
Journal de la Société Française de Statistique
Vol. 155 No. 2 (2014)

Spatial regression estimation for functional data
with spatial dependency

Titre: Estimation de la régression spatiale pour données fonctionnelles avec dépendance spatiale

Camille Ternynck1

Abstract: We propose a nonparametric estimator of the regression function of a scalar spatial variable Yi given a
functional variable Xi. The specificity of the proposed estimator is to depend on two kernels in order to control both the
distance between observations and spatial locations. Mean square consistency of this estimator is obtained when the
sample considered is an α-mixing sequence. Lastly, numerical results are provided to illustrate the behavior of our
estimator.

Résumé : Nous proposons un estimateur non paramétrique de la fonction de régression d’une variable spatiale, Yi,
scalaire conditionnellement à une variable, Xi, fonctionnelle. La spécificité de l’estimateur proposé est de dépendre
de deux noyaux permettant de contrôler à la fois la distance entre les observations et les sites. La convergence en
moyenne quadratique de cet estimateur est obtenue quand l’échantillon considéré est une séquence α-mélangeante.
Pour terminer, des résultats numériques illustrent le comportement de notre estimateur.
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1. Introduction

The spatial indexing, which provides geographical reference of data, is encountered in many
subject areas such as oceanography, epidemiology, forestry survey and economy. As a conse-
quence, the scientific research community is increasingly interested in analyzing spatial data
and then in developing more and more efficient spatial statistical tools. Early spatial models
appeared at the beginning of the 19th century and are mainly related to parametric spatial statistics
modeling (see Ripley (1981); Cressie (1993); Guyon (1995); Anselin and Florax (1995); Chilès
and Delfiner (1999) for more details on statistics for spatial data). The nonparametric methods are
able to reveal structure in data that might be missed by classical parametric ones. Nowadays, a
dynamic concerns the deployment of nonparametric methods to spatial statistics such as density
estimation, regression, prediction . . . (e.g. Journel (1983); Tran (1990); Carbon et al. (1997); Biau
and Cadre (2004); Hallin et al. (2009); Menezes et al. (2010)). However, most of nonparametric
spatial contributions deal with univariate or multivariate data whereas recent advances of real-time
measurement instruments and data storage resources led to the emergence of functional data. The
studied objects can then be curves, not numbers or vectors. This kind of data is more and more
frequently involved in statistical problems since the 1990’s. For an introduction to this field, the

1 University of Lille.
E-mail: camille.ternynck@univ-lille3.fr

Journal de la Société Française de Statistique, Vol. 155 No. 2 138-160
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238

mailto:camille.ternynck@univ-lille3.fr


Spatial regression for functional data 139

reader is directed to the books of Bosq (2000); Ramsay and Silverman (2005); Ferraty and Vieu
(2006).

Currently, the literature on spatial statistics for functional data is not extensive (see Laksaci
and Maref (2009); Nerini et al. (2010); Delicado et al. (2010); Dabo-Niang et al. (2010); Laksaci
and Mechab (2010); Dabo-Niang et al. (2011); Attouch et al. (2011); Dabo-Niang et al. (2012);
Dabo-Niang and Yao (2013)) and is the baseline of this current work. Indeed, we are interested in
estimating the nonparametric regression for functional data presenting spatial dependence. More
particularly, this regression estimator aims at taking into account the spatial dependency directly
in its construction. To the best of our knowledge, very little research deals with this issue. Among
the nonparametric methods, the usual kernel density estimator (see Rosenblatt (1956)) is often
used in order to estimate the regression operator. In Menezes et al. (2010), a nonparametric kernel
prediction is considered for spatial stochastic processes when a stochastic sampling design is
assumed for selection of random locations. The particularity of this predictor is to be constructed
with a kernel function on the locations. In the kernel-type estimator suggested in García-Soidán
and Menezes (2012), the dependence structure is reduced to the estimation of one indicator
variogram, as a nonparametric alternative to Matheron’s indicator variogram. Wang et al. (2012)
proposed a local linear spatio-temporal prediction model, using a kernel weight function taking
into account the distance between sites. The works of Dabo-Niang et al. (2013) and Dabo-Niang
et al. (2014) proposed, respectively, a spatial density and regression estimators, for multivariate
data, depending on two kernels, one of which controls the distance between observations and
the other controls the spatial dependence structure. All these previous works concern real valued
data. The spatial kernel density estimator proposed in Dabo-Niang et al. (2011) for functional
data does not directly take into account the spatial dependency in the form of the estimator but
the authors explained how this can be done by introducing a second kernel, based on distances
between sites. Here, we combine these three last works since the regression operator is constructed
from the kernel density estimator introduced in Dabo-Niang et al. (2013) and Dabo-Niang et al.
(2014), when the explanatory variables are defined on Rd , but here adapted to the functional data
framework.

Denote the integer lattice points in the N-dimensional Euclidean space by ZN , N ≥ 1. Consider
a strictly stationary random field {Xi,Yi} indexed by i in ZN whose elements have the same
distribution as a variable (X ,Y ) and defined over some probability space (Ω,F ,P). A point
in bold i = (i1, . . . , iN) ∈ ZN will be referred as a site. Suppose X takes values in a separable
semi-metric space (E ,d(·, ·)) (of eventually infinite dimension) (i.e. X is a functional random
variable and d a semi-metric) and Y takes values in R. We are interested in the regression model
defined by Yi = r(Xi)+ εi where the noise εi is centered, α-mixing and independent of Xi. Then,
the main goal of this paper is to estimate the regression function r(·).

In the following, we will assume, without loss of generality, that the data are observed over
a rectangular region, defined by In := {i : i ∈ (N∗)N ,1 ≤ ik ≤ nk,k = 1, . . . ,N}. Such regions
are used in the literature to estimate nonparametrically the spatial density (Tran (1990); Biau
and Cadre (2004); Wang and Wang (2009)). Let us recall that, as in any nonparametric spatial
density model (see, e.g., El Machkouri (2011)), the method proposed here remains valid when
the observed region has a more general form (e.g. subset of a large family of lattices of RN or
In ⊂R2 is a closed convex domain with non-empty interior). Let n̂ := n1× . . .×nN be the sample
size. The letter C will be used to denote constants whose values are unimportant, ‖ · ‖ will denote

Journal de la Société Française de Statistique, Vol. 155 No. 2 138-160
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



140 C. Ternynck

any norm over ZN and B(x,ρ) the opened ball of center x and radius ρ . We will write n→ ∞ if
min

k=1,...,n
nk → ∞ and for all 1 ≤ j,k ≤ N, for some constant 0 < C < ∞, we assume

∣∣n j/nk
∣∣ < C.

This means that the number of observations on the rectangular region expands to infinity at the
same rate along all directions. Such an expansion is called isotropic divergence. An other case
could be considered, it is the less restrictive non-isotropic case where n→ ∞ if min

k=1,...,n
nk→ ∞.

Note that the proof of the result obtained here is similar in the non-isotropic case.
Thereafter, we assume, without loss of generality, that n1 = n2 = . . .= nN = n. For each site j,

let kn = kn,j = ∑i∈In 1[‖i−j‖≤dn] where dn > 0 is such that dn→ ∞ as n→ ∞. Note that kn,j is the
number of neighbors i for which the distance between i and j is less or equal to distance dn. Taking
the Euclidean distance and if N = 2, we have kn ≤ 4d2

n− 4dn + 4 which leads to kn = O(d2
n)

and kn = o(dη
n ), η > 2. Moreover, if dn = o(n̂ε), 0 < ε < 1 then we have kn = o(n̂2ε), see e.g.

