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Testing an “Exponential Delay Time model” against
a “Random Sign Censoring model” in Reliability

Titre: Test du modèle “Delay Time” exponentiel contre le modèle “Random Sign Censoring” en Fiabilité

Jean-Yves Dauxois1 , Sarah Jomhoori2 and Fatemeh Yousefzadeh2

Abstract: In this paper we consider an industrial system subject to different causes of failure and different types
of maintenance: a corrective maintenance is performed after a critical failure and a preventive maintenance can be
performed in order to decrease the risk of critical failure. The recurrence of these types of maintenance has been often
modeled in a competing risks framework.

However rather few statistical inference has been carried out in these models. In particular, there is a need to
introduce statistical tests in order to help the engineers to select the model which better fits their data. Thus, in this
paper, we introduce a nonparametric test with aim to decide between a Delay Time model with exponential distribution
and a Random Sign model. We prove the asymptotic normality of our test statistic and we carry out a Monte Carlo
simulation to learn how works our test on finite sample sizes. An application on a real dataset is also given.

Résumé : Nous nous intéressons dans cet article à un système industriel sujet à différentes causes de pannes et sur
lequel deux types de maintenance peuvent être effectuées : soit une maintenance corrective dans le cas d’une panne
critique, soit une maintenance préventive afin de réduire le risque d’une panne critique. Des modélisations basées sur
la notion de risques concurrents ont été proposées dans la littérature. Mais peu d’inférence statistique a été menée sur
ces modèles. En particulier, il existe très peu de tests statistiques permettant de décider quel modèle pourrait le mieux
s’ajuster à un jeu de données précis.

L’objectif de cet article est justement d’introduire un test non-paramétrique permettant de décider entre deux de ces
modèles de fiabilité : le modèle “Delay Time” avec loi exponentielle et le modèle “Random Sign Censoring”. Nous
introduisons une statistique de test et prouvons sa normalité asymptotique. Nous terminons l’article en étudiant par
simulation le comportement de notre procédure dans le cas de petits échantillons et en présentant une application du
test sur un jeu de données réelles.
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1. Introduction

This paper considers the modelling of the time to failure of an industrial system. We suppose that
many types of failure can occur, some are seen as critical, other not. As it is often the case in
practice, these causes of failure are not assumed to be independent. We also suppose that different
types of maintenance can be carried out. A Corrective Maintenance (CM) is generally performed

1 Université de Toulouse-INSA, IMT, UMR CNRS 5219, 135, Avenue de Rangueil, 31077 Toulouse Cedex 4, France.
E-mail: jean-yves.dauxois@insa-toulouse.fr

2 Department of Statistics, Faculty of Sciences, University of Birjand, Iran. P.O. BOX: 97175/615
E-mail: sjomhoori@birjand.ac.ir

Journal de la Société Française de Statistique, Vol. 155 No. 3 104-119
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238

mailto:jean-yves.dauxois@insa-toulouse.fr
mailto:sjomhoori@birjand.ac.ir


Testing an “Exponential Delay Time model” against a “Random Sign Censoring model” in Reliability 105

after a critical failure. A condition-based Preventive Maintenance (PM) is also performed at
random times, for example after a casual observation of a degradation. Although the subject of the
efficiency of the repair is of interest and largely studied in the literature, we assume in our case
that all the repairs are perfect, i.e. the system is considered as good as new after maintenance.

The matter of the modelling of different types of failure and/or maintenance has been often
addressed in the literature through the use of competing risks. The notion of Competing risks
has been introduced by Bernoulli in the 18th century to separate the risk to die from smallpox
from the other causes. This is now a well established theory and the literature concerned with
competing risks is huge, in particular in the field of Survival Analysis. One can not list the papers
published in this area and we only refer to Crowder (2001) for a very readable introduction to
competing risks and to Andersen et al. (1993) for a more mathematical presentation of this subject
and of the theoretical results available in this field.

In Reliability, the competing risks approach has been considered by many authors, like Cooke
(1996) and Li and Pham (2005) to model the different types of failure, or Cooke and Paulsen (1997)
who have been the first to introduce this concept to model the dependence between preventive and
corrective maintenance. One can mention also papers from Cooke (1993), Hokstad and Jensen
(1998), Bunea and Bedford (2002), Christer (2002), Bunea et al. (2003), Langseth and Lindqvist
(2003), Langseth and Lindqvist (2006), Lindqvist et al. (2006), Doyen and Gaudoin (2006),
Dijoux et al. (2008), Dijoux and Gaudoin (2009), Deloux et al. (2012), Dijoux and Gaudoin
(2014), among others...

