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Abstract: Chronic diseases are characterized by their long duration and generally their slow progression. To study the
time to several stages of progression, traditional survival analyses are not appropriate and the use of multi-state models
is required. Of these, the Semi-Markov model (SMM) is convenient because it considers that the probability that a
patient goes from a state to another depends on the time already spent in this state.
In this paper, we illustrate the interest of using a SMM by re-analysing the data of an observational study which was
designed to investigate the relationship between the pre-graft level of the angiotensin II type 1 receptor antibodies
(AT1R-Abs) and the evolution of kidney transplant recipients (KTR). Previous results were obtained by a multivariate
Cox proportional hazards model and showed that patients with high pre-graft level of AT1R-Abs seemed to have more
risk of early acute rejection episodes (ARE) and return to dialysis after 3 years post-transplantation. Nevertheless, it
was not possible to distinguish whether AT1R-Abs had a direct correlation with the graft failure or if this correlation
went through an increased incidence of ARE. Thus, a four-state model is proposed to study the graft without any ARE,
the graft with at least one ARE, the return in dialysis and the patient death. 599 KTR transplanted in Nantes University
Hospital between 1998 and 2007 were included. The baseline hazard functions of the sojourn time distributions were
modelled using the generalized Weibull distribution.
At the time of the study, 403 (67%) patients had a functional graft without ARE whereas 105 (15%) patients returned
to dialysis, 64 (11%) patients had an ARE and 50 (8%) patients died with a functional graft. Taking into account of
traditional factors associated to the recipient’s evolution, a high pre-graft level of AT1R-Abs (≥10U) was associated
to an increased risk of ARE. For patients without ARE, there was no evidence of association between the pre-graft
level of AT1R-Abs and the risk of graft failure within the first 3 years following the transplantation. In contrast, a high
pre-graft level of AT1R-Abs seemed to increase this risk beyond 3 years post-transplantation. Finally, the association
between the pre-graft level of AT1R-Abs and the time to death was not significant. The goodness-of-fit of the SMM to
our data seemed correct.
This study shows the SMMs are particularly adapted to investigate the relationship between a biomarker and the
evolution of disease. These models offer additional information to physicians/scientists about the mechanistic associated
to a biomarker. The biostatistical community underutilizes these models, which is counter-productive regarding the
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original results they offer in translational research. Further efforts are needed to promote such models to biostatisticians
to expand their daily use.

Résumé : Les maladies chroniques sont caractérisées par leur longue durée et généralement leur lente progression.
Pour étudier le délai de progression vers différents stades, les analyses de survie traditionnelles ne sont pas adaptées et
l’utilisation de modèles multi-états est nécessaire. Parmi ceux-ci, le modèle semi-markovien (MSM) est intéressant car
il considère que la probabilité qu’un patient passe d’un état à l’autre dépend du temps déjà passé dans cet état.
Dans cet article, nous illustrons l’intérêt d’utiliser un MSM en ré-analysant les données d’une étude observationnelle
mise en place pour étudier la relation entre le niveau pré-greffe des anticorps anti-récepteurs de l’angiotensine II
de type 1 (AT1R-Ac) et l’évolution des patients transplantés rénaux (PTR). Les résultats précédents obtenus avec
un modèle de Cox à risques proportionnels multivarié montraient que les patients avec un niveau pré-greffe élevé
d’AT1R-Ac semblaient avoir un risque plus élevé d’épisodes de rejets aigus (ERA) précoces et de retour en dialyse
après 3 ans post-transplantation. Cependant, ces analyses ne permettaient pas de distinguer si AT1R-Ac avait une
corrélation directe avec l’échec de la greffe ou si cette corrélation était due à l’augmentation de l’incidence d’ERA. Par
conséquent, nous proposons un modèle à 4 états pour étudier la greffe sans ERA, la greffe avec au moins un ERA, le
retour en dialyse et le décès du patient. 599 PTR transplantés au CHU de Nantes entre 1998 et 2007 ont été inclus.
Les fonctions de risque de base des distributions des temps d’attente dans les états ont été modélisées à partir d’une
distribution de Weibull Généralisée.
Au moment de l’étude, 403 (67%) patients avaient un greffon fonctionnel sans ERA tandis que 105 (15%) patients
étaient retournés en dialyse, 64 (11%) patients avaient eu un ERA et 50 (8%) patients étaient décédés avec un greffon
fonctionnel. En tenant compte des facteurs usuels liés à l’évolution du receveur, un niveau pré-greffe élevé d’AT1R-Ac
(≥10U) était associé à un risque accru de faire un ERA. Chez les patients n’ayant pas eu d’ERA il n’était pas mis en
évidence d’association entre le niveau pré-greffe d’AT1R-Ac et le risque d’échec de la greffe dans les 3 premières
années suivant la transplantation, alors qu’un niveau pré-greffe élevé d’AT1R-Ac semblait augmenter ce risque au delà
de 3 ans post-transplantation. Enfin, l’association entre le niveau pré-greffe d’AT1R-Ac et le temps de décès n’était pas
significative. La qualité d’ajustement du MSM à nos données semblait correcte.
Cette étude montre que les MSM sont particulièrement adaptés pour étudier la relation entre un biomarqueur et
l’évolution d’une maladie. Ces modèles offrent des informations supplémentaires aux médecins/scientifiques sur la
mécanistique associée au biomarqueur. La communauté biostatistique sous-utilise ces modèles, ce qui est contre-
productif vis-à-vis des résultats originaux qu’ils offrent en recherche translationnelle. Des efforts supplémentaires sont
nécessaires pour promouvoir ces modèles aux biostatisticiens afin d’étendre leur utilisation au quotidien.

