ỹn). The same result
is proved for (Y̆1, . . . ,Y̆n) in Krit et al..

The fact that the distributions of the samples Ŷi, Ỹi and Y̆i are independent of the parameters of
the underlying Weibull distribution is a fundamental property since it allows to build GOF test
statistics as functions of these samples.

Let F be the cumulative distribution function of independent and identically distributed random
variables X1, . . . ,Xn. A GOF test is a statistical test of hypothesis H0: “F ∈F ” vs H1: “F /∈F ”,
where F is a family of distributions. In our case F will be the family of two-parameter Weibull
distributions. If a positive random variable X has the Weibull distribution, then lnX has the type I
extreme value distribution. So, thanks to a logarithmic transformation, a GOF test for the Weibull
distribution is equivalent to a GOF test for the extreme value distribution.

3. GOF tests based on the Laplace transform: previous works

Henze (1993) proposed GOF tests for the exponential distribution based on the Laplace transform.
The building of the test is based on the measure of the difference between the empirical Laplace
transform and its theoretical version.

Let X1, . . . ,Xn be independent and identically distributed (i.i.d) random variables from the
exponential distribution with parameter λ , i.e with pdf λe−λx,x≥ 0.

Let Yi = λXi, ∀i ∈ {1, . . . ,n}. Y1, . . . ,Yn is a sample from the unit exponential distribution. Its
Laplace transform is:

ψ(t) = E[e−tYi ] =
1

1+ t
. (13)

Since λ is unknown it can be estimated by the maximum likelihood estimator 1/Xn =
n/∑

n
i=1 Xi.

Let Ŷi = Xi/Xn, i ∈ {1, . . . ,n}. An important property is that the distribution of Ŷ1, . . . ,Ŷn is inde-
pendent of λ .

Henze’s idea is to reject the hypothesis that X1, . . . ,Xn are exponentially distributed if the
empirical Laplace transform ψn(t) = 1

n ∑
n
i=1 e−tŶi is too far from the theoretical Laplace transform

ψ(t). The closeness between both functions is measured by a test statistic of the form:

n
∫ +∞

0
|ψn(t)−1/(1+ t)|2wa(t)dt (14)
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Goodness-of-fit tests for the Weibull distribution based on the Laplace transform 139

where wa(t) = e−at is a weight function. Using the integration by parts, the test statistic turns out
to be:

1
n

n

∑
i, j=1

1
Yi +Yj +a

−2
n

∑
j=1

eYj+aE1(Yj +a)+n(1−aeaE1(a)) (15)

where E1(z) =
∫ +∞

z
e−t

t dt. The choice of the parameter a allows to build powerful GOF tests for a
large range of alternatives.

Cabaña and Quiroz (2005) used the Laplace transform to build GOF tests for the Weibull and
type I extreme value distributions. They exploited the fact that if X1, . . . ,Xn is an i.i.d sample from
W (η ,β ) then the distribution of Y1, . . . ,Yn follows the E V 1(0,1) distribution.

The Laplace transform of a sample Y1, ...,Yn from the E V 1(0,1) distribution is:

ψ(t) = E
[
e−tY ]= Γ(1− t), ∀t < 1

where Γ is the Gamma function defined as Γ(t) =
∫

∞

0 xt−1e−x dx.
Since the two parameters η and β are unknown, Cabaña and Quiroz proposed to replace Yi by

Y̆i, using the MEs of η and β defined in (11) and (12), and to use the empirical Laplace transform
ψn(t) = 1

n ∑
n
j=1 e−tY̆j .

The closeness between the empirical and theoretical Laplace transform is measured by the
empirical moment generating process

v̆n(s) =
√

n
(1

n

n

∑
j=1

e−Y̆js−Γ(1− s)
)
.

Its distribution, under H0, does not depend on the Weibull parameters η and β .
Cabaña and Quiroz proved the asymptotic convergence, under H0, of v̆n(s),s ∈ J = [−δ

′
,η
′
]

for δ
′
> 0,η

′
< 0.5 to a zero mean, continuous gaussian process Ğp(s) indexed on J whose

covariance matrix is completely known (Cabaña and Quiroz, 2005). In practice, Cabaña and
Quiroz recommend to use J = [−2.5,0.49] in order to keep the covariance matrix of the process
away from singularity. They suggested two test statistics that are functions of the stochastic
process ν̆n. The first has the following quadratic form:

C̆Qn = v̆n,SV−1(S) (v̆n,S)
t (16)

where v̆n,S = (v̆n(s1), . . . , v̆n(sk)),S = {s1, . . . ,sk} ⊂ J and V (S) is the limiting covariance matrix
of v̆n,S given in equation (2.7) in Cabaña and Quiroz (2005). The statistic C̆Qn has a limiting
chi-squared distribution with k degrees of freedom. In the simulations presented in Section 6, we
have chosen k = 2, s1 =−1 and s2 = 0.4 which are recommended in Cabaña and Quiroz (2005).
The second test statistic is similar to the test of Henze: it is based on a weighted L2 norm. The only
difference being the choice of the weight function that is different from the one used by Henze:

S̆n =
∫

J
v̆2

n(s)/V (s) ds (17)

where V is the limiting variance of v̆n. The asymptotic distribution of the test statistic S̆n converges
to the distribution of

∫
J Ğ2

p(s)/V (s) ds.
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In the following we combine the two approaches, the one of Henze based on the weighted L2

norm and the one based on Cabaña and Quiroz to build the new GOF tests by using the difference
between the empirical Laplace transform of the transformed data Yi, i∈ {1, . . . ,n}, and the Laplace
transform of the E V 1(0,1) distribution.