Many of the above papers have introduced interesting models of maintenance which are
often used by engineers. One can mention the “Independent Competing Risks with Mixture of
Exponentials” model of Bunea et al. (2003), the “Delay-Time” model of Hokstad and Jensen
(1998), the “Random Sign censoring” model of Cooke (1993, 1996) and finally the “(Intensity
Proportional) Repair Alert” model of Langseth and Lindqvist (2003) and Lindqvist et al. (2006).
Note that all the above papers consider models with only two competing risks. Either the different
causes of failure are split into two groups or only the two types of maintenance (PM or CM) are
considered.

But, the available results on these models are almost exclusively probabilistic. In particular,
only graphical criteria are used to decide the model to use on a given dataset. They are based on
empirical estimation of some functions known to have a specific behavior under these models.
Some interesting exceptions are Dewan et al. (2004) who combined the concept of concordance
and discordance with U-statistic approach to derive some tests for model selection and Langseth
and Lindqvist (2006) who proposed to use parametric bootstrap to test IPRA model under perfect
repair. Nevertheless, there is a need to introduce other statistical procedure.

This is the aim of our paper to introduce such a goodness-of-fit test. Our test attempts to
detect characteristic properties of the function Φ(·) which gives the probability of Preventive
Maintenance beyond time t (this function is introduced precisely in next section).

The rest of this paper is outlined as follows. In Section 2, we introduce the competing risks
framework and we present a short review of reliability models with different types of maintenance
based on competing risks. We recall precisely the properties fulfilled under these models by the
function Φ(·) and the conditional survival functions given the type of maintenance. We also recall
the available results on nonparametric inference with competing risks, those which will be used in
the following sections. Section 3 is concerned with the construction of a family of test with aim
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to decide e.g. between the “Delay Time” model and the “Random Sign” model. The statistic of
test is introduced and its large sample behavior established. In Section 4 we present a numerical
application of our testing procedure. First, we carry out a simulation study of the empirical level
and power of our test on small sample sizes. The paper ends with a Conclusion where some
prospects of further developments are given.

2. Framework and notations

2.1. Competing risks formulation

First, let us introduce precisely the competing risks framework used to modelise the lifetime of
a repairable system with different types of failure and different types of maintenance. Let us
denote by X the failure time associated to the failure mode(s) of interest. In this case a Corrective
Maintenance is performed on the system. Let us denote by Y the termination time of observation
due to other causes, like preventive maintenance or a non-critical failure. For abbreviation we will
say that Y is the time where a Preventive Maintenance is performed on the system. Except when
explicitly mentioned, we don’t assume in the sequel that X and Y are independent.

Thus, one can only observe the r.v. (T,δ ) where :{
T = X ∧Y
δ = 1+ I{X < Y} ,

that is δ = 1 when a PM is performed and δ = 2 when it is a CM.
From Tsiatis (1975), one knows that without any other assumption or information, the dis-

tribution of the random variables X and Y (e.g. their survival functions SX(·) and SY (·)) are
not identifiable and thus not estimable. In general, only the cumulative incidence functions or
sub-survival functions defined as below are identifiable. The cumulative incidence functions (CIF)
are given by

Fj(t) = P(T ≤ t,δ = j), for j = 1,2 and t > 0 (1)

whereas the sub-survival functions are

S2(t) = P(T > t,δ = 2) = P(X > t,Y > X),

S1(t) = P(T > t,δ = 1) = P(Y > t,X > Y ).

Of course, the cumulative distribution function of T is equal to

F(t) = P(T ≤ t) = F1(t)+F2(t) (2)

and let us write S(t) = 1−F(t) the survival function.
The conditional survival functions

CS2(t) = P(T > t|δ = 2) = P(X > t|Y > X),

CS1(t) = P(T > t|δ = 1) = P(Y > t|X > Y )

are also estimable.
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Finally, we will also consider the function which, for all t, gives the probability of PM beyond
time t:

Φ(t) = P(δ = 1|T > t) = P(Y < X |T > t).

In the sequel we will use the notation γ = Φ(0) = P(δ = 1).

As we will see in the following subsection, the functions Φ(·), CS1(·) and CS2(·) have inte-
resting properties under classical Reliability models of different types of maintenance and could
be used to build goodness-of-fit tests of these models.