Kelejian and Prucha (2007).
Considering normalized sites, the proposed kernel regression estimator of r, for a fixed xi0 ∈

(E ,d(·, ·)) located at a site i0, is defined as

rn(xi0) =


gn(xi0)

fn(xi0)
if fn(xi0) 6= 0;

1
n̂ ∑

i∈In

Yi otherwise,

where the functions gn(xi0) and fn(xi0) are defined by

gn(xi0) = ∑
i∈In

1

an,i0E
[
K1

(
d(xi0 ,X1)

bn

)]YiK1

(
d(xi0 ,Xi)

bn

)
K2,ρn(‖i0− i‖)

fn(xi0) = ∑
i∈In

1

an,i0E
[
K1

(
d(xi0 ,X1)

bn

)]K1

(
d(xi0 ,Xi)

bn

)
K2,ρn(‖i0− i‖)

with an,i0 = ∑j∈In K2,ρn(‖i0− j‖) = ∑j∈In K2

(
ρ−1

n

∥∥∥ i0−i
n

∥∥∥), (where i
n = ( i1

n ,
i2
n , . . . ,

iN
n )). It can

also be written that K2,ρn(‖i0− i‖) = K2

(
‖i0−i‖

nρn

)
. Moreover, K1 and K2 are kernels defined on R,

bn and ρn are the bandwidths tending to zero. The estimator fn(xi0) is a function of the number kn
for which distance dn is chosen to be dn = nρn with kn→ ∞ as n→ ∞, kn = O(dN

n ) = O(n̂ρN
n ).

Hereinafter, we assume that kn = CNdN
n +O(dβ

n ) as dn → ∞, 0 < β < N and CN is a constant
that depends on N. This is based on the well-known problem of counting points with lattice
coordinates in the N-dimensional ball (see the first point of Remark 1 for further explanations).
Similar conditions on the number of observations i in In with

∥∥∥ i0−i
n

∥∥∥≤ ρn are used in Wang and
Wang (2009) who studied a local linear fitting method for real spatio-temporal data using some
weights. Then, in this latter article, additional conditions concern time characteristics.

Remark 1.

• To give some examples where the assumption onkn is reasonable, consider qN the number
of standard lattice (inZN) points contained in a closed ball B(j,dn) that is qN = Card{i ∈
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Spatial regression for functional data 141

ZN ,‖i− j‖ ≤ dn} where j is any vector of RN . It is well known that

qn =
πN/2

Γ(N/2+1)
dN

n +O(dN−1
n ),

where Γ(·) is the Gamma function, see for instance Mitchell (1966); Chamizo and Iwaniec
(1995); Tsang (2000); Meyer (2011). And notice that kn =CNqn. In particular, if N = 2,
qn = π

Γ(2)d
2
n +O(dn) or qn = π

Γ(2)d
2
n +o(d2/3

n ).

• Instead of the previous functions gn and fn, one can consider the simpler following versions

gn(xi0) =
1

n̂ρN
n E
[
K1

(
d(xi0 ,X1)

bn

)] ∑
i∈In

YiK1

(
d(xi0 ,Xi)

bn

)
K2,ρn(‖i0− i‖),

fn(xi0) =
1

n̂ρN
n E
[
K1

(
d(xi0 ,X1)

bn

)] ∑
i∈In

K1

(
d(xi0 ,Xi)

bn

)
K2,ρn(‖i0− i‖).

Such functions allow the following result to remain valid with some minor changes in
conditions on kn.

The rest of the paper is organized as follows. In Section 2, we provide the assumptions, state
our main result and present an example of application of rn(xi0) to prevision. To check the
performance of our estimator, numerical results are reported in Section 3. Conclusion is given in
Section 4 while proofs and technical lemmas are postponed in the Appendix section.

2. Assumptions and main result

We first introduce some mixing assumptions. In fact, to take into account the spatial dependency,
we assume that the process Zi = (Xi,Yi) satisfies a mixing condition defined in Carbon et al. (1997)
as follows: there exists a function γ(t)↘ 0 as t→ ∞, such that

α(σ(S),σ(S′)) = sup{|P(A∩B)−P(A)P(B)|,A ∈ σ(S),B ∈ σ(S′)},
≤ ψ(Card(S),Card(S′))γ(dist(S,S′)),

where dist(S,S′) is the Euclidean distance between the two finite sets of sites S and S′, Card(S)
denotes the cardinality of the set S, σ(S) = {Zi, i ∈ S} and σ(S′) = {Zi, i ∈ S′} are σ -fields
generated by Zi, ψ(·) is a positive symmetric function nondecreasing in each variable. We recall
that the process (Zi) is said to be strongly mixing if ψ ≡ 1. As usual, we will assume that one of
both following conditions on γ(i) is verified. These conditions are defined by

γ(i) ≤ Ci−θ , for some θ > 0,

i.e. that γ(i) tends to zero at a polynomial rate, or

γ(i) ≤ C exp(−si), for some s > 0,

i.e. that γ(i) tends to zero at an exponential rate. Concerning the function γ(·), for the sake of
simplicity, we will only study the case where γ(·) tends to zero at a polynomial rate. However,
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142 C. Ternynck

similar result to that of Theorem 1 could be obtained with γ(·) tending to zero at an exponential
rate (which implies the polynomial case). Throughout the paper, it will be assumed that ψ satisfies
either

∀n,m ∈ N, ψ(n,m)≤C min(n,m) or ψ(n,m)≤C(n+m+1)β̃

for some C > 0, and some β̃ ≥ 1. Such functions ψ(n,m) can be found, for instance, in Tran
(1990); Carbon et al. (1997); Hallin et al. (2004); Biau and Cadre (2004); Dabo-Niang and Yao
(2013).

The consistency result of rn is obtained under the following assumptions (A1-A6) on r, the
kernels, the bandwidths and local dependence condition. We will denote by p the probability
distribution of the (Xi)’s and by pi,j the joint probability distribution of (Xi,Xj), for all i and j.

- A1: The kernels Ki : R→ R+, i = 1, 2, are of integral 1 and are such that there exist two
constants C1 and C2 with 0 <C1 <C2 < ∞, such that

C11[0,1](t)≤ Ki(t)≤C21[0,1](t).

- A2: r(·) is a Lipschitz function, that is r ∈ LipE where

LipE = { f : E → R,∃C ∈ R+
∗ ,∀x,x′ ∈ E , | f (x)− f (x′)|<C3d(x,x′)}.

- A3: Local dependence condition For all i 6= j ∈ NN , the joint probability distribution pi,j
of Xi and Xj satisfies

∃ε1 ∈ (0,1], pi,j(B(xi0 ,bn)×B(xi0 ,bn))≤C4(ϕxi0
(bn))

1+ε1 ,

where ϕxi0
(bn) = P[X ∈ B(xi0 ,bn)], called small ball probability in the literature (e.g.

Ferraty and Vieu (2006)).

- A4: ∀n,m ∈ N, ψ(n,m) ≤C min(n,m) and n̂ϕxi0
(bn)

θ1ρ
Nθ1
n log n̂−θ1 → ∞ with the mixing

coefficient θ > 4N and with θ1 =
2N−θ

4N−θ
.

- A5: ∀n,m∈N, for some β̃ ≥ 1, ψ(n,m)≤C(n+m+1)β̃ and n̂ϕxi0
(bn)

θ ∗1 ρ
Nθ ∗1
n log n̂−θ ∗1 →∞

with the mixing coefficient θ > N(3+2β̃ ) and with θ
∗
1 =

N−θ

N(3+2β̃ )−θ
.

- A6: The variable Y is bounded almost surely and |Y |< M.

Remark 2.

• Assumptions A1 and A2 allow to control the bias of the estimator.
– Assumption A1 concerns the kernels Ki, i = 1,2. More general kernels such as Gaussian

or Silverman can also be used but for simplicity of calculations, we consider such
kernels usually considered in nonparametric regression. For example, this condition is
verified by e.g. triangular (Bartlett), biweight, circular (cosine), Epanechnikov, Parzen,
Tukey-Hanning kernels.
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– A nonparametric assumption on the regression function is considered through hypothesis
A2. In fact, this Lipschitz condition allows the precise rate of convergence to be found
whereas a continuity-type model would give only convergence results. Assuming the
continuity condition, one can obtain that

rn(xi0)− r(xi0)
m.s.−→ 0 with n̂ρ

N
n ϕxi0

(bn)→ ∞, bn→ 0 and ρn→ 0.