4. A new approach of the GOF tests building

Combining both approaches of Henze in (14) and of Cabaña and Quiroz in (17), we propose a
test statistic of the following form:

n
∫

I

(1
n

n

∑
j=1

e−Y jt −Γ(1− t)
)2

wa(t)dt =
∫

I
v2

n(t)wa(t)dt (18)

where wa is a weight function and I ⊂]−∞,1[ is a bounded interval for which the above integral
is convergent. The function wa depends on a parameter a that can be chosen to obtain the best
performance of the test as in Henze’s work (Henze, 1993).

Henze chose wa(t) = e−at ; this choice was justified by the fact of using a test of Cramer-Von-
Mises type which gives an explicit expression of the statistics and a good power for different
alternatives by adjusting the value of a. It is common in Cramer-Von-Mises and Anderson-Darling
tests to use as a weight function the probability density function tested. Thus, we use as a weight
function the probability density function of the E V 1(0,1) after dilatation with parameter a,
wa(t) = eat−eat

.
For the exponential distribution, it was possible to find an explicit and simple expression of

Henze’s statistic as a function of the sample Yj (see (15)). But, for the Weibull distribution, the

integral (18) is not easy to compute since Γ(1− t) is more complex than
1

1+ t
. We can compute

the integral using Simpson or Monte Carlo integration or we can simply compare the theoretical
Laplace transform and the empirical one by discretizing the integral on an appropriately chosen
interval I. For instance, with a discretization on [0,1[, we obtain the following test statistic:

LTa,m =
m−1

∑
k=1

v2
n(k/m)wa(k/m) = n

m−1

∑
k=1

[1
n

n

∑
j=1

e−Yjk/m−Γ(1− k/m)
]2

wa(k/m). (19)

The statistic LTa,m can be written as a quadratic form, as the first statistic of Cabaña and Quiroz:

LTa,m = vn,mWavt
n,m (20)

where vn,m = (vn(
1
m), . . . ,vn(

m−1
m )) and Wa =

wa(
1
m) . . . 0

...
. . .

...
0 . . . wa(

m−1
m )

 is a diagonal weight

matrix.
Equation (18) is similar to (17) and (20) is similar to (16), thus these tests are linked to those

of Cabaña and Quiroz. But they are much simpler since they do not require the computation of
the covariance matrix V (s).

We tried different range values of t by discretizing the intervals [−50,1[, [−10,1[, [−1,1[,
[0,1[, [−1,0], [−10,0] and [−50,0]. We used normalizing factors in some cases in order to have
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Goodness-of-fit tests for the Weibull distribution based on the Laplace transform 141

usual orders of magnitude of the statistics. The power results are similar for the statistics based
on the discretizations of [−50,1[, [−10,1[, [−1,1[ and [0,1[. Similarly the statistics based on
discretizing [−1,0], [−10,0] and [−50,0] have a comparable performance. That is why we use
only the discretizations of [0,1[ and [−1,0]. The two corresponding statistics are respectively
denoted LT 1 and LT 2:

LT 1
a,m = n

m−1

∑
k=1

[1
n

n

∑
j=1

e−Y jk/m−Γ(1− k/m)
]2

wa(k/m) (21)

LT 2
a,m = n

−1

∑
k=−m

[1
n

n

∑
j=1

e−Y jk/m−Γ(1− k/m)
]2

wa(k/m). (22)

For a comparison purpose, let LT 3
a,m be a third test statistic based on the discretization of the

interval [−2.5,0.49] recommended by Cabaña and Quiroz (2005):

LT 3
a,m = n

0.49m

∑
k=−2.5m

[1
n

n

∑
j=1

e−Yjk/m−Γ(1− k/m)
]2

wa(k/m). (23)

Each of the statistics (21), (22), (23) can be computed using Ŷ1, . . . ,Ŷn or Ỹ1, . . . ,Ỹn or Y̆1, . . . ,Y̆n

instead of Y1, . . . ,Yn. The corresponding statistics are denoted respectively L̂T
i
, L̃T

i
and L̆T i,

i ∈ {1,2,3}.
Using the moment estimators, we can conclude from the convergence result of ν̆n(s),s∈ J (Cabaña
and Quiroz, 2005) and the continuous mapping theorem that L̆T i

, i ∈ {1,2,3}, converges under
the null hypothesis H0, to the distribution of:

∑
s∈Ii(m)

Ğ2
p(s)wa(s)

where I1(m)= { 1
m , . . . ,

m−1
m }, I2(m)= {−1, −m+1

m , . . . , −1
m } and I3(m)= {−2.5, −2.5m+1

m , . . . ,0.49}.

