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Abstract: As part of optimizing the reliability, Thales Optronics now includes systems that examine the state of its
equipment. The aim of this paper is to use hidden Markov Model to detect as soon as possible a change of state of
optronic equipment in order to propose maintenance before failure. For this, we carefully observe the dynamic of a
variable called "cool down time" and noted Tmf, which reflects the state of the cooling system. Indeed, the Tmf is an
observation of the hidden state of the system. This one is modelled by a Markov chain and the Tmf is a noisy function
of it. Thanks to filtering equations, we obtain results on the probability that an appliance is in degraded state at time
t, knowing the history of the Tmf until this moment. We have evaluated the numerical behavior of our approach on
simulated data. Then we have applied this methodology on our real data and we have checked that the results are
consistent with the reality. This method can be implemented in a HUMS (Health and Usage Monitoring System).
This simple example of HUMS would allow the Thales Optronics Company to improve its maintenance system. This
company will be able to recall appliances which are estimated to be in degraded state and do not control too early those
estimated in stable state.

Résumé : Dans le cadre de l’optimisation de la fiabilité, Thales Optronique intègre désormais des systèmes d’ob-
servation de l’état de santé de ses équipements. Dans cet article nous utilisons des chaînes de Markov cachées pour
détecter le plus tôt possible le changement d’état d’un équipement optronique afin de proposer une maintenance avant
la panne. Pour cela, nous observons attentivement la dynamique d’une variable appelée “temps de mise en froid” et
notée Tmf, qui reflète l’état du système de mise à froid. En effet, le temps de mise en froid est une observation de l’état
caché de notre système. Ce dernier est modélisé par une chaîne de Markov et le Tmf est une fonction bruitée de cette
chaîne. Grâce à des équations de filtrage, nous avons obtenu des résultats concernant la probabilité que l’équipement
soit dans un état dégradé à l’instant t, connaissant l’histoire des Tmf jusqu’à cet instant. Nous avons ensuite évalué
numériquement l’approche proposée sur des données simulées. Puis, pour finir nous avons appliqué notre méthodologie
afin d’analyser nos données réelles et nous avons pu vérifier la cohérence des résultats obtenus. Cette méthode peut
être implémentée dans le HUMS (Health and Usage Monitoring System). Cet exemple simple de HUMS pourrait
permettre à Thales Optronique d’améliorer son système de maintenance. L’entreprise sera en mesure de définir un
protocole de maintenance conditionnelle à l’état estimé du système.
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1. Introduction

Thales Optronics aims to optimize the ratio availability - cost. The company wants to reduce the
failure rate of these appliances by the evolution of its maintenance concept which passes from
a logic of repair to a logic of anticipation of these defects. As part of optimizing the reliability,
Thales Optronics now includes systems that examine the state of its equipment. This function is
performed by HUMS (Health and Usage Monitoring System). The role of HUMS is :

1. to record environmental conditions and use of equipment,

2. to evaluate the state of the system,

3. to anticipate and alert about the excesses of operation,

4. to optimize maintenance operations.

Our approach comes within a specific context. In this paper, we focus on point 2. We have at our
disposal a variable that reflects the state of the system and we want to detect a change in mode
of this variable (which is a change of slope in our case). There exist different methods for this
kind of detection as the CUSUM, presented for instance by Basseville and Nikiforov (1993). But
in this paper we focus on hidden Markov chains to detect this change of mode. The state of our
system at time t is then modeled by a Markov chain Xt . In our case we do not observe directly
this chain but indirectly through the Tmf variable, a noisy function of this chain. We will see in
this paper how we can address this issue by using filtering theory.

For this, we will first introduce the industrial problem in section 2 and the mathematical
model in a general case in section 3. Section 4 presents a simulation study and section 5 the
implementation of the methodology on our real data.

2. Industrial problem

Each of the appliances has a logbook which provides the following information at each start-up:
number of uses, cumulative operating time of appliance, initial temperature and the “cool down
time” (Tmf for “temps de mise en froid” in french). This Tmf is the transit time for the system
from ambient temperature to a very low one. This temperature decrease is required to operate
appliance and this is done on every boot. According to experts, a Tmf increase results from
deterioration in the system. According to this hypothesis, a careful observation of Tmf evolution
would allow us to determine the state of the system and prevent the breakdown. So we will look
at the evolution of Tmf which seems to be a good indicator of the system state.