• Assumption A3 concerns the local dependency and a consequence is

|pi,j(B(xi0 ,bn)×B(xi0 ,bn))− (ϕxi0
(bn))

2| ≤ |C4(ϕxi0
(bn))

1+ε1− (ϕxi0
(bn))

2|

≤ C4(ϕxi0
(bn))

1+ε1 ≤ 1.

As it is noticed in Dabo-Niang et al. (2011), this result can be linked with the classical local
dependence condition met in the literature of real valued data when X and (Xi,Xj) admit,
respectively, the densities f and fi,j. Such assumption can be also found in Ferraty and Vieu
(2006) (Chapter 11, page 163) and in Dabo-Niang and Yao (2013).

• Assumptions A4 and A5 concern the mixing dependency and are similar to those of Carbon
et al. (1997).

The following theorem states the pointwise mean square convergence of the proposed regression
function estimator, whose proof is given in Appendix. We will denote ‖rn(xi0)− r(xi0)‖2 =(
E
[
(rn(xi0)− r(xi0))

2
])1/2.

Theorem 1. Under assumptions A1-A3, A4 or A5 and A6, we have

‖rn(xi0)− r(xi0)‖2 = O

(
bn +

√
1

n̂ρN
n ϕxi0

(bn)

)
.

Precisely, we have

‖rn(xi0)− r(xi0)‖2 = C3×bn +
(

2C(2MC2 +2M
√

C4 +C0)+4M
)
×
√

1
n̂ρN

n ϕxi0
(bn)

,

where C depends on N (see e.g. Chamizo and Iwaniec (1995)) and is such that kn≤Cn̂ρN
n whereas

C0 is a constant depending on the constant appearing in Lemma 2.

This result permits to have a bound of the mean squared error of rn(·) that depends on ρn. This
is linked with the fact that rn(·) incorporates the dependence between sites compared to the result
of Dabo-Niang et al. (2011). In the foregoing paper, the authors used the following functional
regression estimator

r?n(x) =
∑i∈In YiK1

(
d(Xi,x)

b?n

)
∑i∈In K1

(
d(Xi,x)

b?n

)
where K1 is a kernel and b?n is the corresponding bandwidth. They gave an uniform almost sure

bound of |r?n(x)− r(x)| on a specific set C , that is O
(

b?n +
√

log n̂
Γ(b?n)n̂

)
with Γ(b?n) = sup

x∈C
ϕx(bn)

?.
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For multivariate data, Dabo-Niang et al. (2013) focus on a rate of almost complete convergence of
the density estimator fn(vi) of f (vi), for R-valued spatial data vi, depending on two kernels. They
obtained that

| fn(vi)− f (vi)| = O

(
an +

√
log n̂

n̂τN
n ad

n

)
, a. c.

where an and τn are the bandwidths corresponding to the kernels on the observations and on
the sites respectively. This work is extended to regression estimation for multivariate data by
Dabo-Niang et al. (2014).

Remark 3.
– This current work is supported by a particular sampling scheme, which only includes

deterministic designs for the spatial locations. For this reason, the bound of Theorem 1
shows a dissymmetric contribution of bn and ρn on the risk even though both kernels K1 and
K2 play symmetric roles. One can generalize this work to random spatial sample such as in
Menezes et al. (2010) (for real-valued regression) and in Kelejian and Prucha (2007) (for
spatial HAC estimation) and have a bound including ρα

n .
– Theorem 1 deals with local convergence (for a fixed xi0) of the regression estimate but one

can extend the obtained result to uniform one, on a set where corresponding sites are in a
set S (that can be a subset of In or a set larger than In) by considering ln = supj∈S kn,j.

The remainder of this section focuses on the application of the proposed regression function
through an example, namely the spatial prediction.

Application to spatial prediction

In spatial statistic, an important topic, encountered in the literature, concerns the spatial prediction.
One of the most popular method is kriging, which was developed at the beginning of the 1950’s
and studied in the scope of geostatistics. More recently, some works proposed nonparametric
predictors for spatial fields indexed by lattices. The first results in this direction are those of Biau
and Cadre (2004) and concerned the kernel prediction of a strictly stationary random field indexed
in (N∗)N . Later, Dabo-Niang and Yao (2007) contribute to Biau and Cadre (2004)’s investigations
since they are interested in the kernel regression estimation and prediction of continuously indexed
random fields. In Menezes et al. (2010), nonparametric kernel prediction is considered for spatial
stochastic processes when a stochastic sampling design is assumed for selection of random
locations. These contributions, but also Dabo-Niang et al. (2014), dealt with multivariate data. In
Dabo-Niang et al. (2011), the authors stated that their work, dealing with the spatial regression
estimator for functional data, offers some interesting perspectives of investigation, namely in
spatial forecasting and real data problem. In continuation of these works, we propose a spatial
prediction methodology dealing with functional data, taking explicitly into account the spatial
locations.

In this application, we consider a R-valued strictly stationary random spatial process (ηi, i ∈
(R∗)N). This process is assumed to be bounded and observed over a subset On ⊂ In. We are
interested in predicting ηi0 at an unobserved given location i0 ∈In \On. In practice, we expect

Journal de la Société Française de Statistique, Vol. 155 No. 2 138-160
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



Spatial regression for functional data 145

that ηi0 depends only on the values of the process in a bounded neighborhood Vi0 = i0 +V ⊂ On,
where 0 = (0,0, . . . ,0) /∈ V. Consequently, we can construct a function η̃i0 from the observations

in a continuous vicinity Vi0 of i0 and define η̃i = {ηj, j ∈ Vi = i+V ⊂ RN} which belongs to the
space of continuous and bounded functions. For more details on the choice of V, see Dabo-Niang
and Yao (2007).

To achieve the forecasting at the site i0, we propose to use the regression function estimator rn
suggested previously. Then, the value to be predicted of the field (ηi)i∈(R∗)N at a site i0 becomes

η̂i0 = rn(η̃i0) =
∑i∈On ηiK1

(
d(η̃i0 ,η̃i)

bn

)
K2,ρn(‖i0− i‖)

∑i∈On K1

(
d(η̃i0 ,η̃i)

bn

)
K2,ρn(‖i0− i‖)

.

One can derive an asymptotic result such as mean square convergence of η̂i0 by considering a
kernel regression estimate of functional spatial random variables continuously indexed. Having
checked the theoretical behavior of our estimator and presented a potential application, we are
going to study its practical behavior through some numerical results.

3. Numerical results

In this section, we study the performance of the proposed regression estimator through some
simulations which point out the importance of taking into account the spatial locations of the
data. We remind that our theoretical result is obtained under a mixing condition which can be
considered by the kernel function on the locations. We compare our estimator with the one that
ignores any spatial dependence in the structure of the regression estimate (see Dabo-Niang et al.
(2011)). We consider a sample of dependent realizations of some spatial functional variables Xi
with the same distribution as a random field X valued in some infinite dimensional semi-metric
space (E ,d(·, ·)). That is, on each site i, we have a curve Xi such that Xi = {Xi(t), t ∈ [0,T ]}.
Before studying the numerical results, we propose a useful procedure for estimating the spatial
regression function.

