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Abstract: This paper focuses on the confidence bands of errors-in-variables regression lines applied to method
comparison studies. When comparing two measurement methods, the goal is to ’proof’ that they are equivalent.
Without analytical bias, they must provide the same results on average notwithstanding the errors of measurement. The
results should not be far from the identity line Y = X (slope (β ) equal to 1 and intercept (α) equal to 0). A joint-CI
is ideally used to test this joint hypothesis and the measurement errors in both axes must be taken into account. DR
(Deming Regression) and BLS (Bivariate Least Square regression) regressions provide consistent estimated lines
(confounded under homoscedasticity). Their joint-CI with a shape of ellipse in a (β ,α) plane already exist in the
literature. However, this paper proposes to transform these joint-CI into hyperbolic confidence bands for the line in
the (X ,Y ) plane which are easier to display and interpret. Four methodologies are proposed based on previous papers
and their properties and advantages are discussed. The proposed confidence bands are mathematically identical to the
ellipses but a detailed comparison is provided with simulations and real data.When the error variances are known, the
coverage probabilities are very close to each other but the joint-CI computed with the maximum likelihood (ML) or the
method of moments provide slightly better coverage probabilities. Under unknown and heteroscedastic error variances,
the ML coverage probabilities drop drastically while the BLS provide better coverage probabilities.

Résumé : Cet article se concentre sur la construction et l’évaluation de la qualité de bandes de confiance de droites de
régression à erreurs sur les variables utilisées dans le contexte particulier de la comparaison de méthodes de mesure.
La comparaison de méthodes de mesure vise à vérifier, sur base de données expérimentales, que deux méthodes de
mesure fournissent des résultats équivalents. En l’absence de biais analytique, deux méthodes, entachées d’erreurs de
mesure, doivent fournir des résultats en moyenne identiques, c’est-à-dire distribués autour de la droite Y = X de pente
(β ) égale à 1 et d’ordonnée à l’origine (α) égale à 0. Pour tester cette hypothèse, un intervalle de confiance (IC) joint
est idéalement utilisé en tenant compte des erreurs de mesure sur les deux axes. Les régressions DR (Régression de
Deming) et BLS (Bivariate Least Square regression) fournissent des droites de régression consistantes et confondues
sous homoscédasticité. Leurs IC joints sous forme d’ellipses dans un plan (β ,α) sont présentés et cet article propose
de transformer ces IC joints en des bandes de confiance hyperboliques pour la droite dans le repère (X ,Y ) qui sont plus
faciles à mettre en graphique et à interpréter par le praticien. Quatre méthodes pour les calculer sont proposées et leurs
propriétés et avantages respectifs discutés. Une comparaison détaillée est fournie basée, entre autre, sur des simulations
et des données réelles. Lorsque les variances des erreurs sont connues, les taux de couverture sont semblables, mais
les IC joints calculés avec le maximum de vraisemblance (ML) ou la méthode des moments fournissent des taux de
couverture légèrement meilleurs. Quand les variances des erreurs sont inconnues et hétéroscédastiques, les taux de
couverture du ML chutent de façon spectaculaire tandis que le BLS donne des meilleurs taux de couverture.
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1. Introduction

The needs of the industries to quickly assess the quality of products leads to the development and
improvement of new measurement methods sometimes faster, easier to handle, less expensive
or more accurate than the reference method. These alternative methods should ideally lead to
results comparable to those obtained by a standard method (Westgard and Hunt, 1973) in such a
way that there is no bias between these two methods or that these measurement methods can be
interchangeable.
Different approaches are proposed in the literature to deal with the method comparison studies.
Firstly, the most known and widely used is certainly the approach proposed by Bland and Altman
which focuses directly on the differences between two measurement methods (Altman and Bland,
1983; Bland and Altman, 1986, 1999). Secondly, the approach based on regression analysis (or
linear functional relationship (Lindley, 1947)) is also widely applied and focuses on the regression
parameter estimates and their CI (confidence intervals) (Martínez et al., 1999). Each approach has
its own advantages and disadvantages, the first being more intuitive for the user and the second
providing a stronger statistical basis. This paper focuses on the regression approach.
To test statistically the equivalence between two measurement methods, a certain characteristic of
a sample can be measured by the two methods in the experimental domain of interest. The pairs
of measures taken by both methods can be modeled by a linear regression (a straight line). Then,
the parameter estimates are very useful to test the equivalence. Indeed, an intercept significantly
different from zero indicates a systematic analytical bias between the methods and a slope
significantly different from one indicates a proportional bias (Martínez et al., 1999). To achieve
this correctly, it is essential to take into account the errors in both axes and the heteroscedasticity
if necessary (Martínez et al., 1999). Various types of regressions exist to deal with this problem
(Riu and Rius, 1995). The equivalence test is, here, based on the joint-CI which is usually an
ellipse. This paper proposes, then, to tranfsorm these classical ellipses into hyperbolic confidence
bands for the regression line with replicated or unreplicated data. Other confidence bands (Liu
et al., 2008; Liu, 2010) like two straight lines around the estimated line will not be considered.
Indeed, hyperbolic curves are the only correct way to fit the distribution of estimated lines.
First, the joint-CI and the confidence bands of the very well-known OLS (Ordinary Least Square)
regression will be reviewed, explained and compared. Then, four different errors-in-variables
regressions will be compared in order to compute a joint-CI with an ellipse and, then, these ellipses
will be tranformed into confidence bands. Non-parametric and bootstrap confidence bands for
errors-in-variables regressions are available in the literature (Booth and Hall, 1993) but according
to our knowledge, the confidence bands given in this paper are novel.

2. The model and the goal of method equivalence testing

2.1. What is method equivalence and which data are needed to test it?

When two devices are available or have been used to perform measurements, we can, of course,
wonder whether these two devices are equivalent or not. The literature does not provide a clear
and unique definition of the equivalence concept. Statistical equivalence approach will, in priority,
test whether the two devices are equivalent notwithstanding the measurement errors or whether
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there is a bias between the two devices. Additionaly, a statistical test can be performed to compare
the accuracies of the two methods, if needed. Practical equivalence approach will not focus on
statistical parameters but will consider two methods equivalent when one device can be substituted
by the other one without affecting the decision taken from the measurement result. This paper will
focus mainly on the statistical question and test whether there is a bias between the two devices.
The most classical design in method comparison studies consists of measuring each sample once
by both devices. Unfortunately, it is therefore not possible to estimate the measurement errors
variances if necessary and a design with replicated data is more suitable. If the accuracy of a
reference measurement method (gold standard) is known, each sample can be measured one time
by this method and several times by a new method to be able to estimate the variance of the errors
of this new method.