2.2. Review of some Reliability models with two types of maintenance

In this subsection we will recall briefly the definition of some competing-risks-based models for
the occurrence of the PM and CM times. Presentations of these models have already been done in
Bunea et al. (2003) or Dijoux and Gaudoin (2009). In particular, more details on these models
can be found in Bunea et al. (2003). The aim of this paragraph is only to list the properties of the
above functions under such models.

2.2.1. Independent Competing Risks

In this model the r.v. X and Y are supposed to be independent. This is a strong and untestable
hypothesis. There is no general result on the behavior of the functions Φ(·), CS2(·) and CS1(·).
All depends on the distribution given to X and Y . One can note that if X and Y have an exponential
distribution, the function Φ(·) is constant, as it has been noted by Bunea et al. (2003).

2.2.2. Independent Competing Risks with Mixture of Exponentials

Bunea et al. (2003) introduced a model which assumes that the r.v. X and Y are independent with
respective survival functions:

SX(t) = pexp(−λ1t)+(1− p)exp(−λ2t)

SY (t) = exp(−λyt).

The reals λ1,λ2,λy and p are the parameters of the model.
Bunea et al. (2003) proved that under this model the function Φ(·) is strictly increasing when

λ1 6= λ2 and that we have CS2(t)≤CS1(t), for all t > 0.

2.2.3. Delay-Time Model

The Delay-Time model introduced by Hokstad and Jensen (1998) assumed that the r.v. X and Y
are such that:

X = U +V

Y = U +W,
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where U , V and W are independent r.v. Thus, the r.v. X and Y are dependent, but independent
given U . The r.v. U can represent the time where the degradation of the system crosses a threshold.
In this case, the r.v. V (resp. W ) represents the remaining time before CM (resp. PM).

If U , V and W are supposed to be exponentially distributed, Hokstad and Jensen (1998)
established that the function Φ(·) is constant and that CS1(t) =CS2(t), for all t > 0.

2.2.4. Random Signs Censoring Model

This model has been introduced by Cooke (1993). Here the r.v. δ and X are supposed to be
independent. This means that the type of maintenance is independent of the failure time. It is easy
to see that this is equivalent to say that the sign of Y −X is independent from X which explains
the name of this model.

Cooke (1993) showed that, in this case, the function Φ(·) has its maximum at the origin:

sup
t

Φ(t) = Φ(0) = P(δ = 1).

Moreover, Cooke (1996) proved that there exists a joint distribution on (X ,Y ) which satisfies the
random signs censoring assumption if, and only if,

CS2(t)>CS1(t), for all t > 0.

2.2.5. (Intensity Proportional) Repair Alert Model

Langseth and Lindqvist (2003) and Lindqvist et al. (2006) have developed the Repair Alert Model
which is a special case of the Random Sign Model where it is also assumed that:

P(Y ≤ y|X = x,Y < X) =
G(y)
G(x)

,

with G(·) an increasing function such that G(0) = 0. The Intensity Proportional Repair Alert
Model (IPRA) is obtained with the choice of G(·) = ΛX(·), the cumulative hazard rate function
of the time to failure X . Thus, the IPRA model assumes that the conditional density of Y is
proportional to the intensity of the underlying failure process. Note finally that Dijoux and
Gaudoin (2009) mentioned that in this case the function Φ(·) is decreasing.

2.3. Testing the “Exponential Delay time model” against a “Random Sign Censoring model”
using the function Φ(·)

As we have seen in the previous subsection, the functions Φ(·), CS1(·) and CS2(·) have different
behaviors depending on the reliability models considered. These properties are often used empiri-
cally by the engineers in order to decide the model to use on a specific dataset. From the plot of
the empirical estimates of these functions they choose the model which better fits the data. There
is a need to have some statistical tests to help the engineers in their choice. And it appears that
the literature is rather poor in developing goodness-of-fit tests for such models. As said in the
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introduction, some interesting exceptions are Dewan et al. (2004) and Langseth and Lindqvist
(2006).

Our aim in this paper is to fill part of this gap. More precisely we introduce a family of tests of
the hypothesis “the function Φ(·) is constant” against “the function Φ(·) is not constant and attains
its maximum at the origin”. With the notation γ = Φ(0) = P(δ = 1) introduced in Section 2.1,
the above two hypotheses can be rewritten as:

H0 : Φ(t) = γ, for all t > 0,

and
H1 : Φ(t)< γ, for all t > 0.

For example, deciding H0 could give us indications that we are in presence of exponential
distributions either under an “independent competing risks” model or a “Delay Time” model.
Deciding H1 would suggest that maybe a “Random Sign” model could better fit the data.