3.1. Procedure of estimation of r(Xj), j ∈In

1. Specify sets of bandwidths S(b) and S(ρ) of respectively K1 and K2.
2. For each bn ∈ S(b) and ρn ∈ S(ρ) and each j ∈In, compute

rn(Xj) =

∑i∈In,
i 6=j

YiK1

(
d(Xi,Xj)

bn

)
K2

(
ρ−1

n

∥∥∥ i−j
n

∥∥∥)
∑i∈In,

i 6=j
K1

(
d(Xi,Xj)

bn

)
K2

(
ρ
−1
n

∥∥∥ i−j
n

∥∥∥)
3. Compute bn,opt and ρn,opt by applying a cross-validation procedure over S(b) and S(ρ).

More precisely, consider the following minimization problem, i.e. determine bn,opt and
ρn,opt which minimize the mean squared error over the n̂ sites

min
bn,ρn

1
n̂ ∑

j∈In

(rn(Xj)− r(Xj))
2
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146 C. Ternynck

4. For each j, compute rn,opt(Xj) corresponding to bn,opt and ρn,opt .

3.2. Simulation

This last procedure is used in the following simulation study dealing with N = 2. We consider
observations (X(i, j),Y(i, j)), 1≤ i, j ≤ 25, such that

Y(i, j) = r(X(i, j))+ ε(i, j)

= 4×A2
(i, j)+ ε(i, j)

and for t ∈ [0,1], X(i, j)(t) is defined according to the following cases
Case 1: X(i, j)(t) = A2

(i, j)× (t−0.5)2 +A(i, j)×B(i, j);
Case 2: X(i, j)(t) = A(i, j)× cos(2πt),

where A = (A(i, j)), B = (B(i, j)) and ε = (ε(i, j)) are random variables which will be specified
according to the following considered model on A = (A(i, j)). Several curve examples of X(i, j)(t),
for each case, are drawn on Figure 1. More precisely, the figure on the left displays some curves
simulated from Case 1 and that on the right concerns Case 2. In Case 1, an example of the function
r(·) could be r(X) = 2X ′′ (where X ′′ denotes the second derivative of X with respect to t) whereas
in Case 2, it could be r(X) = A

π2 X ′′ with t = 1
2 . We will denote by GRF(m,σ2,s) any stationary

Gaussian Random Field with mean m and spatial covariance function defined by

C(h) = σ
2 exp

(
−
(
‖h‖

s

)2
)
, h ∈ R2 and s > 0.

Then, we define the two considered models on A = (A(i, j)) by
Model A: Ai, j = Di, j× (sin(2Gi, j)+2exp(−16G2

i, j));
Model B: Ai, j = Di, j× (2cos(2Gi, j)+ exp(−4G2

i, j)).
Here, the number of observations n̂ is equal to 25×25, i.e. 625. The several fields are defined
by Di, j =

1
625 ∑1≤m,t≤25 exp

(
−‖(i, j)−(m,t)‖

a

)
, Gi, j = GRF(0,5,3), Bi, j = GRF(2.5,5,3) and εi, j =

GRF(0,0.1,5). We note that the spatial dependence is controlled by the value of a. In fact, the
greater a is, the weaker the spatial dependency is. According to this fact, we provide simulation
results obtained with different values of a which are a = 5, 20 and 50.

Along this part, the spatial regression is computed based on the kernels K1 as the Epanechnikov
kernel and K2 as the Parzen kernel. The choice of the semi-metric d(·, ·) is important and depends
on the information one gets on the data. Ferraty and Vieu (2006) present three families of semi-
metrics. The first is built from functional principal component analysis (FPCA) and is adapted
to rough curves. The second is built from the partial least square (PLS) approach and is relevant
when one consider multivariate response. The last, based on derivatives, is well adapted in the
presence of smooth curves. Specifically, it approximates L2 metric between derivatives of the
curves based on their B−spline representation. Note that other semi-metrics are encountered in
the literature. However, according to Delsol (2008), the theoretical justification of the usefulness
of a particular semi-metric is still an open problem. In this work, we consider a semi-metric
between curves based on their first q = 2 derivatives because of the smoothness of the curves.
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Figure 1: Some simulated curves of Case 1 (left) and Case 2 (right)

This semi-metric (between Xi and X j) is defined by√∫ (
X (q)

i (t)−X (q)
j (t)

)2
dt, q = 0,1,2, . . .

where, for any q-times differentiable real function X , X (q) denotes the qth derivative of X (we
refer, for example, to Ferraty and Vieu (2006) for the theoretical setting about semi-metrics used
for functional nonparametric investigations). To confirm our semi-metric choice, we tested, in
addition to the semi-metrics based on their first derivatives, two other semi-metrics (based on
PCA and on Fourier’s decomposition) and different parameters such as the number of derivatives,
principal components, basis, etc. It turns out that the results are similar or worse than those
obtained considering a semi-metric between curves based on their first q = 2 derivatives.

Recall that, in the work of Dabo-Niang et al. (2011), a theoretical estimator of the spatial
regression function for functional data is proposed. This estimator does not directly take into
account the spatial locations. However, in the application section, the authors explained how this
can be done using the k-nearest neighbors method. Then, in the simulation study, they proposed a
procedure of estimation based on nearest neighbors. This combination looks like to the estimator
rn(xi0) introduced in this paper. The difference is that in Dabo-Niang et al. (2011) the k-nearest
neighbors of a point i0 are considered in the pointwise regression estimation whereas, with our
methodology, all the points in the ball of radius ρn,opt and center i0 are considered.

To evaluate the performance of the proposed regression estimator, now denoted by r]n(·) and to
compare it with the one that does not directly take into account the distance between locations
and denoted r?n(·) (the theoretical estimator introduced in Dabo-Niang et al. (2011)), each studied
model is replicated 30 times. Recall that r]n(·) and r?n(·) are defined by

r]n(Xj) =

∑i∈In,
i 6=j

YiK1

(
d(Xi,Xj)

b]n

)
K2

(
ρ−1

n

∥∥∥ i−j
n

∥∥∥)
∑i∈In,

i6=j
K1

(
d(Xi,Xj)

b]n

)
K2

(
ρ
−1
n

∥∥∥ i−j
n

∥∥∥) and r?n(Xj) =

∑i∈In,
i 6=j

YiK1

(
d(Xi,Xj)

b?n

)
∑i∈In,

i 6=j
K1

(
d(Xi,Xj)

b?n

) .

At each replication k, we compute the mean squared error over the n̂ sites. The bandwidths used,
different at each replication, are those obtained using the previous procedure 3.1. For the kth
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TABLE 1. Simulation results according to the models A and B, the cases 1 and 2 and the value of a = 5, 20 and 50: the
table gives the average mean squared errors (AMSE) for each situation and in brackets the corresponding standard
deviation. The column entitled “p-value” gives the p-value of a paired t-test performing in order to determine whether
AMSE] is significantly less than AMSE?. The two last columns display the average coefficients of determination (AR2).

Model Case a AMSE] AMSE? p-value AR2] AR2?