2.2. The general model

To compare two measurement methods, a parameter of interest is measured on N samples
(i = 1,2, ...,N) or subjects by both methods (Madansky, 1959; Barnett, 1970; Fuller, 1987):

Xi j = ξi + τi j, Yik = ηi +νik (1)

Xi j( j = 1,2, ...,nXi) and Yik(k = 1,2, ...,nYi) are the repeated measures for sample i by methods
X and Y respectively. Sample i is measured nXi and nYi times by, respectively, methods X and Y .
The true but unobservable values of the parameter of interest for methods X and Y , ξi and ηi, are
assumed to be linked by a linear regression (Madansky, 1959; Barnett, 1970; Fuller, 1987):

ηi = α +βξi (2)

Note that this assumption can be assessed with a lack of fit test (Passing and Bablok, 1983;
Martínez et al., 2000). The measurement errors, τi j and νik, are supposed to be independent and
normally distributed (with constant variances under homoscedasticity):(

τi j

νik

)
∼ iN

((
0
0

)
,

(
σ2

τi
0

0 σ2
νi

))
(3)

Xi and Yi are the means of the repeated measures for a given sample:

Xi =
1

nXi

nXi

∑
j=1

Xi j and Yi =
1

nYi

nYi

∑
k=1

Yik (4)

These means are also normally distributed around ξi or ηi:(
Xi

Yi

)
∼ iN

(ξi

ηi

)
,

σ2
τi

nXi
0

0
σ2

νi
nYi

 (5)

When the variances σ2
τi

and σ2
νi

are unknown, they can be estimated with replicated data. Otherwise,
these variances are inestimable. The estimators of σ2

τi
and σ2

νi
are given by S2

τi
and S2

νi
:

S2
τi
=

1
nXi−1

nXi

∑
j=1

(Xi j−Xi)
2 and S2

νi
=

1
nYi−1

nYi

∑
k=1

(Yik−Yi)
2 (6)
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In further sections, the means of X and Y (X and Y ), their sums of square (Sxx and Syy) and
cross-product (Sxy) will also be used:

X =
1
N

N

∑
i=1

Xi and Y =
1
N

N

∑
i=1

Yi,

Sxx =
N

∑
i=1

(Xi−X)2,Syy =
N

∑
i=1

(Yi−Y )2 and Sxy =
N

∑
i=1

(Xi−X)(Yi−Y ).

2.3. The homoscedastic model

Under homoscedasticity, both measurement methods have a constant accuracy through the domain
of interest (σ2

τi
= σ2

τ and σ2
νi
= σ2

ν ∀i). Moreover, equal number of replicates for a given device
(nXi = nX and nYi = nY ∀i) is here considered, because the mean measures are regressed (Yi with
respect to Xi).
Under homoscedasticity, the variances S2

τi
and S2

νi
are estimates of σ2

τ and σ2
ν and global estimates

for σ2
τ and σ2

ν are given by S2
τ and S2

ν :

S2
τ =

∑
N
i=1(nXi−1)S2

τi

(∑N
i=1 nXi)−N

and S2
ν =

∑
N
i=1(nYi−1)S2

νi

(∑N
i=1 nYi)−N

(7)

With constant number of repeated measures (nXi = nX and nYi = nY ∀i), the formulas (7) can be
simplified into:

S2
τ =

∑
N
i=1 S2

τi

N
and S2

ν =
∑

N
i=1 S2

νi

N
(8)

2.4. How to test the equivalence?

If the two measurement methods are equivalent, they should give the same results for a given
sample notwithstanding the measurement errors. Therefore, according to the model notations,
method equivalence implies that ξi = ηi ∀i (Martínez et al., 1999; Tan and Iglewicz, 1999). In
practice, due to the measurement errors, these parameters are unobservable and the equivalence
test will be based on the following regression model:

Yi = α +βXi + εi with εi ∼ N(0,σ2
εi
) and σ

2
εi
=

σ2
νi

nYi

+β
2 σ2

τi

nXi

, (9)

where α , the intercept and β , the slope are estimated respectively by α̂ and β̂ . This regression
model is applied on the average measures (individual measures cannot be paired). A lot of
practitioners wonder which measurement method to assign to the X-axis or Y-axis. Actually,
the variables X and Y ’play similar roles’ (Anderson, 1976). If the regression line is estimated
adequately (by taking into account errors in both axes), the coordinate system should not matter
(Wald, 1940).
The estimated parameters α̂ and β̂ provide the information to assess the equivalence. Indeed,
an intercept significantly different from 0 means that there is a constant bias between the two
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measurement methods. A slope significantly different from 1 means that there is a proportional
bias (Martínez et al., 1999). So, the following two-sided hypotheses will be used to test method
equivalence:

Hα
0 : α = 0, Hα

1 : α 6= 0 and Hβ

0 : β = 1, Hβ

1 : β 6= 1 (10)

The null hypothesis Hα
0 is rejected if 0 is not included inside a confidence interval (CI) for α and

the null hypothesis Hβ

0 is rejected if 1 is not included inside a CI for β . However, these tests can
also be applied jointly by checking whether the point (1,0) is included or not in a joint-CI for the
regression coefficients θ = (α,β )′ which is, classically, a confidence ellipse. This paper focuses
on this joint hypothesis:

H0 : θ = (0,1)′ and H1 : θ 6= (0,1)′ (11)

and proposes simultaneous confidence bands (CB) for the regression line Y = α +βX = x′θ over
X ∈ (−∞,∞) where x = (1,X)′ which are identical to the confidence ellipses. The hypothesis
H0 : θ = (0,1)′ is rejected if the line Y = X intercepts the CB and not rejected if the line lies
inside the CB.

3. The OLS regression

This section reviews the results of the classical estimation of a regression line by OLS when X is
observed without error. These will be crucial in the development in further sections on errors in
variables models. In particular, the not well known concept of confidence bands (CB) around the
regression line is reviewed. It is shown that it is equivalent to the joint confidence interval on the
regression parameters and that they can both be used for equivalence testing.