We have the same asymptotic convergence of the statistics L̂T
i
to ∑s∈Ii(m) Ĝ2

p(s)wa(s), where
Ĝp(s) is a zero mean continuous gaussian process with a specific covariance matrix that will be
derived later in Section 5. Indeed, theorem 2.1 in Cabaña and Quiroz (2005) can be applied to the
empirical process v̂n using MLEs instead of the MEs, thus the sample Ŷ1, . . . ,Ŷn.

The behaviour of the tests statistics depends on the choice of the parameter value a of the
weight function. It is impossible to find a value of the parameter a that maximizes the power of
the GOF tests whatever the tested alternative. Indeed the behaviour of the tests depends in theory
on the alternative tested and the sample size. After several simulations with different values of
a, we recommend the use of a = −5 for both L̂T

1
a,m and L̂T

2
a,m. We will use this value for the

remaining tests statistics.
Concerning the choice of parameter m, it was fixed in all the simulations to m = 100. However

m = 100 is not in all the cases the optimal m that gives the best performance. For instance, we
studied the Monte Carlo estimation of the power of the test LT 1

−5,m for a sample simulated from
the Gamma distribution with parameters (1,2). Figure 1 shows that the optimal value is m = 70 in
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FIGURE 1. The power of the test L̂T
1
−5,m as a function of m

this case. But this optimal value could have been different if we had simulated another distribution.
Choosing a large value of m guarantees satisfying results in a large range of cases.

Given the expression of the new GOF test statistics as the distance between the theoretical and
the empirical Laplace transforms, the null hypothesis H0 is rejected when the statistics is too large.
The Weibull assumption is rejected at the level α if the statistics is greater than the quantile of
order 1−α of its distribution under H0. These quantiles are easily obtained by simulation.

5. Cabaña and Quiroz statistics with Maximum Likelihood Estimators

The results of Cabaña and Quiroz are valid for affine invariant estimators of µ = lnη and σ = 1
β

which are satisfying a condition denoted (2.6) in Cabaña and Quiroz (2005). Cabaña and Quiroz
showed that this condition is fulfilled by the moment estimators, and obtained the tests statistics
C̆Qn and S̆n.

In this section, we prove that the MLEs verify the condition (2.6) in Cabaña and Quiroz (2005).
So we are able to build the corresponding test statistics ĈQn and Ŝn.

We know that the MLEs verify asymptotically the following condition (Theorem 5.39, page 65
Vaart, 1998):

√
n(µ̂n, σ̂n−1)t =

1√
n

I−1
(µ=0,σ=1)

n

∑
i=1

(
∂ lng
∂ µ

(Yi,µ = 0,σ = 1),
∂ lng
∂σ

(Yi,µ = 0,σ = 1)
)t

+op(1)

(24)
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where I−1 is the inverse of the Fisher information matrix which can be derived as:

I−1
(µ=0,σ=1) =

∣∣∣∣ 1+ 6
π2 (1− γ)2 6

π2 (γ−1)
6

π2 (γ−1) 6
π2

∣∣∣∣ .
The condition becomes:

√
n(µ̂n, σ̂n−1)t =

1√
n

I−1
(µ=0,σ=1)

n

∑
i=1

(
−1+ eYi ,−1−Yi +YieYi

)t
+op(1). (25)

The two functions K1(y) =−1+ ey and K2(y) =−1− y+ yey are linearly independent. Then,
condition (2.6) in Cabaña and Quiroz (2005) is fulfilled for the MLEs and we can apply Theorem

2.1. Under the null hypothesis H0, v̂n =
√

n
(

1
n

n

∑
j=1

e−sŶj − Γ(1− s)
)

, as a stochastic process

indexed on J, converges in distribution to a zero mean, sample continuous Gaussian process Ĝp(s)
with covariance structure given by:

E[Ĝp(v)Ĝp(u)] = Γ(1−u− v)−Γ(1−u)Γ(1− v)

+5(v)I−1E
[
(−1+ eY )e−uY ,(−1−Y +YeY )e−uY ]t

+5(u)I−1E
[
(−1+ eY )e−vY ,(−1−Y +YeY )e−vY ]t

+5(u)I−1Cov
(
−1+ eY ,−1−Y +YeY )(I−1)t5 (v)t

where5(u) = u(−Γ(1−u),Γ
′
(1−u)) and Y is a variable with the E V 1(0,1) distribution.

After computation the limiting covariance structure is as follows:

E[Ĝp(v)Ĝp(u)] = Γ(1−u− v)−Γ(1−u)Γ(1− v)

+5(v)I−1
(

Γ(2−u)−Γ(1−u)
−Γ(1−u)−Γ

′
(1−u)+Γ

′
(2−u)

)
+5(u)I−1

(
Γ(2− v)−Γ(1− v)

−Γ(1− v)−Γ
′
(1− v)+Γ

′
(2− v)

)
+5(u)(I−1)t5 (v)t .