Keywords: Survival Analysis, Multistate models, Semi-Markov Process, Disease Progression, Kidney Transplantation
Mots-clés : Analyse de survie, Modèles multi-états, Processus semi-markovien, Progression de la maladie, Transplan-
tation rénale
AMS 2000 subject classifications: 62N01, 62P10, 90C40

1. Introduction

Medical researchers are often interested to investigate the relationship between covariates and
the time until clinical events such as disease progression or patient death. The most widely used
method in survival analysis is the Cox proportional hazards model (Christensen, 1987). However,
this regression is only appropriate to study the time to a single event while a patient can experience
multiple events. This is especially true in chronic diseases where the diseases are long with several
stages of progression.

The disease progression in a patient is characterized by a succession of events or stages and may
be analysed using multi-states models (Andersen and Keiding, 2002; Commenges, 1999; Lau et al.,
2009; Meira-Machado et al., 2009). The transition intensities define the probability that a patient
goes from a state to another. Time homogeneous Markov models make the strong assumption
that transition intensities are constant across time and only depend on the current state. This
assumption is not realistic in most of medical applications. In contrast, time non-homogeneous
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Markov models consider that the transition intensities depend on the chronologic time (time since
the baseline of the study) but this assumption may be not relevant again. Semi-Markov models
(SMM) can be viewed as alternative because they consider that the transition intensities depend on
the time already spent in the current state (Huzurbazar, 2004; Lagakos et al., 1978), assumption
medically relevant. In renal transplantation, we have illustrated the goodness-of-fit of such SMM
in previous studies (Foucher et al., 2007, 2010).

In this paper, we illustrate the interest of using a SMM by re-analysing the data of an obser-
vational study which was designed to investigate the relationship between the pre-graft level of
the angiotensin II type 1 receptor antibodies and the evolution of kidney transplant recipients
(KTR). The two main failures observed in KTR are the return in dialysis and the death. The first
occurence of an acute rejection episode also represents an important serious event which increases
the risk of return in dialysis.

2. Methods

2.1. The semi-Markovian process: definitions and notations

The disease progression in a patient is characterized by a succession of transitions between distinct
clinical states that can occured at various times. The semi-Markovian process considers that the
times of transitions from one state to another depend on the time already spent in the current state
(Foucher et al., 2005; Perez Ocon et al., 1999). We adopt the notation T for the chronologic time
(time since baseline of the study) and D for the duration in a state. Two parts can be modelled:
the sequence of the observed states and the sojourn time distributions given sequences. Let
X = {1,2, ...,S} the finite state space of the possible clinical states. The stochastic process
{Xm,Tm,m ∈ N} records the state Xm of the patient after the m-th transition occuring at time Tm

after the beginning of the study with T1 < T2 < ... < Tm, and T0 = 0 by convention. Let ε the set
of possible transitions i j with (i, j) ∈ (X ,X ), where i is a transient state with j distinct from i.

The probabilities of next transition correspond to the probabilities that a patient in a transient
state i enters in a state j on its next transition, for i j ∈ ε . They are defined by:

pi j = P(Xm+1 = j|Xm = i) , respecting the constraint ∑
j:i j∈ε

pi j = 1 (1)

The sojourn time distributions can be characterized by the instantaneous hazard function λi j(d)
of the duration in the state i given that j is the next state. This instantaneous hazard function is
defined by:

λi j(d) = lim
∆d→0+

P(d ≤ Tm+1−Tm < d +∆d|Tm+1−Tm > d,Xm+1 = j,Xm = i)/∆d (2)

Let Si j(d) be the corresponding survival function with:

Si j(d) = P(Tm+1−Tm > d|Xm+1 = j,Xm = i) = exp
(
−
∫ d

0
λi j(u)du

)
(3)

The corresponding probability density function fi j(d) can be directly obtained from (2) and (3)
since fi j(d) = λi j(d)Si j(d).
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Regardless the possible covariates, the SMM implies that the instantaneous joint probability of
jumping towards the state j from state i at duration d depends only on the current state i and the
sojourn time d in this state.

2.2. Modelling of the sequence of the states

We note Wi j the matrix of the covariates (in which the first column is composed of ones) associated
with the probability pi j and γi j the corresponding vector of regression coefficients. This probability
can be modelled using multinomial logistic functions (Foucher et al., 2007):

pi j(Wi j) = exp(γ ′i jWi j)/ ∑
j:i j∈ε

exp(γ ′i jWi j) (4)

In order to satisfy the constraint (1), a reference transition i jre f has to be defined with γi jre f = 0.
Similarly to a multinomial logistic regression model, the exponential of regression coefficients

can be interpreted as Odds Ratios (OR). It is therefore straightforward to interpret these reults in
terms of risk factors associated to a certain sequence of states.

2.3. Modelling of the sojourn times

We note Zi j the matrix of the covariates associated with the duration in the state i before the
transition to the state j, and βi j the corresponding vector of regression coefficients. By assuming
the proportionality of hazards (PH), the instantaneous hazard function λi j can be decomposed in
the following way:

λi j(d|Zi j) = λi j,0(d)exp(β ′i jZi j) (5)

where λi j,0(d) is the baseline hazard function. For our application, we chose to use the generalized
Weibull distribution (Nikulin and Haghighi, 2009):

λi j,0(d) =
1

θi j

(
1+
(

d
σi j

)νi j
) 1

θi j
−1

νi j

(
1

σi j

)νi j

dνi j−1 (6)

with σi j > 0 , νi j > 0 and θi j > 0.
The interesting feature of the hazard function of the generalized Weibull family is that it

assumes different shapes: constant, monotone, ∩ or ∪-shaped.
PH assumptions can be inspected on log-minus-log plot of the survival probability as function
of the time spent in each state. When covariates have time-varying effects on sojourn time
distributions, the hazard function (5) can be piecewise-defined by assuming a common baseline
hazard function but different regression coefficients for each time intervals. In this case, the SMM
remains homogeneous regarding the chronological since the regression coefficients still depend
on the duration in the current state.