3.1. Ordinary Least Squares (OLS) regression estimators

The easiest way to estimate the parameters α and β of model (9) under homoscedasticity is to
apply the very well known technique of Ordinary Least Squares (Gauss, 1809; Legendre, 1805):
OLS. The OLS regression minimizes the sum of squared vertical distances (residuals) between
each point and the line as shown in Figure 1. The corresponding parameter estimators are given by
the well known following formulas:β̂OLS = Sxy/Sxx and α̂OLS = Y − β̂OLSX . Unfortunately, OLS
assumes that there is no error given by the measurement method in the X-axis (Cornbleet and
Gochman, 1979), i.e., τi j are supposed to be equal to zero (or negligible). The corresponding
estimates are therefore biased (Cornbleet and Gochman, 1979).

3.2. Confidence intervals computed from OLS estimators

The classical 100(1−γ)% CI for βOLS and αOLS are symmetric around β̂OLS and α̂OLS respectively
and are computed as (Dagnelie, 2011):

CI(βOLS) : β̂OLS± t1− γ

2 ,N−2S
β̂OLS

with S
β̂OLS

=

√
S2

OLS
Sxx

(12)
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DR-BLS

FIGURE 1. Illustration of OLS and DR-BLS regressions criteria of minimization

where

S2
OLS =

1
N−2

N

∑
i=1

(Yi− α̂OLS− β̂OLSXi)
2,

CI(αOLS) : α̂OLS± t1− γ

2 ,N−2Sα̂OLS with Sα̂OLS =

√√√√S2
OLS

(
1
N
+

X2

Sxx

)
, (13)

where t1−γ/2,N−2 is the 100(1− γ/2)% percentile of a t-distribution with N− 2 df (degrees of
freedom). Additionally, the covariance between the slope and the intercept, S

α̂β̂OLS
is given by:

S
α̂β̂OLS

=−X
S2

OLS
Sxx

=−XS2
β̂OLS

The joint-CI for α and β is, therefore, given by:

(
α̂OLS−α β̂OLS−β

)( S2
α̂OLS

S
α̂β̂OLS

S
α̂β̂OLS

S2
β̂OLS

)−1(
α̂OLS−α

β̂OLS−β

)
≤ 2F1−γ,2,N−2, (14)

where F1−γ,2,N−2 is the 100(1− γ)% percentile of the F distribution with 2 and N−2 df. This
joint-CI is an ellipse centered on the estimated parameters θ̂ = (α̂OLS, β̂OLS)

′. When |S
α̂β̂OLS
|

increases, the ellipse becomes narrower and collapses to a line, otherwise when |S
α̂β̂OLS
| → 0 the

ellipse becomes wider until its major and minor axes become parallel to the β -axis and α-axis.
Finally, the equivalence between two measurements methods is rejected if:

(
α̂OLS−0 β̂OLS−1

)( S2
α̂OLS

S
α̂β̂OLS

S
α̂β̂OLS

S2
β̂OLS

)−1(
α̂OLS−0
β̂OLS−1

)
> 2F1−γ,2,N−2.

3.3. The confidence bands for the OLS line

The confidence bands for the OLS line is a concept not very well-known by non-statisticians
despite many papers already published in the past. Indeed, the confidence band for a line is often
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not available in classical software. The confidence bands are the CI for the regression line and
should not be confused with the CI for the conditional mean E(Ŷ0|X0) given by the following
well-known formula (Dagnelie, 2011):

Ŷ0± t1− γ

2 ,N−2SŶ0
where Ŷ0 = α̂OLS + β̂OLSX0

and S2
Ŷ0
= S2

α̂OLS
+X2

0 S2
β̂OLS

+2X0S
α̂β̂OLS

= S2
OLS

(
1
N
+

(X0−X)2

Sxx

)
. (15)

This formula is, usually, computed ’point by point’ (all possible values of X0) and the results
displayed by most of the software on a graph with hyperbolic curves. The CI for the line
Y = α +βX over X ∈ (−∞,∞) (and not for a given X0) relies on the bivariate dimension of a line
by taking into account the uncertainties of both parameters (α and β ) jointly. The confidence
bands (CB) of the line Y = α +βX under OLS assumptions is given by the following formula
[22]: (

α̂OLS + β̂OLSX
)
±
√

2F1−γ,2,N−2

√
S2

OLS

(
1
N
+

(X−X)2

Sxx

)
. (16)

Both formulas are similar but a F-distribution is used for the confidence bands based on the work
of Working and Hoteling (1929).

3.4. Comparison of the joint-CI and the confidence bands

Actually, the joint-CI on the regression coefficients and the confidence bands of the regression
line are mathematically identical. To test the equivalence between two measurement methods, one
can check whether the point (β = 1,α = 0) lies inside the ellipse or check whether the identity
line (Y = X) lies inside the confidence bands. Figure 2 (right) displays a simulated data set where
the OLS line isestimated and its 95% CB displayed. It can be noticed that the identity line (the
dashed line) lies inside the CB which means that the equivalence is not rejected. On the left, the
ellipse corresponds to the 95% joint-CI on (β ,α) and the ’equivalence point’ (β = 1,α = 0) lies
within it. More generally, when a given point (β ,α) lies inside the ellipse, the corresponding
line (Y = α +βX) lies inside the CB and vice-versa. On the other hand, when a given point lies
outside the ellipse, the corresponding line intercepts the CB. When a given point is on the edge of
the ellipse, the corresponding line is tangent to the CB. Considering all the lines which lie inside
the CB, it is obvious that the two extreme slopes correspond to the oblique asymptotes of the
hyperbolic CB (red lines in Figure 2-right). These two extreme slopes correspond to the domain
of the ellipse (red arrow on Figure 2-left) and these slopes are:

β̂OLS±
√

2F1−γ,2,N−2S
β̂OLS

(17)

From the CB, the slopes of the oblique asymptotes can be easily computed:

lim
X→∞

(α̂OLS + β̂OLSX)±
√

2F1−γ,2,N−2

√
S2

OLS

(
1
N + (X−X)2

Sxx

)
X

= β̂OLS±
√

2F1−γ,2,N−2S
β̂OLS
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FIGURE 2. Mathematical equivalence between the joint-CI on (β ,α) (ellipse on the left) and the CB (hyperbolic band
on the right) computed around the estimated line

By analogy, the image of the ellipse corresponds to the two following extreme intercepts (green
arrow in Figure 2-left):

α̂OLS±
√

2F1−γ,2,N−2Sα̂OLS , (18)

and correspond to the two intercepts of the CB (when X = 0). Finally, for any slope β0 in the
domain of the ellipse (17), there exists two lines tangent to the hyperbolic CB with slope β0
and intercepts α1

0 and α2
0 which correspond on the ellipse, to the two points α1

0 and α2
0 where

the vertical line β = β0 intercepts the ellipse (details not given). This justifies that the joint-CI
(ellipse) and the CB (hyperbola) are mathematically identical.