We use the following results, using the change of variables y = ln t:

E[Ye−vY ] = Γ
′
(1− v)

E[Y 2e−uY ] = Γ
′′
(1−u)

E[(−1+ eY )e−vY ] = Γ(2− v)−Γ(1− v)

E[(−1−Y +YeY )e−uY ] =−Γ(1−u)−Γ
′
(1−u)+Γ

′
(2−u)

Var(−1+ eY ) = 1

Var(−1−Y +YeY ) =
π2

6
+(γ−1)2

Cov(−1+ eY ,−1−Y +YeY ) = 1− γ.
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Hence, we can define new versions of the Cabaña and Quiroz statistics based on the MLEs instead
of MEs:

ĈQn = v̂n,SV̂−1(S) (v̂n,S)
t (26)

Ŝn =
∫

J
v̂2

n(s)/V̂ (s) ds (27)

where v̂n,S = (v̂n(s1), . . . , v̂n(sk)),S = {s1, . . . ,sk} ⊂ J and V̂ (S) is the limiting covariance matrix
of v̂n,S given above. The statistic ĈQn has a limiting chi-squared distribution with k degrees of
freedom. Figure 2 shows that the limiting variance of v̂n grows very fast when s goes to −∞

and the same when s approaches 0.5. In this case, we recommend that the interval J should be
included in [−1.5,0.49]. In the simulations presented in Section 6, we will use the test ĈQn with
the following values: k = 2, s1 =−0.1 and s2 = 0.02.

FIGURE 2. The asymptotic variance of v̂n(s) as a function of s

Since the tests statistics are used for small values of the sample sizes, the asymptotic results
are often not used in practice. That is why we had the idea of using a different version of the test
statistic ĈQn that we denote ĈQ

∗
n, whose expression is ĈQ

∗
n = v̂n,S A−1 (v̂n,S)

t by using any non
singular matrix A. In this case, we have no more convergence of the test statistic distribution to a
chi-squared distribution, but this is not important since we use simulated quantiles. Nevertheless
we still have the property that the distribution of ĈQ

∗
is independent of the parameters of the

Weibull distribution under H0. In the simulations in Section 6, we will use the test ĈQ
∗
n where

k = 2, S = {−0.1,0.02} and we fix the following matrix A =

[
1.59 0.91
0.91 0.53

]
.
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6. Comparison of the goodness-of-fit tests

The previous section has proposed new GOF tests for the Weibull distribution. It is then important
to select the best of them and compare them with the best GOF tests of the literature. The
comparison of the proposed GOF tests will be based on the power of the tests. This section
presents the results of an intensive Monte Carlo simulation study in order to assess the power of
all the new GOF tests and to compare them with usual tests for the Weibull distribution.

The study is done using a broad range of alternative distributions. We have four classes
depending on the shape of the hazard rates:

– IHR: increasing hazard rate
– DHR: decreasing hazard rate
– BT: bathtub-shaped hazard rate
– UBT: upside-down bathtub shaped hazard rate.
For each distribution, we simulate 50,000 samples of size n ∈ {10,20,50,100}. All the GOF

tests are applied with a significance level set to 5%. The tests reject Weibull hypothesis when the
statistic is greater than the quantile of order 95% of its distribution under H0. These quantiles are
obtained by simulation, thus the asymptotic results are not used in this case.

The power of the tests is assessed by the percentage of rejection of the null hypothesis. The
algorithms have been written in R.

We first simulate Weibull samples, in order to check that the percentage of rejection is close to
the nominal significance level 5%. For the other simulations, we have chosen usual distributions
such as:

– Gamma G
– Lognormal L N
– Inverse-Gamma I G
– Generalized Weibull distributions:

– Exponentiated Weibull distribution E W (θ ,η ,β ) (Mudholkar and Srivastava, 1993) with
the c.d.f:

FX(x;θ ,η ,β ) =
[
1− e−(x/η)β

]θ

– Generalized Gamma distribution G G (k,η ,β ) (Stacy, 1962) with the c.d.f:

FX(x;k,η ,β ) =
1

Γ(k)
γ(k,(x/η)β )

where γ(s,x) =
∫ x

0 vs−1e−vdv
– Additive Weibull distribution AW (ξ ,η ,β ) (Xie and Lai, 1995; Bousquet et al., 2006)

with the c.d.f:
FX(x;ξ ,η ,β ) = 1− e−ξ x−( x

η
)β

.

For the sake of simplicity, the scale parameters of the Weibull, Gamma and Inverse-Gamma
distributions are set to 1 and the mean of the Lognormal distribution is set to 0. The choice
of parameters of the simulated distributions is done in order to obtain different shapes of the
hazard rate. Table 1 gives the values of the parameters and the notation used for all the simulated
distributions.