We suppose that the system has three possible states:
– Stable state: Tmf is constant. This reflects a system in good working order. There is no

anomaly to report.
– Degraded state: the Tmf increases. This reflects a specific deterioration in the system.
– Failure: the system is stopped.
Appliances move from stable state to degraded state, to reach failure. It is important to detect

the beginning of a degradation to prevent as soon as possible occurrence of failure. As explained
above, we would not observe directly the state of our system but indirectly through the Tmf. Our
objectives are:
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– to estimate at every moment the state of the system by the evaluation of the probability of
being in degraded state knowing the history of Tmf until this moment,

– to detect as soon as possible the degradation of the system for a maintenance action before
failure.

To solve this problem, we use hidden Markov chains.

3. Hidden Markov model

In this section, we provide a general mathematical framework to tackle our problem. We have to
detect a rupture in the behavior of the variable Tmf. There exist different methods for this kind of
detection (see for instance Basseville and Nikiforov, 1993). We choose to use Hidden Markov
Model (HMM). HMM are frequently used to detect point mutations in DNA in genomics (see for
instance J.Fridlyand et al., 2004) or in speech recognition (see L.R.Rabiner, 1989). In the domain
of reliability, HMM are also used in a context of high frequencies data (see Wang et al., 2004).
Moreover, Vrignat et al. (2012) show that this model can be a decision support, which allows
maintenance manager to control the degradation level of a process and to have a background
Experience “off line” about maintenance activities impact. In our context, the size of our data is
not large (28 appliances, maximum 400 recordings in a logbook). But in the following, we will
see that this tool is also powerful in our context. We first present the model in a general case and
the estimation of the parameters of interest.

3.1. Modeling

3.1.1. Main process

Consider (Xt)t>0 a Markov chain in continuous time, defined on a probability space (Ω, F , P) with
discrete state space S={e1,e2, . . . ,eN} ⊂ RN et de matrice de transition Pt . So Xt = (X1

t , . . . ,X
N
t )

is a vector of RN . For convenience, we follow assumptions from Elliott et al. (1995, p.182) and
we set ei = (0,0, . . . ,1,0, . . . ,0) so that (e1,e2, . . . ,eN) is an orthonormal basis of RN .

Let us denote the probability pi
t = P(Xt = ei) for 1≤ i≤ N and pt = (p1

t , . . . , pN
t ). The motion

of the chain Xt depends on A = (ai j), the Q-matrix of the process (see Cocozza-Thivent, 1997,
p.247/248 for definition) defined by:

ai j = lim
h→0+

Ph(i, j)−P0(i, j)
h

,

where the Ph(i, j) = P(Xt+h = j|Xt = i) are the terms of the transition matrix. If i 6= j, ai j repre-
sents the intensity of jump from ei to e j. The vector pt is linked to matrix A by the following
equation: d pt

dt = AT pt (see Cocozza-Thivent, 1997, p.251). The process Xt has the semimartingale
representation (see Cocozza-Thivent, 1997, p.269):

Xt = X0 +
∫ t

0
AXrdr+Vt (1)

with Vt a martingale.

Journal de la Société Française de Statistique, Vol. 155 No. 3 48-61
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



HMM for the detection of a degraded operating mode of optronic equipment 51

3.1.2. Observation process

Xt is not directly observed, but through the process Yt given by the formula:

Yt = Y0 +
∫ t

0
c(Xr)dr+Wt (2)

with:
– (Wt)t>0 a standard Brownian motion on (Ω,F,P) independent of (Xt)t>0,
– c(Xt) =< Xt ;c > where <;> is the scalar product in RN and c = (c1, . . . ,cN) ∈ RN . This

represents the slope of Yt according to the state of Xt . Indeed, if Xs = ei for s ∈ [t−∆t , t],
c(Xs) = ci and Yt −Yt−∆t = ci∆t +(Wt −Wt−∆t ).

So, in mean, the increase of the observed process Yt depends on the state of Xt through c(Xt). A
Brownian noise is added to the slope c(Xt).

Let us denote:
– (Yt)t≥0 the right-continuous complete filtration generated by σ(Ys : 0≤ s≤ t),
– (Gt)t>0 the right-continuous complete filtration generated by σ(Xs,Ys : 0≤ s≤ t).
Recall that our aim is to determine the probability of the system to be in a particular state

knowing the trajectories of Y until t. The best L2-approximation of this quantity is given by the
conditional probability p̂i

t = P(Xt = ei |Yt ) for 1≤ i≤ N. Note that with our choice for ei,

P(Xt = ei |Yt ) = P(X i
t = 1 |Yt ) = E

[
X i

t |Yt
]
= (E [Xt |Yt ])i .