Similarly to usual PH models, the exponential of the regression coefficients can be interpreted
as Hazards Ratio (HR). Among patients experiencing the transition i j, HR greater than one
(respectively lower) illustrate risk factors for more rapid transitions (respectively less rapid).
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2.4. The likelihood function

The contribution to likelihood for a subject h who jumps from state i to state j after a sojourn time
d in this state i given its characteristics W h

i j and Zh
i j is:

lim
∆d→0+

P(d ≤ Tm+1−Tm < d +∆d,Xm+1 = j|Xm = i,W h
i j,Z

h
i j)/∆d = pi j(W h

i j) fi j(d|Zh
i j) (7)

The contribution to likelihood for a subject h right censored in the state i after a sojourn time d in
this state i given its characteristics W h

i j and Zh
i j is:

P(Tm+1−Tm > d|Xm = i,W h
i j,Z

h
i j) = ∑

j:i j∈ε

pi j(W h
i j)Si j(d|Zh

i j) (8)

Let εh the set of transitions i j observed for the patient h at respective durations di j before its last
time of follow-up. Let ε ′h the set of possible next transitions that may occur for the patient h after
duration di in the state i at its last time of follow-up. The likelihood for a sample H of subjects
can therefore be written:

L = ∏
h∈H

∏
i j∈εh

pi j(W h
i j) fi j(di j|Zh

i j)

[
∑

i j∈ε ′h

pi j(W h
i j)Si j(di|Zh

i j)

]δ ′h

(9)

with δ ′h = 1 if the patient h is in a transient state at the last time of follow-up and δ ′h = 0 otherwise.
We used the R statistical software (R Core Team, 2012) with optim() function to maximise the

likelihood function and to compute the corresponding Hessian matrix (Nelder and Mead (1965)
algorithms).

2.5. Goodness-of-fit of the SMM

We used the goodness-of-fit test proposed by Foucher et al. (2010) to check the chronological time
homogeneity assumption of the proposed SMM. Briefly, this Pearson-type test compares observed
and expected numbers of failures according to chronological intervals l. Using the notation ol, f
and el, f for observed and expected numbers of failures respectively, the Pearson statistic is defined
by:

G = ∑
l∈L

∑
f∈F

(ol, f − el, f )
2/el, f (10)

with F the set of final events and L the number of chronological time intervals. A semi-parametric
boostrap procedure was implemented with the constitution of 300 bootstrap samples in order to
estimate the distribution of this statistic.

In parallel, in order to evaluate the adequation of the parametric assumptions, we also compared
for each transition the estimations of the cumulative incidence functions (CIFs) from the univariate
SMM including the biomarker of interest and from the stratified non-parametric Aalen-Johansen
estimator (Aalen, 1978). The CIF of an event at time t represents the probability that this event
occurs before time t. Resampled parameters from the multinormal distribution were used to
estimate the mean and 95% confidence intervals (95%CIs) of the CIFs from the SMM (500
simulations) (Aalen et al., 1997).
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2.6. Simulations

We performed simulations to assess the performance of our SMM model according to varying
censoring rates, particularly regarding the high censoring rate observed in our application in
kidney transplantation. Patient characteristics were simulated using a multinomial distribution
with proportions observed within strata in the original sample. For each patient, and according to
its characteristics, the sequence of the states was simulated using a multinomial distribution with
parameters estimated from the final model (Table 2). Sojourn time distributions were simulated
using parameters estimated from the same final model. Censored survival data were simulated
with the Weibull distribution to have censoring rates approximately equals to 30%, 50% and 70%
(the latter corresponding to the censoring rate observed in our original sample). A censoring is
defined when the patient remained in the initial state at the end of its follow-up. We excluded
simulated data sets with missing transitions or with less than ten observations on transitions for
which the sojourn time distribution was modeled according to covariates: in practice, a multistate
model is not considered when the number of transitions is too small. For each censoring rate, we
estimated the parameters of the final SMM for 100 data sets with a sample size of 600 subjects. For
each scenario, we reported several criteria: the mean absolute bias (mean difference between the
estimate and the true value of parameter), the mean relative bias (mean ratio of the absolute bias
and the true value of parameter), the root mean square error (RMSE), the estimated asymptotic
standard error (obtained from the inverse of the information matrix), the empirical standard error
(estimated as the standard deviation of the estimated effect over simulations), and the empirical
coverage of the nominal 95% CIs (estimated as the proportion of samples, in which the 95% CIs
included the true effect).

3. Application in renal transplantation: the role of pre-graft AT1R-Abs in the evolution of
recipients

3.1. Study population and data collection

The study population was the adult kidney transplant recipients (KTR) with no other simultaneous
organ transplantation. Patients from the study had been transplanted between the March 13, 1998
and the November 26, 2007 at Nantes University hospital and were followed up as a part of the
DIVAT cohort (Données Informatisées et VAlidées en Transplantation, www.divat.fr). The data
were collected until March 29, 2012. Data were prospectively collected, in particular the date of
acute rejection episode (ARE), return to dialysis, death, and last follow-up. The quantitative assay
of the pre-formed non-HLA antibodies (before the transplantation) against angiotensin II type 1
receptor (AT1R-Abs) was performed in Berlin (Germany), using extracts of cell overexpressing
the human AT1R as a solid phase, and blinding from information concerning the clinical data.
The other studied parameters included the donor age, recipient age, gender, number of previous
transplants, panel reactive antibodies (PRA) on T and B cells and HLA-A-B-DR incompatibilities.