We remind the values of the parameters used for the new test statistics:
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TABLE 1. Simulated distributions

Weibull exp(1) W (1,0.5)≡W (0.5) W (1,3)≡W (3)

IHR G (2,1)≡ G (2) G (3,1)≡ G (3) AW 1≡AW (10,0.02,5.2)

DHR G (0.2,1)≡ G (0.2) AW 2≡AW (2,20,0.1) E W 1≡ E W (0.1,0.01,0.95)

BT E W 2≡ E W (0.1,100,5) G G 1≡ G G (0.1,1,4) G G 2≡ G G (0.2,1,3)

UBT L N (0,0.8)≡L N (0.8) L N (0,2.4)≡L N (2.4) L N (0,3)≡L N (3)

I G (3,1)≡I G (3) G G 3≡ G G (10,0.01,0.2)

– For LT ii ∈ {1,2,3}: m = 100 and a =−5
– For C̆Q: k = 2, S = {−1,0.4}
– For ĈQ: k = 2, S = {−0.1,0.02}

– For ĈQ
∗
: k = 2, S = {−0.1,0.02} and A =

1.59 0.91

0.91 0.53

.

For the power study, the percentage of rejection of H0 is an estimation of the power of the test
for this alternative. For instance, we see in Table 4 that the power of the L̂T

1
test for simulated

L N (0,0.8) samples and n = 20 is estimated at 37.1%.
In the following tables, we assess the powers of the new GOF statistics LT i, i ∈ {1,2,3}, with

the three estimation methods and the new version of Cabaña and Quiroz test ĈQ.
We compare the performance of these new GOF tests to three usual GOF tests for the Weibull

distribution and the one suggested by Cabaña and Quiroz:

– AD: Anderson Darling (D’Agostino and Stephens, 1986). The test statistic is:

AD= n
∫ +∞

−∞

[
Gn(y)− Ĝ0(y)

]2
Ĝ0(y)(1− Ĝ0(y))

dĜ0(y)=−n+
1
n

n

∑
i=1

[
(2i−1−2n) ln(1−Û∗i ))− (2i−1) ln(Û∗i )

]
(28)

where Gn(x) =
1
n

n

∑
i=1

11{lnXi≤x}, Ĝ0(y) = G(y; ln η̂n,1/β̂n) and Ûi = Ĝ0(lnXi).

– MSF : Mann-Scheuer-Fertig (Mann et al., 1973). The test statistic is:

MSF =

n−1

∑
j=b n

2c+1

E j

n−1

∑
j=1

E j

(29)

where bxc is the integer part of x and Ei =
lnX∗i+1−lnX∗i
E[Y ∗i+1]−E[Y ∗i ]
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– T S: Tiku and Singh (1981). The test statistic is:

T S =

2
n−1

∑
i=2

(n− i)Ei

(n−2)
n

∑
i=2

Ei

(30)

– C̆Qn: Cabaña and Quiroz (2005).

The last row of tables 2, 3, 4 and 5 gives the mean of rejection percentages of each test for all
simulated alternative distributions, except the Weibull ones. This allows to identify the best tests
for a broad range of alternatives.

TABLE 2. Power results for the tests based on Laplace transform, n = 100

altern. L̂T
1

L̂T
2

L̂T
3

L̃T
1

L̃T
2

L̃T
3

L̆T 1 L̆T 2 L̆T 3 T S AD MSF C̆Q ĈQ ĈQ
∗

exp(1) 5.1 5.1 4.9 5 5 5.3 5.1 5 5.1 5.1 4.9 5 5.1 5.1 5
W (0.5) 5.1 5.1 4.9 4.9 4.9 5.1 5 5 4.9 5.1 4.9 5 4.9 5 4.8
W (3) 5.3 5.1 5.1 5.1 5 5.2 5.1 5.1 4.9 5 4.9 4.9 5 5.1 5.1

G (2) 22.1 17.1 2.2 23.2 39.5 6.8 17.9 10.8 9.2 18.8 13.3 21.5 22.8 11.3 19.6
G (3) 38.4 31.7 5.7 27.5 39.5 12.3 28.9 21.6 17.1 34.9 23.3 34.6 40.4 23.9 34.7
AW 1 84.9 94.1 97.9 35.9 10.8 91.1 19.6 96 83 97.2 92.3 0 96.4 98.3 94.3
G (0.2) 16.3 84.7 61.5 2.5 0.2 22.9 1.4 36.4 17.2 86.3 69.4 0 45.5 76.9 87.7
AW 2 60.7 100 99.7 6.8 0.3 66.2 2.8 86.1 36.3 100 100 0 98.9 100 100
E W 1 0 95.2 14.2 0.2 0.2 0 0.3 0.7 0 83.3 90.3 0 7.5 50.4 88.4
E W 2 0 95.3 14.4 0.1 0.2 0 0.3 0.7 0 83.1 90.4 0 7.7 50.4 88.5
G G 1 21.1 96.6 73.9 1.3 0.2 27.5 1.5 44.4 19.4 96.6 95 0 59.6 89.3 97.5
G G 2 16.1 84.4 61.2 2.5 0.2 22.7 1.4 36.8 16.7 85.7 78.2 0 45.6 77.2 88.2
L N (0.8) 97.5 89.7 70.5 87.2 97.6 78.8 89.9 92.8 86 96.1 87.6 90.3 97.7 92.3 93.2
L N (2.4) 97.6 89.9 70.9 87.4 97.7 78.5 89.8 92.5 86.2 96 87.8 90.6 97.8 92.5 93.1
L N (3) 97.4 89.7 70.5 87.3 97.6 78.7 90 92.7 86.4 95.9 87.5 90.5 97.6 92.3 93.3
I G (3) 100 99.7 99.2 99.9 100 99.9 100 100 100 100 99.8 99.8 100 99.9 99.9
G G 3 76.3 63.7 27.2 56.5 76.8 37.9 59.1 58.2 46.5 72.9 55 65.6 78.5 61.8 69.5
mean 52 80.8 54.9 37.1 40.1 44.5 35.9 55 43.2 81.9 76.4 28.1 64 72.6 82
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TABLE 3. Power results for the tests based on Laplace transform, n = 50