4. The errors-in-variables regressions under homoscedasticity

4.1. The estimators of the errors-in-variables regressions

This section presents the formulas of the regression estimators of model (9) with homoscedastic
errors. Four methodologies previously published in the literature are considered: DR (Deming
Regression), GR (Galea-Rojas et al. procedure), BLS (Bivariate Least Square regression) and
Mandel procedure. The formulas are written with the notations presented in Section 2. Under
homoscedasticity, these four methodologies provide identical estimations of the regression line:
θ̂DR = θ̂GR = θ̂BLS = θ̂Mandel . However, their covariance matrix are different and lead to different
CI. Note that σ2

τ and σ2
ν (in the formulas below) can be replaced, if needed, by S2

τ and S2
ν

respectively.
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4.1.1. The Deming Regression (DR) estimators

To take into account the best the errors in both axes, the measurement errors variances ratio must
be first defined:

λXY =
σ2

ν/nY

σ2
τ /nX

(19)

λXY is the ratio of the errors variance in the Y-axis and the errors variance in the X-axis. Usually,
the problem of replicated data is not discussed in details in the literature and a ’precision ratio’
λ is defined by λ = σ2

ν/σ2
τ (Tan and Iglewicz, 1999) (or inversely Linnet (1990, 1993, 1998,

1999)).
The DR (Deming Regression) is the ML (Maximum Likelihood) solution of model (9) under
homoscedasticity and λXY known (Fuller, 1987). In practice, if λXY is unknown, it can be estimated
with replicated data. The estimator of λ is then given by λ̂ = S2

ν/S2
τ (and λXY by λ̂XY ).

The DR minimizes criterion CDR which is the sum of (weighted) squared oblique distances
between each point and the line (Linnet, 1999; Tan and Iglewicz, 1999) as shown in Figure 1, the
angle of the direction is related to λXY and given by −λXY/β̂ (Tan and Iglewicz, 1999):

CDR =
N

∑
i=1

λXY

(
Xi−

Yi +λXY Xi/β̂ − α̂

β̂ +λXY/β̂

)2

+

(
Yi− α̂− β̂Yi +λXY Xi− α̂β̂

β̂ +λXY/β̂

)2


The DR estimators are given by:

β̂DR =
Syy−λXY Sxx +

√
(Syy−λXY Sxx)2 +4λXY S2

xy

2Sxy
and α̂DR = Y − β̂DRX (20)

The assumption of DR is the constancy of λXY . This assumption is fulfilled with homoscedasticity
and balanced design (i. e., nXi and nYi constant).

4.1.2. The Galea-Rojas et al. procedure

Galea-Rojas et al. (2003) propose a regression model based on a paper previously published by
Ripley and Thompson (1987) where maximum likelihood is applied to take into account the errors
and heteroscedasticity in both axes. The formulas are, here, given under homoscedasticity and
with replicated data. The estimators of the parameters are:

β̂GR =
∑

N
i=1WGRx̂i(Yi−Y )

∑
N
i=1WGRx̂i(Xi−X)

=
∑

N
i=1 x̂i(Yi−Y )

∑
N
i=1 x̂i(Xi−X)

and α̂GR = Y − β̂GRX (21)

where

WGR =
1

σ2
ν

nY
+ β̂ 2

GR
σ2

τ

nX

and x̂i =

σ2
ν

nY
Xi + β̂GR

σ2
τ

nX
(Yi− α̂GR)

σ2
ν

nY
+ β̂ 2

GR
σ2

τ

nX

x̂i is the abscissa of the projection of the ith point to the line in the oblique direction defined in the
previous section.
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4.1.3. The Bivariate Least Square regression: BLS

The Bivariate Least Square regression, BLS, is a generic name but this article refers to the papers
published first by Lisý et al. (1990) and later by other authors (Martínez et al., 1999, 2002; del
Río et al., 2001; Riu and Rius, 1996). BLS can take into account error and heteroscedasticity in
both axes and is written usually in matrix notation (Lisý et al., 1990; Martínez et al., 1999, 2002;
del Río et al., 2001; Riu and Rius, 1996). Its formulas are given, here, under homoscedasticity
and with replicated data. The BLS minimizes the criterion CBLS:

CBLS =
1

WBLS

N

∑
i=1

(Yi− α̂− β̂Xi)
2 = (N−2)s2

BLS with WBLS = σ
2
ε =

σ2
ν

nY
+ β̂

2 σ2
τ

nX

Practically, the estimations of the parameters (the b vector) are computed by iterations with the
following formula:

Rb = g (22)

where

R =
1

WBLS

(
N ∑

N
i=1 Xi

∑
N
i=1 Xi ∑

N
i=1 X2

i

)
, b =

(
α̂BLS

β̂BLS

)
,

and

g =
1

WBLS

(
∑

N
i=1Yi

∑
N
i=1

(
XiYi + β̂BLS

σ2
τ

nX

(Yi−α̂BLS−β̂BLSXi)
2

WBLS

))
Even if the parameters σ2

τ and σ2
ν are present separately in the formula, the solution b only

depends of the ratio λXY .