Characteristics of the 599 KTR in the sample and according to the pre-graft level of AT1R-Abs
are reported in Table 1. Median age was 51 years (Range: 14-79) and 73 (13%) KTR had already
had a previous graft transplantation. Graft transplant mainly came from cadaveric donor (94%).
There were 316 patients (52.8%) with a pre-graft level of AT1R-Abs lower than 10 Units (U) and

Journal de la Société Française de Statistique, Vol. 155 No. 1 117-133
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



Multi-state analysis of kidney transplant recipients outcome. 123

Table 1: Characteristics of KTR at transplantation according to the pre-graft level of AT1R-Abs

All sample AT1R-Abs≥10U AT1R-Abs<10U
(N=599) (N=316)1 (N=283)1

NA2 Mean SD Mean SD Mean SD p-value
Quantitative characteristics
Recipient age (years) 0 48.87 14.23 49.57 14.06 48.08 14.39 0.1999
Body Mass Index (kg/m2) 9 23.64 4.36 23.69 4.40 23.57 4.32 0.7328
Cold ischemia time (hours) 3 24.26 10.49 24.55 10.20 23.94 10.81 0.4825
Donor age (years) 1 46.59 16.39 47.82 16.58 45.23 16.09 0.0529

NA2 N % N % N % p-value
Qualitative characteristics
Male recipient 0 365 60.9 203 64.2 162 57.2 0.0797
Recipient age > 55 years 0 217 36.2 120 38.0 97 34.3 0.3470
Body Mass Index < 20 kg/m2 9 120 20.3 58 18.6 62 22.2 0.2818
Body Mass Index > 25 kg/m2 9 188 31.9 94 30.2 94 33.7 0.3669
Graft rank > 1 0 78 13.0 43 13.6 35 12.4 0.6525
Cold ischemia time > 24 hours 3 264 44.3 145 46.3 119 42.0 0.2939
Delayed graft function 20 217 37.5 110 36.3 107 38.8 0.5406
HLA-ABDR incompatibilities > 5 3 31 5.2 17 5.4 14 5.0 0.8051
Recurent initial disease 5 206 34.7 100 31.9 106 37.7 0.1399
Panel Reactive Antibody on B> 25% 3 81 13.6 40 12.7 41 14.6 0.5010
Panel Reactive Antibody on T> 25% 3 74 12.4 34 10.8 40 14.2 0.2035
Donor age > 55 years 1 190 31.8 113 35.9 77 27.2 0.0231
Male donor 0 379 63.3 204 64.6 175 61.8 0.4906
Positive CMV serology3 0 295 49.2 148 46.8 147 51.9 0.2119
Positive HCV serology4 0 31 5.2 16 5.1 15 5.3 0.8960
Cadeveric donor 0 564 94.2 301 95.3 263 92.9 0.2268
Induction therapy with ATG5 2 203 34.0 108 34.3 95 33.7 0.8777
Induction therapy with Simulect 2 296 49.6 164 52.1 132 46.8 0.1998

1 AT1R-Abs≥10U: pre-graft level of angiotensin II type 1 receptor greater or equal to 10U; AT1R-Abs<10U:
pre-graft level of angiotensin II type 1 receptor lower than 10U

2 NA=Not Available
3 CMV=Cytomegalovirus
4 HCV=Hepatitis C virus
5 ATG=Anti Thymo-Globulin

283 (47.2%) with a level greater or equal to 10U. There were no significant differences between
characteristics of the patients according to the pre-graft level of AT1R-Abs except for donor’s age
which tended to be higher for KTR with low pre-graft level of AT1R-Abs (47.8 versus 45.2 years,
Student’s test p-value=0.053). The KTR had a mean follow-up time (±SD) of 6.9 years (±3.4)
and a similar median follow-up time (Min-Max:0.5-13.3).

3.2. Results previously obtained from traditional survival analyses

Data of this observational study were previously analysed to investigate the relationship between
the pre-graft level of AT1R-Abs and graft survival (main outcome) and between the pre-graft
level of AT1R-Abs and time-to-ARE (secondary outcome) (Giral et al., rint). These two events
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were analysed independently using two multivariate Cox PH regression models with time-varying
coefficients. Death with a functional graft was considered as right censoring in both analyses.
Returns to dialysis without previous ARE was also considered as right censoring for the study of
time-to-ARE. These two modellings are commonly used in transplantation litterature. A threshold
of AT1R-Abs levels was previously determined at 10U based on a survival analysis of time-to-graft
failure and using the methodology proposed by Hothorn and Zeileis (2008).

The results indicated that patients with pre-graft level of AT1R-Abs≥10U had more risk to
return to dialysis after 3 years post-transplantation and more risk to do an ARE in the 4 months
post-transplantation. The delayed correlation between pre-graft level of AT1R-Abs and time-to-
dialysis could be due to the significant higher frequency of ARE during the first months of the
transplantation. However the hypothesis of a chronological mechanistic of the pre-graft level
of AT1R-Abs on the evolution of recipients could not be assessed from these analyses. We thus
proposed to re-analyse the data using a multi-state SMM.