altern. L̂T
1

L̂T
2

L̂T
3

L̃T
1

L̃T
2

L̃T
3

L̆T 1 L̆T 2 L̆T 3 T S AD MSF C̆Q ĈQ ĈQ
∗

exp(1) 4.9 5.3 5.1 5 4.9 4.8 4.8 5 4.9 4.9 5 5.1 5.1 4.8 5.1
W (0.5) 5 5.2 5 5 5 5 4.9 5 4.9 5 5 5 5.1 5 5
W (3) 5.1 5.2 5 5 4.9 5 4.8 5.2 5 5.1 5.2 5.1 5.1 5 5

G (2) 14.5 11.7 1.4 13.4 15.6 7.6 13.6 6.7 10.2 11.9 8.5 14.4 15.4 4.7 11.6
G (3) 23.2 18.2 1.4 19.8 24.2 11.9 20.2 10.7 15.8 18.9 13.2 21.6 25.1 8.4 18.6
AW 1 64.1 75.8 86.2 18.8 3.1 67.8 6 79.6 53.1 82.2 70.9 0.1 74.7 87.4 76.4
G (0.2) 11.6 52.9 40.4 1.3 0.2 14.1 0.4 23.5 9.4 56.5 45.8 0.1 17.7 49.6 57.2
AW 2 44.8 99.9 93.1 3.6 0.3 41.7 0.5 61.1 20.3 99.6 99.9 0 74 98.3 99.9
E W 1 0.1 65.3 11.5 0.2 0.3 0.2 0.3 1.3 0.1 49.4 56.1 0 1.6 26.1 53.9
E W 2 0.1 65.3 11.2 0.2 0.3 0.2 0.3 1.3 0.1 49.8 56.2 0.1 1.6 26.5 54.4
G G 1 15 73.8 51.4 1.4 0.2 16.5 0.3 28.5 10.5 74.9 67.6 0 24.2 63.2 75.6
G G 2 11.8 53.1 40.9 1.2 0.2 13.9 0.3 23.4 9.3 56.2 45.5 0.1 17.9 49.9 57.1
L N (0.8) 78.8 62.6 19.9 65.8 78.2 55.9 68.2 59.9 66 72 55.7 65.3 79.3 53.4 66.3
L N (2.4) 78.7 62.4 20 65.8 78.4 56.3 67.8 60 66.2 72.8 55.3 65 79.4 52.7 65.7
L N (3) 78.5 62.1 19.7 66.2 78.6 55.7 67.8 60.1 65.5 73 55.3 65.1 79.7 52.8 66
I G (3) 98.6 91.3 66.7 96.7 98.8 93.1 97.5 95.5 97.3 96.9 91.6 93.3 98.3 91.2 93.5
G G 3 48.1 37.1 5.4 38.9 48.6 27.2 38.9 28.1 34.9 42.9 28.7 40.1 50.3 23.8 39.4
mean 40.6 59.4 33.5 28.1 30.5 33.1 27.3 38.6 32.8 61.2 53.6 26.1 45.6 49.2 59.7

TABLE 4. Power results for the tests based on Laplace transform, n = 20

altern. L̂T
1

L̂T
2

L̂T
3

L̃T
1

L̃T
2

L̃T
3

L̆T 1 L̆T 2 L̆T 3 T S AD MSF C̆Q ĈQ ĈQ
∗

exp(1) 4.9 4.9 4.9 5 5.1 5 4.9 5 5.1 5.1 5 5.1 5 5 5.4
W (0.5) 4.8 4.9 5 5 5.1 5.1 4.9 5 5 5.2 4.9 5.2 4.9 5.2 5.3
W (3) 4.9 5 5 5 5.1 4.9 5 5 4.9 5 5.1 5 5 5 5.5