So we have to compute the N-dimensional conditional expectation E [Xt |Yt ]. This is the aim of
the next section.

3.2. Filtering equations and parameters estimation

First, we give filtering equations which provide conditional expectations of functions of Xt ,
knowing the history of Yt . Then we will see how these equations allow us to estimate parameters
A, c and the probability of being in a state ei given Yt .

3.2.1. Filtering equations

Elliott et al. (1995, p189-194) gives unnormalized filtering equations of different fonctionnais of
Xt . To write these equations, let us denote σ(F(Xs,s≤ t)) = Ē [∧̄tF(Xs,s≤ t) |Yt ] with P̄ and ∧̄t

associated with the absolutely continuous probability of change:

dP
dP̄

∣∣∣∣
Gt

= ∧̄t = exp
(∫ t

0
< c;Xr > dYr−

1
2

∫ t

0
< c;Xr >

2 dr
)
.

This change of probability is a standard method in filtering because under P̄, Yt is independent of
Xt . Under P̄, the dynamic of unnormalized filter satisfies stochastic differential equation.

Filtering equations are about:
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– state of the system:

σ(Xt) = σ(X0)+
∫ t

0
Aσ(Xr)dr+

∫ t

0
diag(c)σ(Xr)dYr,

– number of jumps from ei to e j in the time interval [0, t] denoted ς
i j
t :

σ(ς i j
t Xt) =

∫ t

0
< σ(Xr);ei > a jieidr+

∫ t

0
Aσ(ς i j

r Xr)dr+
∫ t

0
diag(c)σ(ς i j

r Xr)dYr, (3)

– waiting time in state ei on the interval [0, t] denoted ϑ i
t :

σ(ϑ i
t Xt) =

∫ t

0
< σ(Xr);ei > eidr+

∫ t

0
Aσ(ϑ i

rXr)dr+
∫ t

0
diag(c)σ(ϑ i

rXr)dYr, (4)

We can also have informations about the slope thanks to filtering equation on the drift, defined by
T i

t =
∫ t

0 < Xr;ei > dYr:

σ(T i
t Xt)= ci

∫ t

0
σ(< Xr,ei > ei)dr+

∫ t

0
Aσ(T i

t Xr)dr+
∫ t

0

[
< σ(Xr);ei > ei +diag(c)σ(T i

r Xr)
]

dYr.

These equations about ς i j, ϑ i, T i are useful for the estimation of A and c when Yt is observed in a
long time. Note that all these equations are stochastic differential equations so that their solutions
can be approximated thanks to Euler scheme approximation (see for instance Kloeden et al., 1992,
Part 10.2).

3.2.2. Estimation and prediction

Using filtering equations, it is possible to compute the estimated probability of the system to be in
state ei thanks to the following formula:

E [Xt |Yt ] =
σ(Xt)

σ(1)
. (5)

Indeed, P(Xt = ei|Yt) = (E[Xt |Yt ])i = (σ(Xt)
σ(1) )i. However, we need to estimate parameters A and

c because σ(Xt) depends on them. So by maximum likelihood we estimated A and c, from
observations of Ys on interval [0, t]. Estimators are given by the following formulas:

âi j(t) =
σ(ς i j

t )

σ(ϑ i
t )
, (6)

ĉi(t) =
σ(T i

t )

σ(ϑ i
t )
. (7)

These estimators converge in probability when t goes to infinity according to Elliott et al. (1995,
p.188). However, all the parameters are intricaded in each of the filters σ(ς i j

t Xt),σ(ϑ i
t Xt) and

σ(T i
t Xt) so that we need an EM algorithm to estimate them. They are fixed points of this EM
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FIGURE 1. Exemple of path of X2
t (black line) and its estimation P

(
X2

t = 1 |Yt
)

(green line)

algorithm whose principle is developed in Section 4.2.1. This convergence of the sequence of
parameters is discussed in Zeitouni and Dembo (1988).

Note that filtering equations do not give directly σ(ς i j
t ), σ(T i

t ), σ(ϑ i
t ) and σ(1) but σ(ς i j

t Xt),
σ(T i

t Xt), σ(ϑ i
t Xt) and σ(Xt). To pass from one to another, we just have to multiply these elements

by vector (1,1, ..,1)T to obtain σ(ς i j
t ), σ(T i

t ), σ(ϑ i
t ) and σ(1). Indeed, thanks to assumptions on

Xt ∈ (e1, . . . ,eN), 〈Xt ;(1,1, ..,1)〉= 1.
Let us now illustrate this approach on simulated data.