A

1
5 0.034 (0.014) 0.095 (0.030) 3.92×10−14 0.652 0.057

20 0.041 (0.013) 0.097 (0.024) 3.30×10−17 0.956 0.896
50 0.060 (0.014) 0.100 (0.022) 3.66×10−13 0.981 0.969

2
5 0.007 (0.003) 0.093 (0.030) 3.94×10−16 0.925 0.054

20 0.036 (0.006) 0.097 (0.031) 6.84×10−13 0.960 0.895
50 0.058 (0.011) 0.100 (0.031) 1.12×10−09 0.982 0.970

B

1
5 0.012 (0.004) 0.092 (0.029) 6.86×10−16 0.914 0.361

20 0.049 (0.008) 0.100 (0.029) 3.52×10−12 0.994 0.988
50 0.071 (0.014) 0.100 (0.025) 1.56×10−10 0.998 0.997

2
5 0.010 (0.001) 0.093 (0.030) 7.65×10−16 0.926 0.356

20 0.060 (0.010) 0.100 (0.031) 4.58×10−10 0.993 0.988
50 0.086 (0.017) 0.108 (0.031) 7.23×10−07 0.997 0.996

replication, we define the mean squared error (MSE(k)) by

MSE(k) =
1
n̂ ∑

j∈In

(r†
n,opt(Xj)−Yj))

2, with r†
n = r]n or r?n. (1)

The obtained results are summarized in Table 1. For each situation (Model, Case and value of a),
this table provides the average MSE over the 30 replications of Equation (1) and the corresponding
standard deviation. The AMSE]’s (average mean squared error) column makes reference to the
proposed estimator r]n whereas the AMSE?’s column corresponds to the estimator r?n which takes
no account of location. Besides, we use a statistical hypothesis test rather than directly compare
the average MSE accuracy. The column entitled “p-value” gives, for each considered situation,

the p-value of a paired t-test performing in order to determine if MSE ] is significantly less than
MSE? (the alternative hypothesis is then H1: MSE] < MSE?). The two last columns give the
average of the coefficients of determination over the 30 replications. Recall that a value of R2

close to 1 means that the quality of estimation is reliable.
The first general point to make about this study is that, when a = 5, regardless the considered

kind of model or case, the estimator r]n leads to better results since the mean squared errors are
significantly lower than with r?n. For instance, for Model A and Case 2, the average of the mean
squared errors is 0.007 using the estimator r]n and 0.093 with r?n. Moreover, it can be seen that the
standard deviations are greater with r?n than with r]n. Secondly, we note that when the value of a
increases, AMSE] is still higher than AMSE? but the difference becomes narrower. Consequently,
the higher the value of a (less spatial dependency), the lower the difference between the results of
the two estimators is. In other words, our estimator r]n outperforms r?n when the spatial dependence
is important. However, the two estimators tend to give similar performance in case of spatially
independent fields. The low p-values (less than 7.23×10−07) confirm that r]n produces less errors
than r?n. Nevertheless, the probability of erroneously rejecting the null hypothesis is highest when
the value of a is equal to 20 or 50 rather than 5 (without one exception) since the p-value increases
with the value of a. Finally, we may note that the R2 criterion strengthens the previous comments.
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Figure 2: A simulated field considering ModelA, Case 2 and a = 5 with (a) an image of the field
Y ; (b) the squared errors using r]n; (c) the squared errors using r?n
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Figure 3: A simulated field considering Model B, Case 1 and a = 20 with (a) an image of the field
Y ; (b) the squared errors using r]n; (c) the squared errors using r?n

In fact, the values AR2] are higher than AR2? and the difference between them decreases as the
value of a increases.

Insight into the performance of the two regression estimators can also be viewed from graphical
outputs. In fact, Figures 2, 3 and 4 illustrate different situations. The first deals with spatially
dependent data (a = 5) simulated from Model A and Case 2 of which a representation of Y is
depicted in Figure 2a. Figures 2b and 2c show squared errors (more precisely, at each site j,
[rn(Xj)−Yj]

2 is represented) obtained using functions r]n and r?n, respectively. These two figures
confirm that our methodology generates less errors than using the regression function r?n since
the more colorful the representation is, the greater the error is. Figure 3 considers lower spatial
dependence (a = 20) simulated from Model B and Case 1 for which the field Y is represented
in Figure 3a. Figure 3b displays slightly less errors than in Figure 3c. Finally, Figure 4 gives
summarized results of Model B and Case 2, with almost independent spatial data (a = 50). The
two estimators seem to provide similar errors according to Figures 4b and 4c. It is not surprising
to note that when a is high the two estimators produce similar results. In fact, in this situation, the
bandwidths ρn are large and could take the maximal distance between observations. In short, the
two estimators work in an almost identical manner in lack of spatial dependence.
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Figure 4: A simulated field considering Model B, Case 2 and a = 50 with (a) an image of the field
Y ; (b) the squared errors using r]n; (c) the squared errors using r?n
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Figure 5: Boxplots of b]n,opt , ρn,opt and b?n,opt respectively, over the 30 replications of the three
following situations: (a) Model A, Case 2 and a = 5; (b) Model B, Case 1 and a = 20; (c) Model
B, Case 2 and a = 50
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Regarding the bandwidths selection, we carried out a cross-validation procedure. This selection
is made differently, according to the situation, r]n and r?n. Firstly, with spatially dependent data
(a = 5) the selected bandwidths ρn have the smallest values. This result was expected because
when the spatial dependence is high, sites that are close together tend to be more related than sites
that are far apart. From Model A and Case 2, the bandwidths ρn,opt , dealing with the kernel on
the locations, are between 0.126 and 0.322. For the bandwidth linked to the distance between the
observations (according to K1), the selection differs according to the considered estimator. In fact,
the values of bn,opt are widely lower considering r?n rather than r]n. For more details on the values
of the optimal bandwidths, through the 30 replications, Figure 5a displays the corresponding
boxplots. Secondly, when a = 20, considering Model B and Case 1, the values of ρn,opt are
slightly higher than when a = 5 with values comprised between 0.322 and 0.662 (see Figure 5b).
Finally, considering a = 50 with Model B and Case 2, the values of ρn,opt are more scattered and
higher than with a = 5 or 20 since it varies between 0.482 and 1.358 at each run (see Figure 5c).
Moreover, for a = 20 and a = 50 the bandwidth selection of bn,opt is equivalent using r]n or r?n (see
Figures 5b and 5c). In these situations, the value of ρn,opt varies at each run while the locations do
not change. In fact, contrary to the condition a = 5, the values of Xi, j(t) are more scattered and
then imply a change in the value of ρn,opt .

The previous study highlights the reliable performance of our estimator, particularly in presence
of spatial dependence. But a disadvantage may be that the cross-validation procedure on the two
parameters bn and ρn is very time-consuming. To this end, we tried to deal with simulations
considering a fixed bandwidth ρn as in Kelejian and Prucha (2007) where it is advised to take dn =
nρn = bn̂1/4c with b·c denotes the integer part. In our case, with n̂ = 625 sites, the corresponding
bandwidths would be ρn ≈ 0.20. It allows to save time and obtain results that are quite satisfactory
when the spatial dependence is high. More precisely, when a = 5 the results are similar or slightly
worse than those obtained by the cross-validation procedure on the two parameters: it is explained
by the fact that the cross-validation procedure chooses a value of ρn close to 0.20 (different at each
replication). Nevertheless, the fixed bandwidth ρn = 0.20 produces better results than using the
estimator r∗n. Note that the results depend largely on the spatial dependence structure considered.
However, the results are worse with weaker spatial dependence (a = 20 or 50). In fact, in some
cases (depending on the spatial dependency) the performance obtained by fixing ρn (according to
the sample size n̂ as above) is poorer than those obtained using the estimator r∗n. In this case, the
cross-validation procedure on the two parameters remains necessary.

4. Conclusion

This work proposes a new method to model spatial regression function for functional random
fields. Our main theoretical contribution was to derive the convergence in mean square. One can
see the proposed methodology as a good alternative to the classical kernel approach for functional
spatial data. More precisely, it is apparent that the proposed approach is particularly well adapted
to the spatial regression estimation, for functional data, in presence of spatial dependence. This
good behavior is observed both from an asymptotic point of view and from a simulation study.
However, in case of low spatial dependence, the two estimators, herein called r]n and r?n, produce
similar results.