G (2) 9 7 1.9 9.5 10.1 8.5 9.3 3.8 9.7 6.6 5.9 9.5 10 2.8 6.6
G (3) 12.1 8.7 1.1 12.7 13.6 11 4.6 0.9 13.3 8.7 7.3 12.5 5 2.4 8.4
AW 1 33.4 45.1 56.2 3.1 3.1 27.9 0.7 47.4 12.6 49.5 40.4 0.9 27.5 57.8 49.6
G (0.2) 6.9 22.1 23.5 0.5 0.6 5 0.7 14.8 1.6 24.2 19.9 0.7 3.8 26.5 26
AW 2 25.9 87.9 66.7 0.5 0.8 16.4 0 37.9 4.1 87 88.7 0 19.4 75.4 87.1
E W 1 1 22.7 11 0.4 0.7 0.7 0.6 4.2 0.5 18.1 21.9 0.6 0.5 15.1 20.8
E W 2 0.9 22.8 10.8 0.4 0.7 0.7 0.6 3.9 0.5 17.6 21.7 0.7 0.4 14.8 21.3
G G 1 8.6 32.2 28.9 0.3 0.4 5.7 0.4 17.6 1.6 34.1 29.5 0.4 5 33.3 35.4
G G 2 6.8 22.6 23.6 0.5 0.6 5 0.6 14.8 1.6 24 20.1 0.7 3.9 26.7 25.9
L N (0.8) 37.1 26.5 1.8 35.3 39.3 27.5 35.8 17.7 38.1 28.8 21.9 32.4 40.7 10.1 27.2
L N (2.4) 37.3 26.6 1.8 35.3 39.7 27.1 35.5 17.7 38.2 29 21.9 31.8 40.5 9.7 26.7
L N (3) 37.4 26.7 1.8 35.4 39.3 27 35.3 17.3 37.9 29.1 21.7 32.2 40.4 9.8 26.9
I G (3) 68.9 51.6 10.5 67.7 71.9 45.3 68.6 47 71.4 59.7 48.3 58.7 70.3 31.1 53.3
G G 3 21.8 15.5 0.6 21.2 23.3 17 20.9 8.2 22.7 15.7 12 20 24.1 4.2 15.4
mean 21.9 29.9 17.2 15.9 17.4 16.1 15.3 18.1 18.1 30.8 27.2 14.4 21.4 22.8 30.8
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TABLE 5. Power results for the tests based on Laplace transform, n = 10

altern. L̂T
1

L̂T
2

L̂T
3

L̃T
1

L̃T
2

L̃T
3

L̆T 1 L̆T 2 L̆T 3 T S AD MSF C̆Q ĈQ ĈQ
∗

exp(1) 5.1 5 4.9 4.9 5.1 5.4 5.2 5 4.8 4.9 5 4.8 4.9 5.1 5.2
W (0.5) 5.4 5.1 4.8 5 5 5.2 5.1 4.8 4.9 5.2 5.3 5 5 5.1 5.1
W (3) 5.1 5 5 5.1 5.2 5 5 4.9 5.1 5.1 5.1 5.1 5.1 5 5.2

G (2) 7.6 5 2.6 7.8 7.9 7.4 7.8 3.1 7.7 5.6 5.1 7.4 7.8 2.7 4.5
G (3) 9.3 5.5 1.8 9.3 9.4 8.2 9.1 2.6 9.3 6.2 5.4 9 9.6 1.9 4.7
AW 1 15.6 27.4 33.8 1.9 2.6 6.5 1.8 28.8 1.8 27.4 24.9 2 11.7 34.6 31.9
G (0.2) 4 13.5 15.4 1.2 1.4 2.2 1.3 12.3 1.2 12 12.3 1.7 2.7 16.4 15.2
AW 2 14 56 43.3 0.1 0.9 3.6 0.2 29.6 0.1 51 54.7 0.3 9.2 47.5 53.9
E W 1 1.8 12.1 10.1 0.9 1.1 1.4 1.1 7.1 0.9 8.7 11.7 1.5 1.1 11.2 11.6
E W 2 1.9 12.1 10.1 1.1 1.4 1.4 1.2 7.3 1 8.9 12.1 1.5 1.2 11.3 11.8
G G 1 4.4 17.6 18.3 0.7 1 1.6 0.9 14.1 0.8 15.9 16.4 1.1 2.7 19.9 19.2
G G 2 4.1 13.4 15.5 1.2 1.3 2 1.4 12.3 1.2 11.8 12 1.6 2.7 16.3 15.2
L N (0.8) 20.2 11 0.3 19.5 19.8 12.1 19.8 3.5 20.2 13.4 10 17.3 21 1 8.9
L N (2.4) 20.4 11 0.3 19.7 20.1 12 19.7 3.4 20.2 13.5 10.2 17.2 20.3 0.9 9.2
L N (3) 20.4 10.8 0.4 19.6 20 12.3 19.7 3.4 20.2 13.3 10.3 16.9 20.5 0.9 9
I G (3) 37.3 21.9 0.2 35.7 37.2 13.8 37.4 9.4 37.8 27.5 21.1 31.2 37.1 0.9 19.2
G G 3 13.5 7.3 0.2 13.4 13.5 9.9 13.3 2.4 13.5 8.8 6.9 11.9 13.6 1.2 5.7
mean 12.5 16.1 10.9 9.4 9.8 6.7 9.6 9.9 9.7 16 15.2 8.6 11.5 12.1 15.7

6.1. Results and discussion

The first obvious result of the analysis of these tables is that the performance of the tests is strongly
linked to the shape of the hazard rate of the simulated distribution. We see the same behaviour of
the tests that appears for, on one hand the IHR and UBT alternatives and on the other hand the
DHR and BT alternatives. This link is not surprising since an UBT hazard rate starts by increasing
and a BT hazard rate starts by decreasing.