4. Simulation study

In this section, the framework is the following. We assume that the process has two possible states:
Xt = e1 and Xt = e2 with transitions from e1 to e2 and conversely. So when Xt = e1 (respectively
Xt = e2), its first coordinate X1

t = 1 and its second coordinate X2
t = 0 (respectively X1

t = 0 and
X2

t = 1). Here, e1 (respectively e2) corresponds to the stable state (respectively the degraded state)
and Xt oscillates between these two states. In our case, we are more interested in visits to the
degraded states which are related to the second hidden state (Xt = e2).

4.1. Probability estimation of being in a degraded state

We first suppose that we know matrix A and vector c. The component a12 of A is the parameter of
the exponential distribution of the waiting time in stable state (before degraded state) and a21 is
the parameter of the exponential distribution of the waiting time in degraded state. Using these
values, we can simulate Xt . Then, using values of c and Xt , we simulate Yt thanks to equation (2)
and Euler scheme approximation (see for instance Kloeden et al., 1992, Part 10.2) to simulate
stochastic differential equations. Now that our data are simulated and our parameters known
we can compute the conditional probability that the system is in degraded state. For this, we
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use equation (5) for the computation of the conditional probabilities p̂2
t and p̂1

t = 1− p̂2
t . This

computation is made again by a recursive algorithm that uses the Euler scheme to approximate
stochastic differential equations.

An illustration of the good numerical behavior of the computational process is given in Figure 1.
This figure zooms on a part (arbitrary chosen) of the trajectory of X2

t and p̂2
t = E

[
X2

t |Yt
]
. We

clearly observe that the filter correctly provides the evaluation of X2
t that is close to 1 (respectively

0) when X2
t = 1 (respectively when X2

t = 0). This part arbitrary chosen is an example of the
behavior of the trajectory and the other parts of the trajectory show the same behavior.

Note that in this simulation study, we assume that parameters A and c are known. This is not
the case in practice and these parameters must be estimated before estimating probability p̂1

t and
p̂2

t .

4.2. Parameters estimation

4.2.1. Estimation of matrix A and vector c

With simulations of process Yt in a long time, it is possible to use formulas (6) and (7) to estimate
parameters A and c.

We first suppose vector c known and we seek to estimate the matrix A from observations of Ys

for s ∈ [0, t]. However, one difficulty of this estimation step is the fact that σ(ς i j
t ) and σ(ϑ i

t ) from
equation (6) are governed by A. So we developed an iterative algorithm to approximate A starting
with an arbitrary A0, operating in the following way: at step k, we use Âk−1 and the history of Yt to
approximate (thanks to Euler scheme approximation - Kloeden et al., 1992, Part. 10.2) σ(ς i j

t ) and
σ(ϑ i

t ) given by filtering equations (3) and (4) multiplied by the vector (1,1, ..,1)T . From these
two approximated elements, we compute Âk via formula (6). Our convergence criterion of this
EM algorithm is a difference between the estimated value and the true value less than 10−2 for a
number of steps fixed at 1100. The convergence of this estimator has been proved by Zeitouni and
Dembo (1988).

Now we assume matrix A known and we seek to estimate vector c from observations of Yt . For
this, we also use formula (7). Once again, σ(T i

t ) and σ(ϑ i
t ) are governed by c itself. So, by the

same method as previously, we developed again an iterative algorithm to approximate c starting
with an arbitrary vector c0.

4.2.2. Sensitivity of filter P(Xt = e2 |Yt ) to parameters A and c

Since the values of A and c are unknown in practice, it seems important to study the impact of a
poor estimation of A and c in computation of probability P(Xt = e2 |Yt ). We simulate Xt and Yt

for given values of A and c: A =

(
−0.1 0.1
0.05 −0.05

)
and c = (−1;1). We then estimate probability

of being in a degraded state.