The multi-state model is represented in Figure 1. The set of possible states was X = {1,2,3,4}
and the set of possible transitions was ε = {12,13,14,23,24}. The ARE (state 2) is a transient
state while the return in dialysis (state 3) and death with a functional graft (state 4) constitute two
absorbing states. A patient could have been into a maximum of three states with two transitions
occuring at the chronological times T1 and T2. No return transition is clinically possible.

STATE 1 
Functional graft 
without acute 

rejection episode 

STATE 2 
Functional graft with 

at least one acute 
rejection episode 

(ARE) 

STATE 3 
Return to dialysis 

STATE 4 
Death with a 

functional graft 

N=87 

N=46 

N=64 

N=18 

N=4 

Figure 1: The multi-state structure (states and possible transitions) for the analysis of kidney transplant
data.
Squares represent transient states and ellipses absorbing states. Arrows correspond to possible
transitions between the states at beginnings of arrows and the states at points. Numbers above
arrows indicate the numbers of observed transitions among the 599 patients initially included.
Among the 599 patients initially included, 402 were right-censored at the end of the follow-up
period (no transition observed).
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3.3. Strategy of modelling

To compare the results from the SMM and from the traditional PH models previously described,
we used the same threshold of 10U for AT1R-Abs. Covariates for adjustment were dichotomized
according to clinical criteria (reference level indicated): donor age (≤ 55 years), recipient age (≤
55 years), gender (female sex), number of previous transplants (one), panel reactive antibodies
(PRA) on T and B cells (≤ 25%) and HLA-A-B-DR incompatibilities (≤ 5).

In a first time, we analysed the sojourn time distributions λi j(d) without covariates and assumed
the generalized Weibull distribution for the baseline hazard function (6). This distribution was
simplified into the Weibull or the Exponential distributions when there was no evidence of lack
of fit, according to non-parametric CIFs and likelihood ratio statistic (LRS). We then forced the
covariate AT1R-Abs in the SMM on the probabilities associated to the sequence of the states and
on the transition intensities with possible time-varying effect.

Finally, the multivariate analysis was performed in a stepwise selection way. Each covariate
was successively candidate in the SMM for the probabilities associated to the sequence of the
states and for the transition intensities. Significant regression coefficients at 0.20 level were kept
in the forward selection. Non significant terms (p-value > 0.05) were removed in a backward
selection to obtain the final model. In order to avoid confounding results, the covariates were kept
if they caused relative variations greater than 20% on other parameters when they were removed
from the model. The LRS was used for variable selection. Due to few deaths after ARE, we did
not analyze any association between covariates and death occurring after ARE. Thus, no covariate
was included in the probability associated with the sequence of states or in the distribution of
time-to-death after ARE.

3.4. The estimated SMM

Estimated parameters from the multivariate SMM are presented in Table 2. We will focus the
interpretation of results on the AT1R-Abs effects unless the regression model was multivariate to
take account of the potential confounding factors. Log-minus-log plot of the survival probabilities
according to AT1R-Abs are given in Appendix.

We chose ARE as the reference modality to model the probability of second visited state. The
coefficients γ13AT1R-Abs and γ14AT1R-Abs are thus respectively associated to the odds ratio of
returning to dialysis or dying directly after transplantation rather than doing an ARE, for patients
with high pre-graft level of AT1R-Abs. The negative coefficients indicated that high pre-graft
levels of AT1R-Abs were associated to an increased risk to do an ARE. Patients with pre-graft
AT1R-Abs≥10U were about 5 times more likely to have an ARE (adjusted OR[95%CI] of return to
dialysis directly =0.24[0.08-0.70], and adjusted OR[95%CI] of death directly =0.18[0.07-0.47]).

Distribution of time-to-ARE (transition 12) was modelled using the generalized Weibull func-
tion for the baseline hazard function (three parameters σ12,ν12,θ12), with a time-varying regression
coefficient for the pre-graft level of AT1R-Abs at 4 months post-transplantation (see Appendix).
The null hypothesis θ12 = 0 was rejected (SMM without covariate: LRS=32.6, df=1, p-value <
0.0001; final SMM: LRS=15.9, df=1, p-value < 0.0001) indicating that the generalised Weibull
distribution was more appropriate than the simple Weibull distribution. In addition, this reflects
a medical reality for which the rejection process results in clinical signs after a few weeks of
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Table 2: Final Semi Markov Model for the analysis of the relationship between AT1R-Abs and the time-to-
events (N=575)1.

Coefficient2 Estimate SE Wald exp(Est) 95%CI p-value
Generalized Weibull distribution

log(σ12) -4.12 0.19 -22.08 0.02 [0.01-0.02] 0.0000
log(ν12) 1.66 0.45 3.68 5.28 [2.18-12.75] 0.0002
log(θ12) 2.99 0.50 5.95 19.95 [7.49-53.15] 0.0000
log(σ13) 3.58 0.33 10.74 35.73 [18.71-68.22] 0.0000
log(ν13) 0.26 0.14 1.83 1.29 [0.98-1.70] 0.0673
log(σ14) 3.68 0.23 15.80 39.49 [25.16-61.98] 0.0000
log(σ23) 3.43 0.85 4.04 30.85 [5.83-163.23] 0.0001
log(σ24) 4.03 0.56 7.23 56.03 [18.70-167.93] 0.0000

Probabilities of first transition3

γ13 AT1R-Abs≥10U -1.41 0.54 -2.62 0.24 [0.08-0.70] 0.0088
γ14 AT1R-Abs≥10U -1.74 0.50 -3.45 0.18 [0.07-0.47] 0.0006
γ13 Recipient Age>55 years -0.52 0.43 -1.22 0.59 [0.25-1.38] 0.2233
γ14 Recipient Age>55 years 1.67 0.43 3.90 5.30 [2.28-12.30] 0.0001