4.1.4. The Mandel procedure

Mandel developed a regression in the context of inter-laboratories studies (Mandel, 1984) that can
take into account the correlation between the error terms (as he regressed the results of a given
laboratory with respect to the averages of the results of all laboratories). Since the errors τi j and
νi j are, here, uncorrelated, it can be shown that Mandel’s regression is exactly equivalent to DR
(if the correlation term is set to zero). The Mandel’s procedure consists in transforming the (X ,Y )
data into (U = Xi + kYi,V = Yi− β̂MandelXi) data such that U has a very small error. The OLS’s
regression is then applied to the (U,V ) data and transformed back into the (X ,Y ) space to finally
get a regression line which takes into account errors in both axes (and their correlation). By using
λXY instead of λ in the Mandel’s procedure (with uncorrelated errors), the formulas are:

β̂Mandel =
Sxy + kSyy

Sxx + kSxy
and α̂Mandel = Y − β̂MandelX with k =

β̂Mandel

λXY
(23)

β̂Mandel can be computed by iterations or by solving a 2nd degree equation. By analogy, the
following notations will also be used:

U =
1
N

N

∑
i=1

Ui and V =
1
N

N

∑
i=1

Vi,
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Suu =
N

∑
i=1

(Ui−U)2, Svv =
N

∑
i=1

(Vi−V )2 and Suv =
N

∑
i=1

(Ui−U)(Vi−V ) = 0

4.2. The joint-CI and confidence bands of the errors-in-variables regressions

This section gives the approximate covariance matrix Σ̂ of the estimates θ̂ = (α̂, β̂ )′ of the errors-
in-variables regression coefficients θ presented in section 4.1 in order to compute the joint-CI
for θ or the CB for the regression line (if needed, σ2

τ and σ2
ν can be replaced by S2

τ and S2
ν ). The

joint-CI are all confidence ellipses centered on the same point (as the estimators given in the
previous section are identical) but with different shapes and are all approximate. The confidence
ellipse for θ can be computed with the following formula:

(θ̂ −θ)′Σ̂−1(θ̂ −θ)< c (24)

where the critical constant c is chosen suitably depending on whether χ2
1−γ,2 (the 100(1− γ)%

percentile of a χ2 distribution with 2 df) or 2F1−γ,2,N−2 is used as the approximate distribution.
This confidence ellipse can be represented equivalently as a CB:

x′θ ∈ x′θ̂ ±
√

c
√

x′Σ̂−1x (25)

4.2.1. The variance-covariance matrix of the estimators provided by DR

Gillard and Iles (2005, 2006) propose to compute the variance-covariance matrix of the estimators
by the method of moments. When λXY is assumed to be known, the variances and covariance of
the estimators can be computed with the following formulas (which have been modified to take
into account the replicated data):

S2
β̂DR

=
SxxSyy−S2

xy

N
(

Sxy

β̂DR

)2 , S2
α̂DR

= X2S2
β̂DR

+
β̂ 2

DRσ2
τ /nX +σ2

ν/nY

N
and S

α̂β̂DR
=−XS2

β̂DR
(26)

Based on the asymptotic normal distribution of the parameters β̂DR and α̂DR (get by ML), it is
proposed in this paper to use a F-distribution with c = 2F1−γ,2,N−2 to prevent the joint-CI or CB
being too narrow for small sample sizes.

4.2.2. The variance-covariance matrix of the estimators provided by Galea-Rojas et al.

Galea-Rojas et al. (2003) provide the asymptotic variance-covariance matrix of the parameters
derived by ML. Under homoscedasticity and with replicated data, the asymptotic variance-
covariance matrix of the parameters is given by:

ΣGR =W−1
n VnW−1

n /N, (27)

where

Wn =
WGR

N

(
N ∑

N
i=1 ξi

∑
N
i=1 ξi ∑

N
i=1 ξ 2

i

)
and Vn =Wn +

(
0 0
0 kGR

)
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with

kGR =
WGR

C
and C =

1
σ2

τ /nX
+

β 2
GR

σ2
ν/nY

In practice, to get a consistent estimator of the variance-covariance matrix, β 2
GR can be replaced

by β̂ 2
GR, ξi by x̂i and ξ 2

i by ξ̂ 2
i − 1/C (Galea-Rojas et al., 2003). From the Wald statistic given

in the literature (Galea-Rojas et al., 2003), the critical constant is c = χ2
1−γ,2. The variances of

the parameters can also be computed with the following equivalent formulas (Galea-Rojas et al.,
2003):

σ
2
β̂GR

=
1

SSW

(
1+

NkGR

SSW

)
, σ

2
α̂GR

=
1

NWGR
+ξ

2
σ

2
β̂GR

and σ
α̂β̂GR

=−ξ σ
2
β̂GR

(28)

with SSW =WGR ∑
N
i=1(ξi−ξ )2 and ξ = ∑

N
i=1 ξi
N .

In practice, σ2
β̂GR

, σ2
α̂GR

and σ
α̂β̂GR

can be estimated by replacing ξ by X , and SSW by WGR ∑
N
i=1(x̂

2
i −

C−1−2x̂iX +X2
).

4.2.3. The variance-covariance matrix of the estimators provided by BLS

Riu and Rius (1996) propose the following variance-covariance matrix for the BLS parameters:

Σ̂BLS = s2
BLSR−1 (29)

or equivalently:

S2
β̂BLS

=
WBLSNs2

BLS

N ∑
N
i=1 X2

i − (∑N
i=1 Xi)2

, S2
α̂BLS

=
WBLSs2

BLS ∑
N
i=1 X2

i

N ∑
N
i=1 X2

i − (∑N
i=1 Xi)2

and S
α̂β̂BLS

=−XS2
β̂BLS

(30)

The critical constant c is given by 2 F1−γ,2,N−2 (Galea-Rojas et al., 2003). The disadvantages of
this approximate ellipse (the theoretical background of this joint-CI is not rigorous) can be found
in the literature (Galea-Rojas et al., 2003).

4.2.4. The variance-covariance matrix of the estimators provided by Mandel

With the Mandel’s procedure, the OLS technique is applied in the (U,V ) axes (Mandel, 1984) and
the variances of the parameters computed with the formulas given in section 3.2. The variances
of the parameters β̂Mandel and α̂Mandel are derived by the general formula for the propagation of
errors from the reconversion to (X ,Y ) scales:

S2
β̂Mandel

=
(1+ kβ̂Mandel)

2

Suu
S2

eMandel
and S2

α̂Mandel
=

(
1
N
+

X2
(1+ kβ̂Mandel)

2

Suu

)
S2

eMandel
(31)

with
S2

eMandel
=

Svv

N−2

Journal de la Société Française de Statistique, Vol. 155 No. 1 23-45
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



Hyperbolic confidence bands of errors-in-variables regression lines applied to method comparison studies 35

The covariance and the joint-CI are not provided by Mandel but the covariance can also be easily
computed by the formula for the propagation of errors:

S
α̂β̂Mandel

=−XS2
β̂Mandel

(32)

It is proposed in this paper to use a F-distribution with c = 2F1−γ,2,N−2 as the Mandel’s procedure
is based on the OLS technique.