In a first step, these two different matrices: A1 =

(
−0.01 0.01
0.04 −0.04

)
and A2 =

(
−0.2 0.2
0.08 −0.08

)
are considered, instead of the true matrix A. With these two matrices, we again compute probability
of being in a degraded state. Figure 2 gives these estimations. We clearly observe that wrong
matrices A1 and A2 do not severely impact on the estimate of probability of interest.
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FIGURE 2. Evolution of X2
t (blue line) and its estimation P

(
X2

t = 1 |Yt
)

for the true A (red line) and different matrices
A: A1 (black line), A2 (green line)

FIGURE 3. Evolution of X2
t (blue line) and its estimation P

(
X2

t = 1 |Yt
)

for the true c (red line) and different vectors
c: c1(green line), c2 (black line) and c3 (yellow line)
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In a second step, we estimate this probability with values c1 = (−0.5,0.5), c2 = (−1,0.5) et
c3 = (0,1) in place of the true value c. Figure 3 gives these corresponding estimations. Again we
observe that deviations do not severely impact the probability of interest.

5. Application to industrial case

5.1. Data

We have logbooks of 28 appliances: five of them failed due to a mechanical malfunction in the
cooling system. For other appliances, the failures were not mechanical and are considered to be
unpredictable (not related to a degradation effect and often due to an electronic failure). From the
logbooks, we recover Tmf value and initial temperature at each startup of the system. The time
unit of the model is the number of startups and we assume the same model for all appliances (A
and c are the same for all of them) and the motion of the 28 appliances are mutually independent.

5.2. Preliminary data processing

The two variables, Tmf and initial temperature are linked together. Indeed, a high (resp. low)
initial temperature increases (resp. decreases) the Tmf. So it was necessary to correct this crude
Tmf by a standard linear regression according to initial temperature of appliance. We use this
regression to bring the Tmf to a setting where initial temperature is constant and equals 10◦C.
This corrected Tmf is denoted by T m fr in the following. In Figure 4, we provide the corrected
Tmf evolution of one appliance. We can see a very noisy phenomenon. Down peaks may be the
result of “on/off/on” too brutal for appliance: the system is on, turned off and back on instantly
so that initial temperature remains low. To soften this phenomenon, we decide to smooth the
corrected Tmf (T m fr). For this, we compute a moving average of T m fr as follows:

T m fl( j) =
∑

20+ j−1
i= j T m fr(i)

20
,

where T m fr(i) is the value of corrected Tmf at the ith startup. Let us denote by T m fl the
smoothing correcting Tmf value. In our modeling, we set Yt = T m fl(t). A theoretical interest of
the smoothing step is that the filtering method works well with a not too noisy signal. Indeed, we
noticed empirically that when the data are not smoothed, the estimation of the probability of being
in a degraded state presents very big jumps sometimes with an amplitude equal to one. Note that
the T m fl starts at the 20th startup because it is necessary to have 20 T m fr to compute T m fl . In
practice it is necessary to wait 20 startups before the first computation of the probability of being
in a degraded state. In Figure 4, we plot the evolution of smooth corrected Tmf of this appliance.

We can notice on the bottom graph of Figure 4 that T m fl remains constant for a while and
then gradually increases. This change in slope was not obvious in the top graph of Figure 4. This
is another interesting point of the smoothing part. Now, from these T m fl values, we are able to
compute probability of being in degraded state. For this, we first need to estimate parameters A
and c.
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FIGURE 4. Evolution of corrected Tmf over uses at 10°C and associated smoothed data for one appliance

5.3. Estimation of parameters A and c

The estimation method presented in section 4.2.1 using the observation of the process in a long
time is not possible here. Indeed the real system does not oscillate between two states because it
is stopped at its first transition to degraded state. Then we propose a practical choice for c and
A mixing estimation using the data from the 28 appliances and expert opinions. Note that from
simulations in section 4.2.2, we have noticed that a misspecification of these parameters does not
seem to strongly impact on the filter value P(Xt = e2 |Yt ).

According to experts, slope of smoothed curve is close to 0 when the system is in stable state
and it is strictly positive when it degrades. In addition, according to graphs of the evolution of
the T m fl , the slope is close to 1 when the system is in a degraded state. So we can naturally set
ĉ = (0,1).

About the Q-matrix A =

(
−a12 a12
a21 −a21

)
, a12 is the parameter of the exponential distribution

of the time in stable state (before degraded state). We have estimated this parameter using our data
(28 appliances: 5 times of failure and 23 censures). By standard survival method taking censures
into account, we have first estimated a12 by 1

1000 . In order to detect as soon as possible a change of
state (contraint requested by Thales) and according to our study of sensitivity (see Section 4.2.2),
we chose to put a value 10 times greater that is â12 =

1
100 .
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FIGURE 5. Smoothed T m fr for one appliance Eh and evolution of the corresponding probability to be in a degraded
state

The coefficient a21 should equal zero because system in degraded state can not return to a
stable state. But in our equations, our filter P(Xt = e2 |Yt ) must be versatile, so we have chosen a
small value â21 =

1
1000 . With this choice, the chance that an appliance in degraded state comes to

stable state is very small.
Now, we are able to estimate probability of interest.