Transition intensities4

From transplantation to ARE
β12 AT1R-Abs≥10U, t<4 months -1.16 0.44 -2.65 0.31 [0.13-0.74] 0.0081
β12 AT1R-Abs≥10U, t≥4 months -2.70 0.65 -4.16 0.07 [0.02-0.24] 0.0000
β12 HLA-ABDR incompatibilities>5 1.16 0.48 2.41 3.19 [1.24-8.17] 0.0161

From transplantation to return to dialysis
β13 AT1R-Abs≥10U, t<3 years 0.10 0.49 0.21 1.11 [0.43-2.90] 0.8298
β13 AT1R-Abs≥10U, t≥3 years 0.86 0.43 2.02 2.37 [1.02-5.50] 0.0430
β13 Recipient Age>55 years 1.90 0.48 3.99 6.72 [2.62-17.21] 0.0001
β13 PRA on T cells>25% 0.49 0.38 1.30 1.64 [0.78-3.45] 0.1928

From transplantation to death
β14 PRA on B cells>25% 0.94 0.44 2.12 2.56 [1.08-6.08] 0.0341

From ARE to return to dialysis
β23 AT1R-Abs≥10U 1.38 0.75 1.83 3.98 [0.91-17.29] 0.0672
β23 Donor Age>55 years 1.71 0.65 2.62 5.54 [1.55-19.80] 0.0087

1 Final multivariate SMM model after covariate selection. There were 24 patients excluded from analysis because of
missing data.

2 12: transition from transplantation to ARE; 13: transition from transplantation to return to dialysis; 14: transition
from transplantation to death; 23: transition from ARE to return to dialysis; 24: transition from ARE to death.
AT1R-Abs≥10U: pre-graft level of angiotensin II type 1 receptor greater or equal to 10U. PRA: panel reactive
antibodies.

3 Estimations (SE) of intercepts γ13,γ14, and γ24 in the multinomial logistic functions were: 1.91 (0.27), 0.90 (0.40), and
-0.05 (0.56) respectively (see Equation (4) for details). No covariate included for the probabilities of second transition.

4 t: time since graft transplantation (years).

transplantation but became rare after 2 years post-transpantation. Regardless its time-dependence,
the negative coefficients associated with AT1R-Abs indicated that, among patients who had an
ARE, these acute events seemed to appear earlier for individuals with pre-graft levels of AT1R-
Abs lower than 10U (HR[95%CI]=0.31[0.13-0.74] before 4 months post-transplantation and
0.07[0.02-0.24] after).

Distribution of time-to-dialysis directly after transplantation (transition 13) was modelled using
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the Weibull function for the baseline hazard function (two parameters σ13,ν13). There was a time-
varying regression coefficient for the pre-graft level of AT1R-Abs on the time-to-return directly to
dialysis at 3 years post-transplantation (see Appendix). The pre-graft level of AT1R-Abs seemed
to not influence the time-to-return directly to dialysis in the 3 years following the transplantation.
On the contrary, among patients who returned to dialysis without ARE, an high pre-graft level
of AT1R-Abs seemed to be associated with earlier failure after three years post-transplantation
(HR[95%CI]=2.37[1.02-5.50]).

Association between AT1R-Abs and time-to-death (transition 14) was not significant and was
removed. However, there is no clinical justification to expect an association between pre-transplant
sensitization against AT1R and patient survival.

Distribution of time-to-dialysis after ARE (transition 23) was modelled using the Exponential
function (one parameter σ23). Patients who returned to dialysis after an ARE tended to have
earlier failure when the pre-graft level of AT1R-Abs was higher than 10U (HR[95%CI]=3.98
[0.91-17.29]).

3.5. Goodness-of-fit

Table 3: Contingency table for the observed and expected counts1 of final events on the original sample
(N=575).2

Chronological time Final events
(in years) Return to dialysis Death with a functional graft

[0;1.820[ Observed 20 8
Expected 17.57 11.09

[1.820;3.811[ Observed 18 10
Expected 22.34 10.41

[3.811;6.013[ Observed 23 6
Expected 21.33 8.40

[6.013;8.681[ Observed 18 9
Expected 13.62 5.42

[8.681;13.329[ Observed 16 12
Expected 7.22 2.96

1 Expected transitions are derived from the final SMM on the original sample (see Foucher
et al. (2010) for details).

2 The statistic G comparing the number of observed final events on the original sample and
the number of expected final events from the SMM was equal to 45.01 (see Equation (10)
for details).

The CIFs derived from the univariate SMM including AT1R-Abs and from the non-parametric
Aalen-Johansen estimator are presented in Figure 2. To have a better visualisation, the 95%CI of
probabilities are not presented. Since AT1R-Abs was not included in the SMM for probabilities
p23,p24 and for the transition intensity λ24(d) because of the low number of events (N=4), we did
not represent the corresponding graph. For all other transitions, both curves from the univariate
SMM estimations were close to the stratified non-parametric estimations.