2.4. Nonparametric inference of the functions of interest

Let us close this section by a small reminder of the available results on the nonparametric
estimation of the functions of interest in a competing risks model. These estimators will be used
in the forthcoming test statistic. But, first of all and in order to consider the most general situation,
let us also assume the presence of a random censoring mechanism acting on the observation of
the lifetime T . Such a random censoring could be for example due to “end of study” or “loss to
follow up” even if this latter case is less common in Reliability studies. But our work, exposed in
the following sections, may also have applications in survival analysis where such a phenomenon
is very usual.

So, to allow for possibly right censored data, let us now suppose that the observations are not a
sample of (T,δ ) but a sample (T ∗i ,δ

∗
i ), for i = 1,2, ...,n, of:{

T ∗ = T ∧C
δ ∗ = δ I(T ≤C)

,

where the censoring random variable C, with continuous distribution function H(·), is supposed
to be independent of T. Thus, the indicator δ is equal to 1 when a PM is performed, to 2 when it
is a CM and to 0 when we have observed a censoring time.

Let us define, for all t > 0, the counting processes

N j(t) =
n

∑
i=1

I(T ∗i ≤ t,δ ∗i = j), j = 1,2.

The r.v. N1(t) (resp. N2(t)) gives the number of PM (resp. of CM) observed in the interval [0, t].
Finally, let us introduce the number at risk process

Y (t) =
n

∑
i=1

I(T ∗i ≥ t),
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which gives, at time t, the number of times T ∗ not yet observed.
With the notations N(·) = ∑

2
j=1 N j(·) and ∆N(t) = N(t)−N(t−), the Kaplan-Meier estimator

of the survival function S(·) of T is well-known (see Andersen et al., 1993, p. 256) to be given by:

Ŝ(t) = ∏
i:t∗

(i)≤t

(
1−

∆N(t∗(i))

Y (t∗(i))

)
, (3)

where T ∗(1) ≤ T ∗(2) ≤ ·· · ≤ T ∗(n) are the ordered statistics associated to the observed sample. The
Aalen-Johansen estimators of CIFs are given by:

F̂j(t) =
∫ t

0
Ŝ(u−)

dN j(u)
Y (u)

, for j = 1,2 and t > 0.

One can find in Andersen et al. (1993, p. 288) and following, an introduction and a study of
this estimator but in a very general setup. Dauxois and Kirmani (2004) showed that the above
expression of this estimator applies in this specific case.

The sub-survival functions are therefore estimated by

Ŝ j(t) = F̂j(τ)− F̂j(t), j = 1,2,

where τ is the right endpoint of the support of F .

3. Testing H0 against H1

3.1. Development of the test statistic

Recall that we consider the problem of testing

H0 : Φ(t) = γ, for all t > 0,

against
H1 : Φ(t)< γ, for all t > 0.

From Φ(·) = S1(·)/S(·) it appears clearly that under H0 the functions S1(·) and S(·) are
proportional and that under H1 the following equivalent properties are fulfilled:

γS(t)−S1(t)> 0, for all t > 0

⇐⇒ (1− γ)F1(t)− γF2(t)> 0 for all t > 0

⇐⇒ CS2(t)>CS1(t) for all t > 0.

Using the second equivalence and a positive weight function w(·), one can see that

ψ =
∫

τ

0
w(t)

[
(1− γ)F1(t)− γF2(t)

]
dt,

is a measure of non-proportionality between S1(t) and S(t). It is null under H0 and positive under
H1.
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Thus a natural test statistic for detecting the alternative H1 is given by

ψ̂ =
∫

τ

0
ŵ(t)

[
(1− γ̂)F̂1(t)− γ̂F̂2(t)

]
dt, (4)

where ŵ(·) is a consistent estimator of w(·), the estimators F̂1(·) and F̂2(·) have been introduced
in Section 2.4 and

γ̂ = F̂1(τ) = ̂P(δ = 1).

Note that this test looks like one introduced by Dewan et al. (2004), but it has to be said that
our test assumes the presence of censoring and uses a weight function, which was not the case in
their paper. Our method of proof of the forthcoming theoretical results is also different and it is
not sure that their approach based on U-statistics would work in this case.