5.4. Results

With this choice for A and c and using the filtering equation (5), we computed the probability
of being in a given state, at each startup t, knowing the history Yt . We first consider appliance
noted Eh. A posteriori, we can see that Eh was trouble-free during its whole history. Figure 5 gives
the evolution of its T m fl . At each time t, we estimate its probability of being in degraded state
through (5) using values of T m fl before t. We clearly observe a T m fl quite constant during uses
and a probability of being in a degraded state close to zero.

Now, we consider an appliance denoted Ed . A posteriori, we see that Ed degrades and breaks
down. In Figure 6, we see a T m fl quite constant during the first uses; then, T m fl increases and
then decreases to return to starting level. In fact, this is due to a deterioration of the ball bearing
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FIGURE 6. Smoothed T m fr for one appliance Ed and evolution of the corresponding probability to be in a degraded
state

system. This deterioration leads to an increase of T m fl but this has not an influence on the cooling
system. The ball bearing system corrects itself (and leads to a decrease of T m fl). Finally, we
notice an abrupt rise of T m fl . Simultaneously, we note that the computed probability of being in
degraded state is very low when T m fl is constant and then sharply increases with T m fl to one.

To conclude, these two examples illustrate a good numerical behavior of the proposed approach.
Now we are interested in a decision criterion that allows us to detect as soon as possible a degraded
state in order to return appliances to perform maintenance action before failure.

6. Decision criterion

The increase of the probability of being in a degraded state is not sufficient to detect a future
failure. We have to propose a decision criterion for maintenance. For this, we have tested different
rules based on the fact that probability has to cross a threshold during a number of consecutive
uses. We have tried different thresholds combined with different numbers of crossing. At each
time, we have recorded the number of false and good detections. It is important to limit both
false-positive and false-negative detections. According to the comparison of these rules, we have
chosen the following criterion: when the probability of being in a degraded state equals 1 over a
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TABLE 1. Results obtained with the decision criterion
Decision criterion Observed failure No observed failure
Future failure detected 3 0
Future failure not detected 2 23
Total 5 23

period of three uses, the appliance is sent back for maintenance. We applied this rule on our 28
appliances and we obtain the results presented in Table 1.

The decision criterion provides 26 good detections over 28. It does not provide false detection:
the 23 appliances without observed failure were not detected as degraded. For the five appliances
that failed, the criterion identifies three of them as degraded (before failure). It doesn’t seem that
the wrong identification is related to the prior knowledge on A and c. Nevertheless, let us also
note that we have shown in Section 4.2.2 that the probability of detection was not very sensible to
an error on the parameters. Rather, we suppose that for the two appliances which have not been
correctly identified, the failure may be not related to a degradation effect of the cooling system
and then can not be detected by our proposed approach.

Note that some appliances have Tmf increases due to a malfunction of the system of ball
bearings that is able to repair itself and our criterion is chosen in order to avoid such types of
detection. To detect the two undetected failures, the threshold would have to be greatly lowered to
0.3 and in this case there would be many false detections.

7. Concluding remarks

Thanks to filtering equations, we obtained results on the probability that an appliance is in
degraded state at time t, knowing the history of the Tmf until this moment. We have evaluated the
numerical behavior of our approach on simulated data. Then we have applied this methodology
on our real data and we have checked that the results are consistent with the reality.

Using this model, Thales is now working to implement in its HUMS in operating system a new
maintenance algorithm.

There are two technical solutions according to the system embedded calculator:
– system capitalizes data, assesses and provides information about the cooler state,
– system capitalizes data but the cooler state is assessed by a maintenance laptop plugged

periodically on its maintenance socket.
This model will allow us to improve the maintenance and the usage policies of monitored system.
The improvements are:

– moving from a preventive or corrective maintenance to a predictive maintenance, this
evolution allows to reduce the support cost,

– ability to create a degraded operational mode,
– increase the mission success probability (systems will be chosen according to their real

status for critical mission).
The performance of the new maintenance policy is possible thanks to combination of mathe-

matical, high technology and new maintenance organization.
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