The second important remark is that the new GOF tests are biased for some alternatives except
the test L̂T 2; their power is smaller than the significance level 5%. The same behaviour is noticed
in Mann et al. (1973) for the Mann-Scheuer-Fertig test.

The tests based on the LSEs L̃T
i
, i ∈ {1,2}, the test based on the MEs L̆T 1 and the MSF

test are powerful for IHR-UBT alternatives and biased for DHR-BT alternatives. The tests
L̂T

1
, L̃T

3
, L̆T i

, i ∈ {2,3} and C̆Q are biased for Exponentiated Weibull distributions (E W 1 and

E W 2) for large n (≥ 20). For small values of the sample size n ≤ 10, the tests L̂T
1
, L̃T

i
, i ∈

{1,2,3}, L̆T i
, i ∈ {2,3}, and C̆Q are biased for the DHR-BT alternatives and the tests L̂T

3
and

ĈQ become biased for IHR-UBT alternatives (except for the alternative AW 1 for n = 10).
The two tests ĈQ and C̆Q depend on the choice of the values of S. The test ĈQ

∗
n depends on

both the value of S and the choice of the matrix A, we may have better performances for different
values than those used for the comparison. The tables comparison shows that the test ĈQ is more
powerful than C̆Q, but the results can be very different depending on the choice of S. The test
ĈQ
∗

is the most powerful among both C̆Q and ĈQ: its performance is very close and competitive
with T S.

The only non biased test for all the sample sizes is the test based on the MLEs L̂T
2
. It has a

good performance compared to the tests T S and AD.
The performance of the test statistics is very dependent on the shape of the hazard rate. The
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GOF tests have the following behaviour:
– For the IHR alternatives: L̃T

2
is more powerful than T S except for the alternative AW 1

where the power is less than all the powers of the new GOF tests. The performance of the
test L̂T

2
is very close to that of T S test.

– For the DHR-BT alternatives: the new GOF tests based on the LSEs L̃T
i
, i ∈ {1,2}, and the

MEs L̆T 1 are biased for all the DHR-BT alternatives. These tests have the same performance
as the MSF test. The two tests L̃T

3
and L̆T 3 become biased for small values of n≤ 20 not

only for the alternatives E W i, i = 1,2, but for all the remaining DHR-BT alternatives.
– For the UBT alternatives: the three tests L̂T

1
, L̃T

2
and C̆Q are very powerful, even the most

powerful compared to the usual tests including T S. For n≤ 20, the test C̆Q becomes much
more powerful than T S for the UBT alternatives and loses the performance it has against
DHR-BT alternatives and becomes biased in this case.

For the majority of the studied alternatives, there exists a new GOF test that is significantly
more powerful than the usual tests but, no test is uniformly better than the usual ones. Globally,
the two best tests among all the new GOF tests are L̂T

2
and ĈQ

∗
which are more powerful than

MSF and AD and have good performances comparable to T S.

6.2. Conclusion and future work

In this paper, we introduced new goodness-of-fit tests for the Weibull distribution based on the
Laplace transform. Each one of the new GOF tests has three versions depending on the estimation
methods used. The advantage of these new GOF tests is the fact that they are exact and can be
applied to any sample size.

In a previous study we showed that the powers of Weibull GOF tests are significantly lower
than the ones of the exponential GOF tests (Krit and Gaudoin, 2012). For small sample sizes, the
powers are quite low for all tests.

The performance of the tests depends strongly on the shape of the hazard rate of the underlying
distribution. The new tests can be very interesting when the shape of the hazard rate is known.
Nonparametric estimation of the hazard rate can be done before choosing which test to use. In
this case, we recommend to use L̂T

2
for DHR-BT alternatives, C̆Q for UBT alternatives and L̂T

1

for IHR alternatives. The tests based on the least squares and the moment estimators have to be
used carefully because they are biased. It is safer to use the unbiased test L̂T

2
that has as good

performance as Tiku-Singh test T S.
Since the results of some test statistics seem to be complementary, one of the prospects for future

work is to combine these statistics using multiple testing in order to have better performances
whatever the monotony of the hazard rate. The second prospect is to adapt these tests for censored
data after introducing the censoring in the estimation of the MLEs. Another prospect is to study
the impact of the weight function to the test performances.
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