In addition, this work offers very interesting perspectives of investigation. First of all, a future
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work will be tied up to the uniform convergence of our estimator. Then, we could improve the
choice of bn and ρn which is outside the scope of this paper. For further study, we could investigate
this new approach using local linear spatial regression (see, for example, Hallin et al. (2004)).
Also, an adaptation of this method to issues such as the spatial conditional mode or quantile
regression estimation could be developed. Application of the proposed regression estimator to
real data, and more particularly to data collected by the French Research Institute for Exploitation
of the Sea (Ifremer) during the campaign IBTS (International Bottom Trawl Survey), will be
investigated. Moreover, an other perspective is the study of regression estimation for continuous
indexed spatial functional fields {Zi, i ∈ RN} that can be applied to spatial prediction.
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5. Appendix

5.1. Some preliminary results for the proofs

Lemma 1. (Carbon et al. (2007)) Let the sets S1,S2, ...,Sk containing each m sites and such
that, for all i 6= j, and for 1≤ i, j ≤ k, dist(Si,S j)≥ δ0. Let W1,W2, . . . ,Wk a sequence of random
variables with real values and measurable respectively with respect toB(S1), . . . ,B(Sk). Let be
Wlwith values in [a,b]. There exists a sequence of independent random variables W ∗1 ,W

∗
2 , . . . ,W

∗
k

such that W ∗l has the same distribution as Wl and satisfies:

k

∑
l=1

E|Wl−W ∗l | ≤ 2k(b−a)ψ((k−1)m,m)γ(δ0).

Lemma 2. (Carbon et al. (1997)) Denote by Lr(F ) the class of F -measurable random variables
X which satisfy: ‖X‖r = (E|X |r)1/r < ∞. Suppose that X ∈ Lr(B(E)), Y ∈ Lr(B(E ′)), 1 ≤
r,s, t < ∞ and 1

r +
1
s +

1
t = 1. Then,

|EXY −EXEY | ≤ C‖X‖r‖Y‖s{ψ(Card(E),Card(E ′))γ(dist(E,E ′))}1/t .

For bounded random variables with probability 1, we have:

|EXY −EXEY | ≤ C{ψ(Card(E),Card(E ′))γ(dist(E,E ′))}.

In the following, we will often use the notation K1i = K1

(
d(xi0 ,Xi)

bn

)
and K2i = K2,ρn(‖i0− i‖). Let

Wni =
K1iK2i

∑k∈In K1kK2k
with the convention 0/0 = 0, then ∑i∈In Wni = 0 or 1. Thus, we have

rn(xi0) =

{
∑i∈In WniYi if ∑i∈In Wni = 1;
1
n̂ ∑i∈In Yi otherwise.
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Lemma 3. Under hypothesis A2, we have

E1/2

[
∑

i∈In

WniE(Yi|Xi)− r(xi0)

]2

= O(bn).

Lemma 4. Under hypotheses A1, A3, A4 or A5 and A6, we have

E1/2

[
∑

i∈In

Wni(Yi−E(Yi|Xi))

]2

= O

(
1

n̂ρN
n ϕxi0

(bn)

)1/2

.

Sketch of the proof for Lemma 4: The expression Wni(Yi−E(Yi|Xi)) is decomposed in the sum
of two terms, for which it is sufficient to show that:

1. ‖en(xi0)‖2 =
∥∥∥ 1

an,i0E[K1i]
∑i∈In K1iK2i[Yi−E(Yi|Xi)]

∥∥∥
2
=O(n̂ρN

n ϕxi0
(bn))

−1/2. To obtain this

result, we let ξi =K1iK2i[Yi−E(Yi|Xi)] and study E
(
∑i∈In ξi

)2
=∑i∈In E

[
ξ 2

i
]
+∑i,k∈SE [ξiξk]+

∑i,k∈Sc E [ξiξk] with S = {i,k ∈In,‖i−k‖ ≤ Dn} and denote by Sc the complementary of
S. Moreover Dn is a sequence of real numbers tending to ∞ as n̂→ ∞.

2. P
[
∑i∈In K1iK2i ≤

an,i0 u
2

]
= O(n̂ρN

n ϕxi0
(bn))

−1/2 using the well-known spatial block de-
composition (Tran (1990)), Markov and Bernstein inequalities and Lemmas 1 and 6 , with
u = E[K1i].

Lemma 5. Under the hypotheses of Lemma 4, we have

E1/2

[
1
n̂ ∑

i∈In

Yi− r(xi0)

]2

= O

(
1

n̂ρN
n ϕxi0

(bn)

)1/2

.

Lemma 6. Under the hypotheses A1 and A3, we have

In(xi0)+Rn(xi0) = O

(
1

n̂ρN
n ϕxi0

(bn)

)
.

where In(xi0)=∑i∈In E
[
(Λi(xi0))

2
]

and Rn(xi0)=∑i,k∈In ∑i 6=k |E [Λi(xi0)Λk(xi0)]|with Λi(xi0)=
1

an,i0E(K1i)
[K1iK2i−E(K1iK2i)].

5.2. Proofs

5.2.1. Proof of Theorem 1

We study the expression ‖rn(xi0)− r(xi0)‖2 = (E[|rn(xi0)− r(xi0)|2])1/2.

rn(xi0)− r(xi0) =

(
∑

i∈In

WniE(Yi|Xi)− r(xi0)

)
1[∑i∈In Wni=1] +

(
∑

i∈In

Wni(Yi−E(Yi|Xi))

)
1[∑i∈In Wni=1]

+

(
1
n̂ ∑

i∈In

Yi− r(xi0)

)
1[∑i∈In Wni=0]

‖rn(xi0)− r(xi0)‖2 ≤ E1/2[A]2 +E1/2[B]2 +E1/2[C]2
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applying Minkowski’s inequality. The terms on the right-hand-side of the previous equation are
dealt in the Lemmas 3, 4 and 5 respectively. �

5.2.2. Proof of Lemma 3

E1/2[A]2 ≤ E1/2

[(
∑

i∈In

Wni|r(Xi)− r(xi0)|

)
1[∑i∈In Wni=1]

]2

≤ E1/2

[(
∑

i∈In

Wni(C3×d(Xi,xi0))

)
1[∑i∈In Wni=1]

]2

≤ E1/2

[
C3× ∑

i∈In

Wnibn

]2

≤ E1/2 [C3×bn]
2 = O(bn),

by assumptions A1 and A2 (Lipschitz condition). �

5.2.3. Proof of Lemma 4

Let G =
(
∑i∈In Wni[Yi−E(Yi|Xi)]

)
1[∑i∈In Wni=1] =

(
en(xi0 )

fn(xi0 )

)
1[∑i∈In Wni=1] with

en(xi0) =
1

an,i0E [K1i]
∑

i∈In

K1iK2i[Yi−E(Yi|Xi)] and fn(xi0) =
1

an,i0E [K1i]
∑

i∈In

K1iK2i.

Note that ∀i: 0≤ |Yi−E(Yi|Xi)| ≤ 2M, then, |G| ≤ ∑i∈In Wni2M ≤ 2M.

|G| = |G|1[∑i∈In K1iK2i>c] + |G|1[∑i∈In K1iK2i≤c] ≤
|en(xi0)|
fn(xi0)

1[∑i∈In K1iK2i>c] +2M×1[∑i∈In K1iK2i≤c]

where c is a given constant. Let us take c =
an,i0 u

2 with u = E[K1i]≤C×ϕxi0
(bn) since by assump-

tion A1, we have C1ϕxi0
(bn) ≤ E [K1i] ≤C2ϕxi0

(bn). If ∑i∈In K1iK2i > c =
an,i0 u

2 then fn(xi0) >

an,i0u
2an,i0E [K1i]

>
1
2

. Consequently, ‖G‖2 ≤ 2‖en(xi0)‖2 +2M
(
P
[
∑i∈In K1iK2i ≤

an,i0 u
2

])1/2
.