4.3. Coverage probabilities of the joint confidence intervals or confidence bands

In order to compare the coverage probabilities of the joint-CI or CB provided by the four
methodologies presented in the previous sections, 105 samples were simulated with N = 10, 20,
50, with unreplicated data (nX = nY = 1,λ = λXY known) and under equivalence (α = 0,β =
1,ηi = ξi) for the values of λXY given in Table 1 (with σ2

ν from 0.1 to 2 and σ2
τ inversely from 2 to

0.1 providing 13 values of λ from 0.05 to 20). Different values of ηi were drawn randomly from an
Uniform distribution U(10,20) for each simulated sample. The corresponding joint-CI or CB were
computed for each simulated sample and the coverage probabilities (at a nominal level = 95%)
computed per value of λXY . Replicated data were also simulated to allow the estimation of σ2

ν and
σ2

τ : with equal number of replicates (nX = nY = 2 and λ = λXY or nX = nY = 4 and λ = λXY ) and
with unequal number of replicates (nX = 4,nY = 2 and λXY = 2λ ) in such a way that the values
of λXY are identical to those of the unreplicated case. To study in more details the effect of the
sample size, simulations were run with λXY = 0.33,1,3, and N from 10 to 100 (10, 12, 14, 16,
20, 30, 50, 75, 100), with or without replicated data. The coverage probabilities are displayed for
λXY known in Figure 3 with respect to λXY (left, on a logarithmic scale) and to N (right) (see the
working paper Francq and Govaerts (2012) for the replicated data and estimated λXY ). When the
variances are known, all the coverage probabilities are between 93% and 96% and closer to 95%
when λXY > 1 for the GR, BLS and Mandel procedures. When N increases, the GR and DR are
closer to 95% while the BLS and Mandel procedures provide slightly lower coverage probabilities.
When the variances are estimated with replicated data, the coverage probabilities provided by the
DR are slightly lower but are the closest to 95%. On the other hand, the coverage probabilities
provided by the GR’s procedure drop because of the uncertainties on the estimated variances but
these coverage probabilities increase with N. For instance, when nX = nY = 2 with λXY = 1, the
GR outperforms the BLS with N > 30 (approximately). The BLS and Mandel methodologies
provide similar coverage probabilities with known or unknown variances. In practice, the accuracy
of one measurement method is rarely three times higher than the other such that λXY often lies
between around 0.33 and 3. In this interval, the DR and GR are always slightly more suitable with
known variances while the DR is always more suitable with unknown variances.

TABLE 1. Values of σ2
ν and σ2

τ for the simulations with nX = nY = 1 and the corresponding values of λ and λXY

σ2
ν 0.1 0.175 0.25 0.375 0.5 0.625 0.75 0.875 1 1.25 1.5 1.75 2

σ2
τ 2 1.75 1.5 1.25 1 0.875 0.75 0.625 0.5 0.375 0.25 0.175 0.1

λ = λXY 0.05 0.1 0.167 0.3 0.5 0.714 1 1.4 2 3.333 6 10 20

Journal de la Société Française de Statistique, Vol. 155 No. 1 23-45
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



36 B. G. Francq, B. B. Govaerts
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FIGURE 3. Coverage probabilities of the joint-CI or CB related to λXY in a logarithmic scale with N = 10, 20, 50
(left) and related to N for λXY = 0.33, 1, 3 (right), nX = nY = 1, for the Deming Regression (DR), Galea-Rojas et al.
procedure (GR), the Bivariate Least Square regression (BLS) and the Mandel procedure.
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5. The errors-in-variables regressions under heteroscedasticity

This section presents the formulas of the regression estimators of model (9) under heteroscedastic-
ity when the variances σ2

τi
and σ2

νi
are known or estimated with replicates. The Mandel’s regression

and the DR are not considered anymore as they are not suitable under heteroscedasticity. The
GR procedure and the BLS can take into account the heteroscedasticity and are identical for
estimating the regression line (θ̂GR = θ̂BLS) but the variance-covariance matrix of the parameters
are computed differently. The covariance matrix Σ̂ of the estimates θ̂ = (α̂, β̂ )′ given in this
section can be plugged in formulas (24) and (25) to get respectively the corresponding joint-CI
(confidence ellipse) or CB (with the same critical constant c given in section 4.2).

5.1. The Galea-Rojas et al. procedure

Based on a paper published previously by Ripley and Thompson (1987), the ML parameters
estimators are:

β̂GR =
∑

N
i=1WiGR x̂i(Yi−Y )

∑
N
i=1WiGR x̂i(Xi−X)

and α̂GR = YW − β̂GRXW , (33)

where

WiGR =
1

σ2
νi

nYi
+ β̂ 2

GR
σ2

τi
nXi

and x̂i =

σ2
νi

nYi
Xi + β̂GR

σ2
τi

nXi
(Yi− α̂GR)

σ2
νi

nYi
+ β̂ 2

GR
σ2

τi
nXi

,

XW =
∑

N
i=1WiGRXi

∑
N
i=1WiGR

and YW =
∑

N
i=1WiGRYi

∑
N
i=1WiGR

The asymptotic variance-covariance matrix of the parameters derived by ML is given by Galea-
Rojas et al. (2003):

ΣGR =W−1
n VnW−1

n /N, (34)

where

Wn =
1
N

(
∑

N
i=1WiGR ∑

N
i=1WiGRξi

∑
N
i=1WiGRξi ∑

N
i=1WiGRξ 2

i

)
and Vn =Wn +

(
0 0
0 kGR

)
with

kGR =
1
N

N

∑
i=1

WiGR

Ci
and Ci =

1
σ2

τi
/nXi

+
β 2

GR
σ2

νi
/nYi

In practice, to get a consistent estimator of the variance-covariance matrix, β 2
GR can be replaced

by β̂ 2
GR, ξi by x̂i and ξ 2

i by ξ̂ 2
i −1/Ci (Galea-Rojas et al., 2003). The variances of the parameters

can also be computed with the following equivalent formulas (Galea-Rojas et al., 2003):

σ
2
β̂GR

=
1

SSW

(
1+

NkGR

SSW

)
, σ

2
α̂GR

=
1

∑
N
i=1WiGR

+ξ
2
W σ

2
β̂GR

and σ
α̂β̂GR

=−ξW σ
2
β̂GR

(35)

with SSW = ∑
N
i=1WiGR(ξi−ξW )2 and ξW =

∑
N
i=1 WiGR ξi

∑
N
i=1 WiGR

.