The observed counts of final events and the expected counts derived from the final SMM are
presented in Table 3. We chose to compute the goodness-of-fit statistic using five intervals of
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chronological times defined with the quantiles of the times of occurence of return-to-dialysis and
death. Value of the goodness-of-fit statistic G0 of the SMM on the original sample was 45.01. Of
the 300 bootstrap samples, a total of 228 goodness-of-fit statistics were greater than or equal to
G0, corresponding to a p-value of 0.76. Thus, the stationary assumption of the SMM can not be
rejected regarding the chronological time.
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Figure 2: Estimations of the cumulative incidence functions associated to transitions from the non-
parametric Aalen-Johansen estimator and from the SMM.
Black color corresponds to AT1R-Abs<10U and gray color corresponds to AT1R-Abs ≥10U.
Steps are the non-parametric Aalen-Johansen estimations of the cumulative incidence functions
(CIFs). Dash lines are the estimations of the CIFs from the univariate SMM including AT1R-Abs.
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3.6. Simulations

Table 4: Performances of the SMM according to three censoring rates (100 simulated samples of 600
patients)

Censoring Coefficient1 True Mean Absolute % Relative RMSE2 Empiric Asymptotic Coverage
rate effect estimate bias bias SE SE rate (%)
≈ 30% γ13 AT1R-Abs≥10U -1.41 -1.45 -0.04 2.70 0.25 0.25 0.29 98

γ14 AT1R-Abs≥10U -1.74 -1.77 -0.03 2.00 0.32 0.32 0.34 97
γ13 Recipient Age>55 years -0.52 -0.57 -0.05 9.60 0.31 0.31 0.31 95
γ14 Recipient Age>55 years 1.67 1.65 -0.01 -0.90 0.31 0.31 0.32 97

β12 AT1R-Abs≥10U, t<4 months -1.16 -1.20 -0.04 3.10 0.35 0.35 0.30 94
β12 AT1R-Abs≥10U, t≥4 months -2.70 -2.80 -0.11 4.00 0.48 0.47 0.45 97
β12 HLA-ABDR incompatibilities>5 1.16 1.09 -0.07 -6.20 0.78 0.78 0.63 93

β13 AT1R-Abs≥10U, t<3 years 0.10 0.06 -0.05 -44.30 0.38 0.38 0.38 99
β13 AT1R-Abs≥10U, t≥3 years 0.86 0.85 -0.01 -0.80 0.17 0.17 0.17 94
β13 Recipient Age>55 years 1.90 1.94 0.03 1.80 0.20 0.20 0.20 93
β13 PRA on T cells>25% 0.49 0.51 0.01 2.40 0.22 0.22 0.22 97

β14 PRA on B cells>25% 0.94 0.97 0.03 3.10 0.31 0.31 0.28 92

β23 AT1R-Abs≥10U 1.38 1.36 -0.02 -1.70 0.55 0.55 0.49 91
β23 Donor Age>55 years 1.71 1.66 -0.06 -3.30 0.58 0.58 0.47 92

≈ 50% γ13 AT1R-Abs≥10U -1.41 -1.48 -0.06 4.50 0.39 0.39 0.39 94
γ14 AT1R-Abs≥10U -1.74 -1.80 -0.07 3.90 0.45 0.45 0.43 94
γ13 Recipient Age>55 years -0.52 -0.53 -0.01 1.60 0.35 0.35 0.34 94
γ14 Recipient Age>55 years 1.67 1.67 0.01 0.30 0.35 0.35 0.37 94

β12 AT1R-Abs≥10U, t<4 months -1.16 -1.21 -0.04 3.70 0.42 0.42 0.37 92
β12 AT1R-Abs≥10U, t≥4 months -2.70 -2.80 -0.10 3.90 0.59 0.58 0.58 95
β12 HLA-ABDR incompatibilities>5 1.16 1.10 -0.06 -5.40 0.85 0.85 0.65 90

β13 AT1R-Abs≥10U, t<3 years 0.10 0.08 -0.02 -19.60 0.40 0.40 0.41 99
β13 AT1R-Abs≥10U, t≥3 years 0.86 0.90 0.04 4.60 0.24 0.23 0.25 95
β13 Recipient Age>55 years 1.90 1.91 0.00 0.10 0.27 0.27 0.26 92
β13 PRA on T cells>25% 0.49 0.49 0.00 0.20 0.27 0.27 0.28 96

β14 PRA on B cells>25% 0.94 1.00 0.06 6.60 0.34 0.33 0.33 93

β23 AT1R-Abs≥10U 1.38 1.44 0.06 4.00 0.66 0.66 0.59 96
β23 Donor Age>55 years 1.71 1.71 0.00 0.00 0.73 0.74 0.55 91

≈ 70% γ13 AT1R-Abs≥10U -1.41 -1.43 -0.01 0.90 0.69 0.70 0.61 84
γ14 AT1R-Abs≥10U -1.74 -1.77 -0.03 1.80 0.63 0.63 0.57 87
γ13 Recipient Age>55 years -0.52 -0.51 0.02 -3.60 0.42 0.42 0.42 93
γ14 Recipient Age>55 years 1.67 1.65 -0.02 -1.10 0.42 0.42 0.44 95

β12 AT1R-Abs≥10U, t<4 months -1.16 -1.11 0.05 -4.50 0.59 0.59 0.51 86
β12 AT1R-Abs≥10U, t≥4 months -2.70 -2.65 0.04 -1.60 0.91 0.91 0.79 88
β12 HLA-ABDR incompatibilities>5 1.16 1.07 -0.09 -7.80 1.01 1.01 0.69 89

β13 AT1R-Abs≥10U, t<3 years 0.10 0.11 0.01 7.60 0.53 0.53 0.51 97
β13 AT1R-Abs≥10U, t≥3 years 0.86 0.90 0.04 4.80 0.48 0.48 0.45 92
β13 Recipient Age>55 years 1.90 1.90 -0.01 -0.30 0.50 0.50 0.45 91
β13 PRA on T cells>25% 0.49 0.52 0.03 6.30 0.36 0.36 0.38 95