It is clear from the definitions of ψ and ψ̂ that the choice of w(·) essentially corresponds to the
choice of ŵ(·) in ψ̂ . The key considerations in choosing ŵ(·) are consistency, asymptotic relative
efficiency and computational convenience. At the same time, certain considerations specific to
the actual Reliability or Survival analysis problem at hand may have to be taken into account.
Thus, one may wish to put more weight on early departures from H0, late departures from H0 or
on departures in the mid-range. Another argument in the choice of the weight function could be
to put more weights in the area where there is more observation, that is to say to use a weight
function which is a function of the number at risk process Y (·). Consequently, it appears difficult
to make general recommendations. In any case, our procedure requires that ŵ(·) be uniformly
convergent in probability (on [0,τ]). An attractive family of weight functions for choosing ŵ(·) is
a generalization of the Fleming-Harrington family (Fleming and Harrington, 1981; Harrington
and Fleming, 1982) defined by

ŵ(t) = (Y (t))ζ
(

Ŝ(t)
)p(

1− Ŝ(t)
)q

,

where ζ ≥ 0, p≥ 0 and q≥ 0. The weight function of the log-rank test corresponds to p = q = 0
and ζ = 1. Moreover, early (late) departures from H0 receive more weight if p is chosen to
be much larger (smaller) than q whereas departures in the mid-range are given more weight if
p = q > 0.

3.2. Asymptotic behavior

The following theorem establishes the asymptotic distribution of our test statistic.

Theorem 1. Let us suppose that∫
τ

0

dF(s)
H̄(s)

< ∞, where H̄(·) = 1−H(·) (5)

and
sup

s∈[0,τ]
|ŵ(s)−w(s)| p−→ 0, as n→ ∞.
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Then,
√

n(ψ̂−ψ) converges weakly to a mean zero normal random variable Z, with finite variance
σ2. Under H0 the limiting variance can be expressed in the form of

σ
2
0 = (1− γ)

∫
τ

0

∫
τ

0
w(t)w(s)

∫ s∧t

0

dF1(u)
H̄(u)

dtds

+(
1− γ

γ2 )
(∫ τ

0
w(t)F1(t)dt

)2(∫ τ

0

dF1(u)
H̄(u)

)
−2(

1− γ

γ
)
(∫ τ

0
w(t)F1(t)dt

)(∫ τ

0
w(t)

∫ t

0

dF1(u)
H̄(u)

dt
)
.

Proof. It has been shown by Dauxois and Guilloux (2008) that, under (5), the following weak
convergence holds in the Skorohod space of cadlag functions D3[0,+∞]:

√
n

 Ŝ(·)−S(·)
F̂1(·)−F1(·)
F̂2(·)−F2(·)

−→L
 Z0(·)

Z1(·)
Z2(·)

 , as n→ ∞, (6)

where Zi(·), i = 0,1,2, are mean zero Gaussian processes defined by

Z0(·) = S(·)U0(·),

Z j(·) =
∫ ·

0

(
Fj(·)−Fj(u)

)
dU0(u)+

∫ ·
0

S(u)dU j(u), j = 1,2.

Recall that, in this result, the processes U1(·) and U2(·) are mean zero Gaussian local square
integrable orthogonal martingales with covariance function given by

〈U j(s),U j(t)〉=
∫ s∧t

0

dFj(u)
S2(u)H̄(u)

, j = 1,2, (7)

and U0(·) =−
(
U1(·)+U2(·)

)
.

Considering the covariance structure of Z j(·), for j = 1,2, we can write:

〈Zi(s),Z j(t)〉 =
∫ s

0

∫ t

0
(Fi(s)−Fi(u))(Fj(t)−Fj(v))d〈U0(u),U0(v)〉

+
∫ s

0

∫ t

0
(Fi(s)−Fi(u))S(v)d〈U0(u),U j(v)〉

+
∫ s

0

∫ t

0
S(u)(Fj(t)−Fi(v))d〈Ui(u),U0(v)〉

+
∫ s

0

∫ t

0
S(u)S(v)d〈Ui(u),U j(v)〉.
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But, thanks to the orthogonality of U1(·) and U2(·) and the expression of their covariance functions
given in (7), we have:

〈U0(u),U0(v)〉 = 〈U1(u),U1(v)〉+ 〈U2(u),U2(v)〉=
∫ u∧v

0

dF(x)
S2(x)H̄(x)

;

〈U0(u),U j(v)〉 = −〈U j(u),U j(v)〉=−
∫ u∧v

0

dFj(x)
S2(x)H̄(x)

for j = 1,2;

and 〈Ui(u),U j(v)〉 = δi j

∫ u∧v

0

dFi(x)
S2(x)H̄(x)

,

where δi j is the Kronecker delta. Hence,

〈Zi(s),Z j(t)〉 =
∫ s∧t

0

(
Fi(s)−Fi(u)

)
(Fj(t)−Fj(u)

) dF(u)
S2(u)H̄(u)

−
∫ s∧t

0

(
Fi(s)−Fi(u)

) dFj(u)
S(u)H̄(u)

−
∫ s∧t

0

(
Fj(t)−Fj(u)

) dFi(u)
S(u)H̄(u)

+ δi j

∫ s∧t

0

dFi(u)
H̄(u)

.