In practice, σ2
β̂GR

, σ2
α̂GR

and σ
α̂β̂GR

can be estimated by replacing ξW by XW , and SSW by

∑
N
i=1WiGR(x̂

2
i −C−1

i −2x̂iXW +X2
W ).
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5.2. The Bivariate Least Square regression: BLS

The BLS regression line minimizes the criterion CBLS (Martínez et al., 2002; del Río et al., 2001;
Riu and Rius, 1996):

CBLS =
N

∑
i=1

1
WiBLS

(Yi− α̂− β̂Xi)
2 = (N−2)s2

BLS with WiBLS = σ
2
εi
=

σ2
νi

nYi

+ β̂
2 σ2

τi

nXi

The estimations of the parameters are computed by iterations with the following formula:∑
N
i=1

1
WiBLS

∑
N
i=1

Xi
WiBLS

∑
N
i=1

Xi
WiBLS

∑
N
i=1

X2
i

WiBLS

(α̂BLS

β̂BLS

)
=

 ∑
N
i=1

Yi
WiBLS

∑
N
i=1

(
XiYi

WiBLS
+ β̂BLS

σ2
τi

nXi

(Yi−α̂BLS−β̂BLSXi)
2

W 2
iBLS

) (36)

The variance-covariance matrix of the parameters provided by Riu and Rius (1996) is given by:

Σ̂BLS = s2
BLSR−1 (37)

or can be computed with the following formulas:

S2
β̂BLS

=
s2

BLS ∑
N
i=1

1
WiBLS

DBLS
, S2

α̂BLS
=

s2
BLS ∑

N
i=1

X2
i

WiBLS

DBLS
and S

α̂β̂BLS
=

s2
BLS ∑

N
i=1

Xi
WiBLS

DBLS
(38)

with DBLS = ∑
N
i=1

1
WiBLS

∑
N
i=1

X2
i

WiBLS
−
(

∑
N
i=1

Xi
WiBLS

)2
.

5.3. Coverage probabilities of the joint confidence intervals or confidence bands

The coverage probabilities of the joint-CI provided by GR and BLS are compared in the literature
with known variances (Galea-Rojas et al., 2003). Since in practice, the variances are never known
but always estimated, this section investigates in more details the coverage probabilities with
known and unknown variances: 104 samples were simulated with N = 10, 12, 15, 20, 30, 50, 75,
100, with replicated data (nX = nY = 5) under equivalence (α = 0,β = 1,ηi = ξi). The values of
ξi were drawn randomly from an Uniform distribution U(10,20) for each simulated sample and
the coverage probabilities computed at a nominal level = 95%. The variances are set according to
the following functions:

σ
2
τi
= 0.45ξi−4 and σ

2
νi
= 0.45ξi−4,

where the variances σ2
τi

and σ2
νi

increase with ξi and are equal for a given ξi (it is common in
practice that the precision of a measurement method decreases when ξi increases) and such that
σ2

τi
= σ2

νi
= 0.5 when ξi = 10 and σ2

τi
= σ2

νi
= 5 when ξi = 20. Secondly the variances were

chosen independently and randomly (’random heteroscedasticity’) from an Uniform distribution
U(0.5,5). To study in more details the effect of the replicates when the variances are estimated,
simulations were also launched with N = 20 and nX = nY = 2, 4, 6, 8, 10, 12, 15, 20.
Figure 4 displays the coverage probabilities, which are close to 95% when the variances are known
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FIGURE 4. Coverage probabilities of the joint-CI or CB with respect to N (top) or nX = nY (bottom) with heteroscedas-
ticity and known or unknown (and estimated) variances, simulated with a function (left) or randomly (right)

but closer to 95% for GR. The coverage probabilities collapse drastically when the variances
have to be estimated (the number of replicates, nX = nY = 5, is too low to estimate a variance)
and drop more for GR and especially when N increases or with a random heteroscedasticity.
Obviously, when the number of replicates increases, the coverage probabilities increase but BLS
still outperforms for nX = nY = 20. Actually, the uncertainties on the estimated variances are not
taken into account in both methodologies and work is in progress to estimate such regression lines
by taking into account additionally the variances uncertainties.

6. Applications

Three examples are provided in this section, based on two published data sets, to illustrate the
regression techniques and their confidence bands and confidence ellipses. First, the well-known
systolic blood pressure data published by Bland and Altman (1999) will be analyzed (replicated
data) by assuming the homoscedasticity and secondly under heteroscedasticity. Third, the data set
published by Ripley and Thompson (1987) dealing with arsenate ion in water will be analyzed.
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6.1. The systolic blood pressure data under homoscedasticity

In the systolic blood pressure data (in mmHg), simultaneous measurements were made by each
of two observers (denoted J and R) using a sphygmomanometer and by a semi-automatic blood
pressure monitor (denoted S). The measurements made by observer R are, here, withdrawn. In
other words, the systolic blood pressure was measured three times per patient (85 patients) by the
semi-automatic device S and three times per patient by observer J with the manual device. If the
mean measures given by S are assigned to the Y-axis and those given by J to the X-axis, it follows
that: N = 85 (i = 1, ...,85), nXi = nX = nYi = nY = 3 ∀i, λ = λXY .
The variances σ2

τi
and σ2

νi
are unknown but can be estimated: S2

τ1
= 14.333, . . . ,S2

τ85
= 33.333 and

S2
ν1
= 9.333, . . . ,S2

ν85
= 13. Moreover, it follows that: Min(S2

τi
) = 1.333,Max(S2

τi
) = 197.333 and

Min(S2
νi
) = 1.333,Max(S2

νi
) = 1183.