♦ ‖en(xi0)‖2 =
1

an,i0E [K1i]

E( ∑
i∈In

ξi

)2
1/2

where ξi = K1iK2iθi with θi = Yi−E(Yi|Xi)

Let Dn be a sequence of real numbers tending to ∞ as n̂→ ∞. Set S = {i,k ∈In,‖i−k‖ ≤ Dn}
and denote by Sc the complementary of S. Let Vj =

{
i,
∥∥∥ i−j

n

∥∥∥≤ ρn

}
with Card(Vj) = kn =

CN n̂ρN
n +O((n̂ρN

n )
β ), see the definition of rn(xi0). First, we are interested in

E

(
∑

i∈In

ξi

)2

= ∑
i∈In

E
[
ξ

2
i
]
+ ∑

i,k∈S
E [ξiξk]+ ∑

i,k∈Sc

E [ξiξk]
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• ∑
i∈In

E
[
ξ

2
i
]
≤ ∑

i∈In

E
[
(K1iK2i|θi|)2] ≤ 4M2

∑
i∈In

K2
2iE
[
(K1i)

2]≤ 4M2× knE[(K1i)
2]

≤ 4M2×C2
2× knϕxi0

(bn) = O(n̂ρ
N
n ϕxi0

(bn)),

since C2
1ϕxi0

(bn)≤ E
[
K2

1i
]
≤C2

2ϕxi0
(bn).

• ∑
i,k∈S

E [ξiξk]≤ 4M2
∑

i,k∈S
K2iK2kE [K1iK1k]≤ 4M2

∑
i,k∈S

K2iK2kP [(Xi,Xk) ∈ B(xi0 ,bn)×B(xi0 ,bn)]

By assumption A3, we have

∑
i,k∈S

E [ξiξk] ≤ 4M2C4 ∑
i,k∈S

1[0,1]
(

ρ
−1
n

∥∥∥∥ i0− i
n

∥∥∥∥)1[0,1]
(

ρ
−1
n

∥∥∥∥ i0−k
n

∥∥∥∥)(ϕxi0
(bn))

1+ε1

≤ 4M2C4 ∑
i,k∈Vi0

1[0,1]
(
‖i−k‖

Dn

)
(ϕxi0

(bn))
1+ε1

≤ 4M2C4 ∑
i∈Vi0

∑
i−u∈Vi0

1{u;‖u‖≤Dn}(ϕxi0
(bn))

1+ε1 ≤ 4M2C4knDN
n (ϕxi0

(bn))
1+ε1

• ∑
i,k∈Sc

E [ξiξk] ≤ ∑
i,k∈Sc

|E(K1iK2iK1kK2kYiYk−K1iK2iE [Yi|Xi]K1kK2kE[Yk|Xk])|

and, since the function K1 and K2 are bounded, we get by applying Lemma 2

∑
i,k∈Sc

E [ξiξk]≤C ∑
i,k∈Sc

{ψ(1,1)γ(‖i−k‖)} ≤C ∑
i,k∈Sc∩Vi0

γ(‖i−k‖) ≤ C2N
∑

k∈Vi0

∑
k−u∈Vi0 ,
‖u‖>Dn

γ(‖u‖)

≤ Ckn ∑
‖i‖>Dn

γ(‖i‖).

Since ∑‖i‖>Dn γ(‖i‖) ≤ C ∑‖i‖>Dn ‖i‖
−θ ≤ C ∑‖i‖>Dn ‖i‖

−θ‖i‖−N‖i‖N and ‖i‖ > Dn, ‖i‖−N ≤
(Dn)

−N , we have

C ∑
‖i‖>Dn

‖i‖−θ‖i‖−N−ε1‖i‖N+ε1 ≤ C(Dn)
−N−ε1 ∑

‖i‖>Dn

‖i‖−θ‖i‖N+ε1 ≤CD−N−ε1
n ∑

‖i‖>Dn

‖i‖N+ε1−θ

and then ∑i,k∈Sc E [ξiξk]≤CknD−N−ε1
n ∑‖i‖>Dn ‖i‖

N+ε1−θ . The fact that θ > 4N > N +1 leads to

choose Dn = (ϕxi0
(bn))

−ε1
N +a with a > 0 and such that Na≤ ε1− N

N+ε1
. In fact, these conditions

lead to

D−(N+ε1)
n = ϕxi0

(bn)(ϕxi0
(bn))

−(N+ε1)(Na−ε1)−N
N = O

(
ϕxi0

(bn)
)

since −(N+ε1)(Na−ε1)−N
N > 0. Moreover, this choice of Dn implies that

∑
i,k∈S

E [ξiξk] ≤ 4M2C4knDN
n (ϕxi0

(bn))
1+ε1 ≤ 4M2C4kn(ϕxi0

(bn))
1+Na = O(n̂ρ

N
n ϕxi0

(bn))
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Consequently,
[
E
(
∑i∈In ξi

)2
]1/2

= O(n̂ρN
n ϕxi0

(bn))
1/2 and ‖en(xi0)‖2 = O

(
n̂ρN

n ϕxi0
(bn)

)−1/2
.

Second, we deal with

♦ P = P

[
∑

i∈In

K1iK2i ≤
an,i0u

2

]
= P

[
∑

i∈In

(K1iK2i−E(K1iK2i))≤
−an,i0u

2

]

≤ P

[
1

an,i0u

∣∣∣∣∣ ∑i∈In

(K1iK2i−E(K1iK2i))

∣∣∣∣∣≥ 1
2

]
≤ P [|Sn(xi0)| ≥ ε]

with Sn(xi0) =∑i∈In Λi(xi0) =∑i∈In
1

an,i0 u (K1iK2i−E(K1iK2i)). We will now introduce the spatial
blocks decomposition introduced by Tran (1990) which will be useful afterwards. Without loss
of generality, we suppose that nk = 2bqk, for 1 ≤ k ≤ N. The random variables Λi(xi0) can be
grouped into 2Nq1 . . .qN cubic blocks of side b. Let, and so on. Noticing that

U(1,n,xi0 , j) =
(2 jk+1)b

∑
ik=2 jkb+1,

k=1,...,N.

Λi(xi0),

U(2,n,xi0 , j) =
(2 jk+1)b

∑
ik=2 jkb+1,

k=1,...,N−1.

2( jN+1)b

∑
iN=(2 jN+1)b+1

Λi(xi0),

U(3,n,xi0 , j) =
(2 jk+1)b

∑
ik=2 jkb+1,

k=1,...,N−2.

2( jN−1+1)b

∑
iN−1=(2 jN−1+1)b+1

(2 jN+1)b

∑
iN=2 jNb+1

Λi(xi0),

U(4,n,xi0 , j) =
(2 jk+1)b

∑
ik=2 jkb+1,

k=1,...,N−2.

2( jN−1+1)b

∑
iN−1=(2 jN−1+1)b+1

(2 jN+1)b

∑
iN=(2 jN+1)b+1

Λi(xi0)

and so on. Noticing that

U(2N−1,n,xi0 , j) =
2( jk+1)b

∑
ik=(2 jk+1)b+1,

k=1,...,N−1.

(2 jN+1)b

∑
iN=2 jNb+1

Λi(xi0)

U(2N ,n,xi0 , j) =
2( jk+1)b

∑
ik=(2 jk+1)b+1,

k=1,...,N.

Λi(xi0)

for each integer 1 ≤ l ≤ 2N , we define T (n,xi0 , l) = ∑
qk−1

jk=0
k=1,...,N.

U(l,n,xi0 , j). We obtain Sn(xi0) =

∑
2N

l=1 T (n,xi0 , l). For ε > 0, P≤ P
(∣∣∣∑2N

l=1 T (n,xi0 , l)
∣∣∣> ε

)
≤ 2NP

(
|T (n,xi0 ,1)|> ε

2N

)
. We enu-

merate in arbitrary manner the q̂ = q1× . . .×qN terms U(1,n,xi0 , j) of the sum T (n,xi0 ,1), and
refer to them as W1, . . . ,Wq̂. Note that U(1,n,xi0 , j) is a measurable σ -algebra generated by Xi,
with i such that 2 jkb+1≤ ik ≤ (2 jk +1)b, k = 1, . . . ,N. For all l = 1, . . . , q̂, the sets of the sites in
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Wl are separated by a distance of at least equal to b. In addition, since K2 and K1 are bounded, we
can write |Wl| ≤C bN

an,i0 u with C = ‖K1‖∞‖K2‖∞ (where ‖.‖∞ is the sup norm). Lemma 1 insures
the existence of some random variables W ∗1 ,W

∗
2 , . . . ,W

∗
q̂ such that

q̂

∑
l=1

E|Wl−W ∗l | ≤ 2q̂C
bN

an,i0u
ψ((q̂−1)bN ,bN)γ(b)≤ 2C

n̂
2NbN

bN

an,i0u
ψ(n̂,bN)γ(b).