Now, since ŵ(·) is assumed to be an uniformly consistent estimator of w(·), we can write:
√

n(ψ̂−ψ) =
√

n
(
Ψ(F̂1, F̂2)−Ψ(F1,F2)

)
+oP(1),

where
Ψ(F1,F2) =

∫
τ

0
w(t)

[
(1− γ)F1(t)− γF2(t)

]
dt,

and γ = F1(τ). It is easily seen that this latter function is Hadamard-differentiable (see e.g. van der
Vaart and Wellner, 1996) with derivative:

DF1,F2
Ψ

(α1,α2) =
∫

τ

0
w(t)

[
(1−F1(τ))α1(t)−α1(τ)F1(t)−F1(τ)α2(t)−α1(τ)F2(t)

]
dt

=
∫

τ

0
w(t)

[
(1− γ)α1(t)− γα2(t)

]
dt−α1(τ)

∫
τ

0
w(t)F(t)dt.

Using the functional δ -method in the version of Theorem 3.9.5 of van der Vaart and Wellner
(1996) and the convergence in (6), one gets
√

n(ψ̂−ψ)−→L DF1,F2
Ψ

(Z1,Z2) =
∫

τ

0 w(t)
(
(1− γ)Z1(t)− γZ2(t)

)
dt−Z1(τ)

(∫
τ

0 w(t)F(t)dt
)
,

as n tends to +∞. The limiting random variable has a mean zero Gaussian distribution with
variance function given by

σ
2 = Var

(∫
τ

0
w(t)

(
(1− γ)Z1(t)− γZ2(t)

)
dt−Z1(τ)

(∫ τ

0
w(t)F(t)dt

))
= Var

(∫
τ

0
w(t)

(
(1− γ)Z1(t)− γZ2(t)

)
dt
)
+

(∫
τ

0
w(t)F(t)dt

)2

Var(Z1(τ))

−2
(∫ τ

0
w(t)F(t)dt

)(∫ τ

0
w(t)

{
(1− γ)〈Z1(t),Z1(τ)〉− γ〈Z2(t),Z1(τ)〉

}
dt
)
.
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Since

Var
(∫

τ

0
w(t)

(
(1− γ)Z1(t)− γZ2(t)

)
dt
)

=
∫

τ

0

∫
τ

0
w(t)w(s)

{
(1− γ)2〈Z1(t),Z1(s)〉−2γ(1− γ)〈Z1(t),Z2(s)〉+ γ

2〈Z2(t),Z2(s)〉
}

dsdt,

it follows that:

σ
2 =

∫
τ

0

∫
τ

0
w(t)w(s)

{
(1− γ)2〈Z1(t),Z1(s)〉−2γ(1− γ)〈Z1(t),Z2(s)〉+ γ

2〈Z2(t),Z2(s)〉
}

dsdt

+
(∫ τ

0
w(t)F(t)dt

)2
〈Z1(τ),Z1(τ)〉

−2
(∫ τ

0
w(t)F(t)dt

)(∫ τ

0
w(t)

{
(1− γ)〈Z1(t),Z1(τ)〉− γ〈Z2(t),Z1(τ)〉

})
dt.

When H0 is true, one can use the equation

F2(·) =
1− γ

γ
F1(·)

to simplify the expression of σ2 and obtain (after some rather long but easy computations):

σ
2
0 = (1− γ)

∫
τ

0

∫
τ

0
w(t)w(s)

∫ s∧t

0

dF1(u)
H̄(u)

dtds

+(
1− γ

γ2 )
(∫ τ

0
w(t)F1(t)dt

)2(∫ τ

0

dF1(u)
H̄(u)

)
−2(

1− γ

γ
)
(∫ τ

0
w(t)F1(t)dt

)(∫ τ

0
w(t)

∫ t

0

dF1(u)
H̄(u)

dt
)
,

which completes the proof.

Remark. Now, thanks to this asymptotic result, it’s straightforward to use our test statistic in
order to decide between the two hypotheses. One has to reject (resp. do not reject) H0, with level
α , when the value of

√
nΨ̂/σ̂0 is higher (resp. smaller) than the (1-α)-quantile of the normal

distribution, with σ̂0 a consistent estimator of σ0.