β14 PRA on B cells>25% 0.94 0.99 0.05 4.90 0.45 0.45 0.43 93

β23 AT1R-Abs≥10U 1.38 1.45 0.07 5.30 0.85 0.85 0.71 92
β23 Donor Age>55 years 1.71 1.70 -0.01 -0.80 0.81 0.82 0.65 89

1 See Table 2 for details.
2 RMSE: Root mean square error

Table 4 summarizes the results obtained from the 100 simulation data sets with 600 subjects
regarding the three censoring rates: 30%, 50% and 70%. Regardless the censoring rate and
parameters, the absolute bias in the SMM estimates was lower than 0.10. For only one of the
fourteen effects (β13 AT1R-Abs≥10U, t<3 years), the relative bias exceeded 10% but this could
be partly explain by a true effect close to zero. As indicated by the RMSE, which includes both
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components of standard error and bias, the variability of estimation of covariate effects around
the true value increased with censoring rates. This variability was also observed on standard
errors. For most parameters, empiric and asymptotic standard errors were close, reflecting correct
asymptotic estimation of variance from the Hessian matrix. Exception can be observed for
time-varying regression coefficients and for the regression coefficient associated to HLA-ABDR
incompatibilities, a binary covariate with large unbalanced distribution (5% of patients with
more than 5 incompatibilities). All the coverage rates of the 95% CIs obtained from the SMM
ranged between 84% and 97% for the censoring rate of 70% and were higher than 90% for lower
censoring rates.

4. Discussion

In this paper, we have presented a methodology to analyse time to multiple events. The SMM
was adapted to study the relation between the pre-graft level of AT1R-Abs and the evolution of
KTR. We modelled two parts in the SMM: the sequence of the observed states and the sojourn
time distributions given sequences. The interest of this decomposition is to assess the effects
of covariates on the risk to do a transition and on the speed of transition. We used parametric
distributions to have a simple writing and easy computable likelihood. In our application, the
generalized Weibull functions seemed adapted to model the baseline duration distributions.

The relationship between the pre-graft level of AT1R-Abs and KTR outcomes was previously
analysed using two independent Cox PH models traditionally applied in renal transplantation.
These analyses indicated that the pre-graft level of AT1R-Abs was 1) an independent risk factor of
ARE and 2) was associated to a higher risk of long-term graft failure. Analyses on the same data
using a SMM confirmed that patients with high pre-graft levels of AT1R-Abs had an increased
risk of ARE.

However, additional information were provided by the SMM. Firstly, regardless the occurence
of ARE, the pre-graft level of AT1R-Abs was associated to the time-to-dialysis. Among patients
who returned to dialysis, those with high pre-graft levels of AT1R-Abs seemed more likely to
do earlier failures. In addition, the pre-graft level of AT1R-Abs seemed to accelerate the return
to dialysis after an ARE. One hypothesis to explain this new results might be that AT1R-Abs
would be a complementary risk factor for identification of patients with high immunological
risk. In addition AT1R-Abs may bind to the allograft immediately following transplantation
and initiate pathological pro inflammatory action on endothelial cells that could induced ARE
and displayed serious irreversible lesions leading to accelerate graft failure (Le Bas-Bernardet
et al., 2003). Secondly, there was a time-varying effect of the pre-graft AT1R-Abs on the time-to-
dialysis without previous ARE. Indeed, there was no evidence that the pre-graft level of AT1R-Abs
influenced the time-to-dialysis in the 3 years post-transplantation, whereas an high pre-graft level
of AT1R-Abs seemed to increase the risk afterwards. Following the same hypothesis, this might
be due to subclinical rejections that were not diagnosed in our cohort according that surveillance
biopsies were not systematically realized during the survey period of the study.

The main limit of our study is the few number of events, especially the number of deaths
after ARE. We could not evaluate if the pre-graft level of AT1R-Abs was associated to the
probability of return to dialysis or die after an ARE (p2 j, j ∈ {3,4}) or to the speed of transition
from ARE to death (λ24), even if it would be unlikely to have such clinical associations with
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death. Despite a median follow-up time of 7 years, two thirds of patients were right-censored.
Consequently, the estimated probabilities pi j could not be interpreted as proportions of transitions
(when the time tends to infinity). Our simulations showed that the mean biases of estimations of
covariate effects from our SMM model were low but variability was important in presence of high
censoring rate, particularly for the binary covariate with large unbalanced distribution and for
time-varying regression coefficients whose estimates are made per time period and therefore with
fewer observations. Another limit could be the parametric distributions for durations. Although
these assumptions seemed reasonable with the KTR data, there may be some diseases where the
non-parametric distributions best fit (Joly and Commenges, 1999).

As a conclusion, this study shows the SMMs are particularly adapted to investigate the relation-
ship between a biomarker and the evolution of disease. It offers additional results to traditional
survival models about the interpretation of the mechanistic associated to a biomarker. The SMMs
can be extended to the analysis of many markers which can be measured at various times dur-
ing follow-up and can integrate interval-censored data (Foucher et al., 2010). The theoretical
advantages of such models are well-established (informative censoring, transient states to model
variable with time-dependent value,...) but perhaps more importantly the biostatistical community
in translational and epidemiological researchs should use more frequently this methodology to
offer original and more complete results to physicians or scientists.
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Figure 3: Log-minus-log plots of the survival probabilities according to AT1R-Abs.
Vertical dash lines indicate that the variable AT1R-Abs did not met PH assumptions for time-to-
ARE (time-varying regression coefficients at 4 months post-transplantation) and time-to-return
to dialysis (time-varying regression coefficients at 3 years post-transplantation).
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