Markov inequality allows us to write

P

(
q̂

∑
l=1
|Wl−W ∗l |>

ε

2N+1

)
≤ 2C

n̂
2NbN

bN

an,i0u
ψ(n̂,bN)γ(b)

2N+1

ε
,

and by Bernstein inequality, we have

P

(
q̂

∑
l=1
|W ∗l |>

ε

2N+1

)
≤ 2exp

 −ε2/(2N+1)2

4∑
q̂
l=1E(W ∗2l )+ 2ε

2N+1
bN

an,i0 uC


which leads to

P≤ 2N+1 exp

 −ε2/(2N+1)2

4∑
q̂
l=1E(W ∗2l )+2−NCε

bN

an,i0 u

+2N+1C
n̂

2NbN
bN

an,i0u
ψ(n̂,bN)γ(b)

2N+1

ε

Let δ > 0, ε = εn = δ

(
log n̂

n̂ϕxi0
(bn)ρN

n

)1/2

and b =

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

) 1
2N

. Since the variables Wl and W ∗l

have the same distributions, we have ∑
q̂
l=1EW ∗2l = ∑

q̂
l=1Var(W ∗l ) = ∑

q̂
l=1Var(Wl) ≤ In(xi0)+

Rn(xi0), and according to Lemma 6, we have ∑
q̂
l=1EW ∗2l ≤ O

(
[n̂ρN

n ϕxi0
(bn)]

−1
)

. Then,

P≤ 2N+1 exp


−ε2

22N+2

(
4 C

n̂ρN
n ϕxi0

(bn)
+C2−Nε

bN

an,i0 u

)
+2N+2C

n̂
an,i0u

ψ(n̂,bN)b−θ
ε
−1

Since C1kn ≤ an,i0 ≤C2kn and kn =CNdN
n +O(dβ

n ), β < N, we have

P≤ 2N+1 exp


−δ 2 log n̂

n̂ϕxi0
(bn)ρN

n

22N+4C
n̂ρN

n ϕxi0
(bn)

+ C2N+2δ

n̂ρN
n ϕxi0

(bn)

+2N+2C
n̂

an,i0u
ψ(n̂,bN)b−θ

δ
−1

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

)1/2

≤ 2N+1 exp
{

log n̂−a}+2N+2Cδ
−1 n̂

an,i0u
ψ(n̂,bN)

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

)N−θ

2N

≤Cn̂−a +2N+2Cδ
−1 n̂

an,i0ϕxi0
(bn)

ψ(n̂,bN)

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

)N−θ

2N
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with a =
δ 2

22N+4C+CN2N+2δ
> 0. Note that n̂1−aϕxi0

(bn)ρ
N
n tends to 0 for a > 1 and then

Cn̂−a = o
(
[n̂ϕxi0

(bn)ρ
N
n ]
−1
)

. Moreover a > 1 if and only if δ > 2N+1C(1+
√

4C) > 2N+1C
(with δ > 0). Now, we treat the second term. From assumptions on ψ(n,m), two cases arise.
First case: ψ(n,m)≤C min(n,m), ∀n,m ∈ N

n̂ϕxi0
(bn)ρ

N
n C2N+2

δ
−1 n̂

an,i0ϕxi0
(bn)

bN

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

)N−θ
2N

≤ n̂ρ
N
n C2N+2

δ
−1 n̂

an,i0

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

) 2N−θ
2N

≤ n̂ρ
N
n CN2N+2

δ
−1 1

ρN
n

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

) 2N−θ
2N

≤CN

[
n̂ϕxi0

(bn)
2N−θ

4N−θ ρ

N(2N−θ)
4N−θ

n log n̂
θ−2N
4N−θ

] 4N−θ
2N

which tends to 0 according to hypothesis A4.
Second case: ψ(n,m)≤C(n+m+1)β̃ , ∀n,m∈N. Note that ψ(n̂,bN)≤C(n̂+bN +1)β̃ ≤Cn̂β̃ .

n̂ϕxi0
(bn)ρ

N
n

C2N+2δ−1n̂
an,i0 ϕxi0

(bn)
n̂β̃

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

)N−θ
2N

≤ n̂ρ
N
n CN2N+2

δ
−1 1

ρN
n

n̂β̃

(
n̂ϕxi0

(bn)ρ
N
n

log n̂

)N−θ
2N

≤CN

[
n̂ϕxi0

(bn)
N−θ

N(3+2β̃ )−θ ρ

N(N−θ)

N(3+2β̃ )−θ

n log n̂
θ−N

N(3+2β̃ )−θ

]N(3+2β̃ )−θ

2N

which tends to 0 according to hypothesis A5. Therefore, in the two cases, we have

P

[
∑

i∈In

K1iK2i ≤
an,i0u

2

]
= O

(
n̂ρ

N
n ϕxi0

(bn)
)−1

Consequently, ‖G‖2 =O
(

n̂ρN
n ϕxi0

(bn)
)−1/2

�

5.2.4. Proof of Lemma 5

Since Yi and r(·) are bounded, we have

E1/2[C]≤ E1/2

[
|1
n̂ ∑

i∈In

Yi− r(xi0)|1[∑i∈In Wni=0]

]
≤ 2ME1/2

[
1[∑i∈In Wni=0]

]

≤ 2M

(
P

[
∑

i∈In

K1iK2i = 0

])1/2

≤ 2M

(
P

[
∑

i∈In

K1iK2i ≤
an,i0u

2

])1/2

= O

(
1

n̂ρN
n ϕxi0

(bn)

)1/2

,

using Lemma 4. �
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5.2.5. Proof of Lemma 6

Firstly, we deal with In(xi0) = ∑i∈In E
[(

1
an,i0 u K1iK2i

)2
]
−∑i∈In

(
1

an,i0 uE(K1iK2i)
)2

.

∑
i∈In

E

[(
1

an,i0u
K1iK2i

)2
]
≤C

1
a2

n,i0u2 ∑
i∈In

K2
2iE
[
K2

1i
]

≤C
kn

a2
n,i0u2E

[
K2

1i
]
≤ C

knϕxi0
(bn)

= O
(
[n̂ρ

N
n ϕxi0

(bn)]
−1
)

Then, we have In(xi0) = O
(
[n̂ρN

n ϕxi0
(bn)]

−1
)

. We now treat the term Rn(xi0). Since the functions
K1(·) and K2(·) are bounded, we get by applying Lemma 2

|E [Λi(xi0)Λk(xi0)] | ≤ C
K2iK2k

a2
n,i0u2 ψ(1,1)γ(‖i−k‖).

Let En be a sequence of real numbers tending to ∞ as n̂→ ∞. Set T = {i,k ∈In,‖i−k‖ ≤ En}
and denote by T c the complementary of T . Let R(1)

n = ∑i,k∈T |E [Λi(xi0)Λk(xi0)]| and R(2)
n =

∑i,k∈T c |E [Λi(xi0)Λk(xi0)]|. Hence, Rn(xi0)≤ R(1)
n +R(2)

n . Moreover, using the same arguments as

in the proof of Lemma 4, we have In(xi0)+Rn(xi0) = O
(
[n̂ρN

n ϕxi0
(bn)]

−1
)

. �
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