4. Numerical study

4.1. Simulation study

We carried out a Monte Carlo simulation to study firstly the power of our test. In this order, we
have simulated samples of the random couple (X ,Y ) from the bivariate distribution:

f (x,y) =
1
2x

e−x, with 0 < y < 2x.
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In this case, the hypothesis H1 is satisfied since the distribution of X is exponential (of parameter 1)
and the conditional distribution of Y given X = x is uniform on the interval [0,2x], which shows
that P(Y −X > 0|X = x) = 1/2, for all x ∈ R+. Thus, the sign of Y −X is independent of X and
the Random Sign assumption is fulfilled. In fact, one could even show that it is also the case for
the IPRA assumption. The independent censoring time C is simulated according to the exponential
distribution with values of the parameter in order to get different percentages of censoring: 0%,
10%, 30% and 50%. We have simulated samples of sizes 50, 100 and 200 and in each case two
different levels have been considered 5% and 2%. Before considering the simulation results, let us
recall that our test with no censoring (0% of censoring) and a weight function w(·) = 1 coincides
with the test of Dewan et al. (2004).

The simulation design described above was replicated 10000 times. Table 1 gives the resulting
Monte Carlo estimates of the power of our test in the case of a constant weight function w(·) equal
to 1. The results suggest that, at least when the sample size is not too small and the percentage
of censoring not too high, our test has reasonably good power against the alternative considered.
Moreover, one can see that the estimated values of the power respond in the expected manner to
changes in the simulation parameters. The power increases with the sample size, decreases when
the percentage of censoring increases or when the level decreases.

In order to have an idea of the influence of the choice of the weight function in our test statistic,
we have tried a nonconstant weight function. Table 2 gives the simulation results with the same
scenario as before but when the weight function is now w(·) = S(·). Note that in this case the test
statistic Ψ̂ uses ŵ(·) = Ŝ(·), the Kaplan-Meier estimator of the survival function given in (4). This
weight function is a member of the generalized Fleming-Harrington family where ζ = 0 = q and
p = 1. One can see that the power is better with this weight function than before, showing that
there is some interest of using such a weight function.

TABLE 1. Simulation results. Monte Carlo estimates of the power of the test of H0 against H1 with weight function
w(·) = 1

Sample Size
50 100 200

Level 5% 2% 5% 2% 5% 2%
Censoring

0% 0.64 0.42 0.90 0.77 0.99 0.98
10% 0.54 0.34 0.81 0.65 0.98 0.94
30% 0.39 0.21 0.65 0.44 0.91 0.80
50% 0.29 0.15 0.46 0.28 0.74 0.55

TABLE 2. Simulation results. Monte Carlo estimates of the power of the test of H0 against H1 with weight function
w(·) = S(·)

Sample Size
50 100 200

Level 5% 2% 5% 2% 5% 2%
Censoring

0% 0.69 0.47 0.96 0.87 0.999 0.996
10% 0.61 0.41 0.89 0.74 0.997 0.98
30% 0.44 0.25 0.74 0.53 0.96 0.89
50% 0.31 0.16 0.54 0.35 0.84 0.68
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We have also carried out a simulation study of the level of our test on small sample sizes. In
this order, we have simulated samples of the random couple (X ,Y ) from the Block and Basu
(1974) absolutely continuous bivariate exponential with probability density function:

f (x,y) =

{
λ1λ (λ2+λ0)

λ1+λ2
e−λ1x−(λ2+λ0)y, for x < y

λ2λ (λ1+λ0)
λ1+λ2

e−λ2y−(λ1+λ0)x, for x > y
,

where λ = λ0 +λ1 +λ2. In this case, the hypothesis H0 is satisfied since one can show that the
function Φ(·) is constant with value:

Φ(t) =
λ1

λ1 +λ2
,

for all t > 0.
The independent censoring time C is still simulated according to the exponential distribution

with values of the parameter in order to get different percentages of censoring: 0%, 10% and 30%.
We have simulated samples of sizes 50 and 100 and in each case two different levels have been
considered 5% and 2%. This simulation design has been replicated 10000 times and the results are
listed in Table 3. One can see that the empirical levels are not far from the nominal ones and that,
as expected, they tend to be closer when the sample size increases. The percentage of censoring
seems to affect more the empirical levels when the sample size is small (n=50) than when n=100.