It is clear that the variances are significantly different from a patient to another one. Nevertheless,
as this section assumes homoscedasticity, the ’global’ estimates S2

τ and S2
ν are: S2

τ = 37.408 and
S2

ν = 83.141, and λ (= λXY as nX = nY ) is estimated by λ̂ = 2.223.
It follows: X = 127.408,Y = 143.027,Sxx = 79598.750,Syy = 84916.269,Sxy = 67200.826,R2 =
0.67
For the different regression’s lines, the estimated coefficients are: β̂DR = β̂GR = β̂BLS = β̂Mandel =
0.956 and α̂DR = α̂GR = α̂BLS = α̂Mandel = 21.230.
Figure 5 (left) displays the scatterplot of the data with standard errors of the mean (Sτ/

√
nX and

Sν/
√

nY ). Some points are outliers but they will not be removed for didactic purposes. The 95%
CB are displayed for the four methodologies (Figure 6-right) and one can see that the equivalence
line (Y = X) crosses the CB which means that the manual device and the semi-automatic one are
not equivalent: the null hypothesis is rejected; the estimated line is significantly different from
the equivalence line. The CB provided by Mandel and BLS are very close to each other (nearly
superimposed on the graph) and close to DR away from X̄ while the GR is the narrowest. In
fact, there are many vertical outliers. When the distance from an outlier to the line increases, Sxy

increases and the variance-covariance matrix computed by the DR is modified as it is related to
Sxy in formulas (26). The variance-covariance matrix computed by the BLS is related to the sum
of the weighted residuals (30) and obviously this sum increases when a point moves away from
the line. On the other hand, the variance-covariance matrix computed by the GR is not related to
Sxy or the residuals but is related to WGR and x̂i which are not modified by such outliers. This can
also be noticed in Figure 6-left where the equivalence point (β = 1 and α = 0) is outside all the
ellipses and the one provided by GR is the smallest. The minor axes of the GR and DR ellipses
are equal and by analogy, the widths of their hyperbolic CB are equal at (X ,Y ). The Mandel and
BLS ellipses are nearly 9 times larger than the GR ellipse while the DR ellipse is nearly 3 times
larger than the GR ellipse.

6.2. The systolic blood pressure data under heteroscedasticity

Under heteroscedasticity, the estimated coefficients provided by GR and BLS are: β̂GR = β̂BLS =
0.960 and α̂GR = α̂BLS = 18.913. Figure 5 (right) displays the scatterplot of the data with local
standard errors of the means. The estimated line is close to the one estimated under homoscedas-
ticity assumption (the parameters are very close to each other). The 95% CB provided by BLS and
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FIGURE 5. Scatterplot of the systolic blood pressure data under homoscedasticity (left) with the regression line and
standard errors of the mean and under heteroscedasticity with local standard errors of the mean (right)
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GR (Galea-Rojas et al. procedure) with or without heteroscedasticity (left) and the corresponding confidence bands
under heteroscedasticity (right)

GR under heteroscedasticity are displayed in Figure 7-right with the ones under homoscedasticity
(for comparison). It can be noticed that the CB are narrower under heteroscedasticity. Actually,
some outliers have lower weights under heteroscedasticity which leads to lower variances of
the parameters. Like in the previous section, the equivalence line (Y = X) is not inside the CB:
the equivalence between both devices is rejected. This is confirmed in Figure 7-left where the
equivalence point (β = 1 and α = 0) is outside all the ellipses and the ones provided by the GR
are the narrowest (under homoscedasticity and heteroscedasticity).

6.3. The arsenate ion in natural river water under heteroscedasticity

In the arsenate ion in natural river water data, 30 pairs of measures are provided by 2 methods:
firstly, a continuous selective reduction and atomic absorption spectrometry and secondly, a
non-selective reduction, cold trapping and atomic emission spectrometry. The mean measures
(Xi,Yi) with their standard errors of the mean are given and analysed in the literature (Galea-Rojas
et al., 2003; Ripley and Thompson, 1987). Figure 8 shows the scatterplot of the data and Figure
9 shows the ellipses of the parameters (left) and the CB (right). Lower concentrations are more
frequent than higher concentrations and the errors increase with concentration for both devices
(like the simulations in Section 5.3). The estimated line is close to the equivalence line (Figure
8) and this one is inside the hyperbolic CB (Figure 9-right) provided by BLS or GR. Obviously,
the equivalence point is inside both ellipses (Figure 9-left). Both CB and both ellipses are, here,
very close to each other. This is because there is no vertical outlier in this example. Ideally,
the data should be transformed into logarithm but the detailed data are, seemingly, not given in
the literature (moreover, these data were analysed in the literature without such transformation
Galea-Rojas et al. (2003); Ripley and Thompson (1987)).
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FIGURE 8. Scatterplot of arsenate ion in natural river water data with the regression line and standard errors of the
means
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FIGURE 9. Arsenate ion data, confidence ellipses provided by BLS (Bivariate Least Square regression) and GR
(Galea-Rojas et al. procedure) with heteroscedasticity and the corresponding CB
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7. Conclusions

Under homoscedasticity, four methodologies (DR, GR, BLS and Mandel) have been compared
to estimate a regression line by taking into account errors in both axes. Their confidence ellipse
for the parameters estimates can be expressed equivalently by hyperbolic confidence bands for
the regression line. These four methodologies give identical estimations of the regression line.
However, the variance-covariance matrices of the parameters estimates are computed differently.
The confidence ellipses and the CB are therefore dissimilar. The coverage probabilities are close
to each other and close to the nominal level when the error variances are known, especially for
λXY > 1. However, the variance-covariance matrices of the parameters estimates, derived by
the method of moments for DR and by the maximum likelihood for the GR, provide slightly
better coverage probabilities. Unfortunately, when the error variances are unknown, the coverage
probabilities of the GR drop while they are similar for the other procedures. Moreover, the
confidence ellipse or CB computed by the GR is the narrowest with vertical outliers, work is still
in progress to assess the influence of outliers on the covaraince matrix of the parameters. Under
heteroscedasticity, GR and BLS provide the same estimated line. Their coverage probabilities
are very close (GR slightly outperforms BLS). However, when the variances are unknown and
estimated with replicates, the coverage probabilities of the GR collapse and the BLS outperforms
GR. Actually, the uncertainties on the estimated variances are not taken into account and work
is still in progress to tackle this problem. To summarize, DR or GR can be recommended under
homoscedasticity and BLS or GR under heteroscedasticity by being careful to assess the impact of
outliers if needed. Finally, the CB presented in this paper are easier to compute, easier to interpret
than an ellipse and can be displayed directly in the (X ,Y ) space while an ellipse is displayed in a
(β ,α) space.
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