TABLE 3. Simulation results. Monte Carlo estimates of the level of the test of H0 against H1 with weight function
w(·) = 1

Sample Size
50 100

Level 5% 2% 5% 2%
Censoring

0% 5.34% 2.04% 4.34% 1.9%
10% 4.78% 2.17% 4.99% 2.09%
30% 4.49% 2.14% 5.22% 1.99%

4.2. Application on Norsk Hydro data set

Now let us consider a real dataset introduced by Bunea et al. (2003). This dataset gives failure
times of two identical compressor units of the Norsk Hydro ammonia plant between the 2nd
of October 1968 and the 25th of June 1989. The dataset contains a large part of the history of
the compressor units like: the time of component failure, the failure modes (leakage, no start,
unwanted start, vibration, warming, overhaul, little gas stream, great gas stream, others), the
degree of failure (critical or non critical), the down times of the component, identification of the
compressor unit where the failure occurs (first unit failed, second unit failed, both units failed), the
action taken after a failure, system or subsystem failure, the action taken (immediate reparation,
immediate replacement, adjustement, planned overhaul, modification, others) and finally the
revision periods (18 revision periods with different lengths).

There are many different ways to use this dataset in order to illustrate our testing procedure on
real problems. We have decided to follow Bunea et al. (2003) and Dijoux and Gaudoin (2009) in
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considering the lifetime T as the operation time since last failure. Like these authors, we have
assumed that these operation times since last failure are i.i.d., even if the plausibility of such an
assumption can be criticized. See our comments on this subject in Section 5. Since it’s natural
to associate a CM to a critical failure and a PM to a non-critical failure, we follow Bunea et al.
(2003) in considering that δ = 2 in case of a critical failure and δ = 1 in case of a non-critical
failure. This yields 338 observed lifetimes, where 247 are with cause δ = 1 and 91 with δ = 2.
There is no censoring time in this case.

Figure 1 plots the empirical estimate of the function Φ(·) defined by

Φ̂(t) =
∑

338
i=1 I{Ti > t,δi = 1}

∑
338
i=1 I{Ti > t}

,

for all t > 0. One can see that this function appears to be almost constant. This is confirmed by
our test. Indeed, its p-value is 36.55% which does not lead to reject H0.

0 50 100 150 200
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0.
4

0.
6
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8

1.
0

Time (in days)

φ

FIGURE 1. Norsk Hydro dataset (Bunea et al., 2003). Empirical estimation of the function Φ(t) = P(δ = 1|T > t)

5. Conclusion

In this paper we have considered, in a setup of competing risks, the problem of testing “the
function Φ(·) is constant” against “the function Φ(·) is not constant and attains its maximum at
the origin”, where Φ(t) = P(δ = 1|T > t), for all t > 0. Our Section 2.2 devoted to recall the
main models (based on competing risks) of maintenance analysis in Reliability shows that our test
can be used to decide between “Exponential Delay Time model” and a “Random Sign Censoring
model”.
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We have obtained the asymptotic distribution of our test statistic and have shown, thanks to
a simulation study, its rather good behavior even on small sample sizes. We have illustrated its
use on the Norsk Hydro dataset where the question of the constancy of the Φ(·) function has
been addressed by many authors (see Bunea et al., 2003 and Dijoux and Gaudoin, 2009). The
conclusion of our testing procedure is that the p-value is 36.55% and that we can’t reject H0 in
favor of H1. Thus, in this case it should be preferable to use an “Exponential Delay Time model”
rather than a “Random Sign Censoring model”. However, one has also to check that an other
model (for example one of those introduced in Section 2.2 ) doesn’t better fit the data.

This is why there is place for further work in the direction of our paper. Indeed, it would be of
interest to derive statistical tests for the other models of maintenance introduced in Section 2.2.
For example, it should be possible to consider the test of H0 against

H2 : Φ(t) is a non-constant decreasing function of t,

since hypothesis H2 would suggest that an “Intensity Proportional Repair Alert” model (or an
independent competing risk model with exponential mixture after an easy adaptation of our test)
could be applied. Tests based on the functions CS1(·) and CS2(·) would also be of interest.

Finally, let us mention that all the models introduced in Section 2 (sometime called Usual
Competing Risk models) assume a perfect maintenance. Of course, this assumption may be
violated in real applications. To take into account such situations, some authors have built more
general models, like the Generalized Competing Risks models developed in Doyen and Gaudoin
(2006), Dijoux et al. (2008),Deloux et al. (2012) and Dijoux and Gaudoin (2014). More work is
needed in order to construct goodness-of-fit test for these models.
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