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On the trade-off between experimental effort and
information content in optimal experimental design
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Abstract: In predictive microbiology, dynamic mathematical models are developed to describe microbial evolution
under time-varying environmental conditions. Next to an acceptable model structure, reliable parameter values are
necessary to obtain valid model predictions. To obtain these accurate estimates of the model parameters, labor-and
cost-intensive experiments have to be performed. Optimal experimental design techniques for parameter estimation
are beneficial to limit the experimental burden. An important issue in optimal experimental design, included in this
work, is the sampling scheme. Recent work illustrates that identifying sampling decisions results in bang-bang control
of the weighting function in the Fisher information matrix. A second point addressed in this work is the trade-off
between the amount of time an experimenter has available for measurements on the one hand, and information content
on the other hand. Recently, multi-objective optimization is applied to several different optimal experimental design
criteria, whereas in this paper the workload expressed as when to sample, is considered. The procedure is illustrated
through simulations with a case study for the Cardinal Temperature Model with Inflection. The viability of the obtained
experiments is assessed by calculating the confidence regions with two different methods: the Fisher information
matrix approach and the Monte-Carlo method approach.

Résumé : Aujourd’hui, dans le domaine de la microbiologie prédictive, la croissance et la décroissance des populations
bactériennes sont décrites par des modèles mathématiques dynamiques, dits primaires. Les paramètres de ces modèles
primaires sont eux-mêmes liés à des facteurs environnementaux par des modèles, dits secondaires, comprenant
plusieurs paramètres secondaires (typiquement des températures et des pH minimaux, maximaux et optimaux). A cette
complexité hiérarchique des modèles s’ajoutent inéluctablement de nombreuses sources d’erreurs de mesure compte
tenu de la nature biologique des objets expérimentaux, erreurs qui affectent les observations issues des expériences de
microbiologie. A l’évidence, il est donc particulièrement crucial de disposer de protocoles expérimentaux performants,
qui prennent en compte à la fois ces structures de modèles et les erreurs, pour conduire in fine à des estimations de
qualité (faible biais, faible variance, ...) des paramètres secondaires, et aussi à des prédictions fiables avec les modèles
estimés. Même s’il existe plusieurs critères d’optimalité pour construire de tels protocoles performants, le coût de leur
mise en oeuvre reste toutefois souvent prohibitif de par le nombre d’essais expérimentaux à réaliser. Dans cet article,
deux nouvelles approches sont proposées dans un cadre de critères d’optimalité de plans d’expériences bien connus :
a) un schéma d’échantillonnage temporel formalisé par une fonction de pondération de type "tout ou rien" ajoutée
dans la forme dynamique de la fonction d’information de Fisher ; cette fonction va permettre à l’expérimentateur de
décider si on doit échantillonner ou non à un temps donné optimisé (effort expérimental), et b) l’élaboration d’un
compromis entre l’effort expérimental à fournir, commandé par le protocole optimal, et le contenu de l’information
obtenue grâce à ce protocole ; cette élaboration est basée sur l’utilisation de techniques d’optimisation multi-objectifs.
Usuellement, quand ces techniques sont utilisées pour déterminer un protocole optimal, l’effort expérimental n’est pas
pris en compte. Enfin, à partir d’un modèle bien connu des microbiologistes, des simulations ont été menées à la fois
pour évaluer la faisabilité des protocoles calculés et déterminer des intervalles de confiance pour les estimations des
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1. Introduction

Dynamic models that predict microbial behavior in food products play an important role in food
quality and safety. In these models, the effect of temperature, pH, water activity and preservatives
are important elements. When a suitable model structure is chosen, reliable parameter estimates
have to be obtained for different microbial strains. However, performing experiments is cost- and
labor-intensive. The experimenter must take samples and, subsequently, perform an extensive
analysis procedure. To reduce this experimental effort, optimal experimental design (OED) can
be applied. In optimal experimental design for parameter estimation, some scalar function of the
Fisher information matrix (Pukelsheim, 1993; Walter and Pronzato, 1997) is employed as objec-
tive function in the resulting dynamic optimization problem. Design of an optimal experimental
can focus on different aspects.

The main contribution is a practical procedure for systematically evaluating trade-offs between
information content and experimental effort in the design of dynamic experiments for calibrating
predictive microbiology models. Advanced multi-objective dynamic optimization approaches are
exploited with parameter accuracy and total time reserved for measuring as specific (conflicting)
objectives. With respect to the latter objective, the determination of optimal measurement/sampling
schemes specifying when to measure, is added as a degree of freedom.

Recent work discussing when to sample (Sager, 2012) indicates that the inclusion of the weight-
ing function in the Fisher information matrix results in a bang-bang type control (Sager, 2012;
Pontryagin et al., 1962). Bang-bang control is a type of control which arises in optimal control
when the optimal value for the control action is either at its minimum or maximum value. The
necessary conditions for the existence/occurrence of this type of control can be found in, e.g.,
Sonneborn and Van Vleck (1965). The maximal amount of measurement time is not a priori fixed
and not necessarily equal to the experiment duration, but is added as an additional objective to be
minimized.

To enable an overview of the trade-offs, multi-objective optimization is exploited to generate the
set of Pareto optimal solutions, which contains different optimal alternatives. This availability of
the Pareto set allows the experimenter to make a sound decision based on his/her preferences. As
such, the presented procedure is an extension to the work of Telen et al. (2012) as it integrates
strategies from Sager (2012).

The accuracy of the designed experiments with reduced workload is assessed in a simulation
study for the Cardinal Temperature Model with Inflection (CTMI), which describes the effect
of temperature on the microbial growth rate. Based on generated data, a parameter estimation
procedure is carried out and confidence intervals are calculated. A first approach exploits the
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Trade-off between experimental effort and information content 97

Fisher information matrix. However, one known drawback of this matrix is that, for models
non-linear in the parameters (Balsa-Canto et al., 2007; Heine et al., 2008; Schenkendorf et al.,
2009), it can result in inaccurate estimates of the confidence intervals. Hence, to check the validity
of the Fisher information matrix approach for the CTMI model, a Monte-Carlo simulation (Walter
and Pronzato, 1997) is also performed.

The paper is structured as follows. In Section 2, the employed mathematical techniques and
the mathematical model are discussed. Section 3 presents the obtained results. Afterwards, in
Section 4, the conclusions are formulated.

2. Methods and Model

Optimal experimental design for dynamic models gives rise to a specific subclass of dynamic
optimization problems. The general concept of dynamic optimization and the techniques of
optimal experimental design are discussed in the first part of this section. Because sampling
schemes are considered in this paper, recent work on sampling decisions is discussed in the second
part. As no single optimal criterion for optimal experimental design exists, conflicting criteria can
be considered by employing multi-objective optimization (Telen et al., 2012). Hence, the specific
methods of multi-objective optimization are described in the third part. The fourth part discusses
the validation process of the computation of the confidence intervals. In the last subsection, the
predictive microbiological case study is presented.

2.1. Optimal experimental design

An adequately general formulation of a dynamic optimization problem for the purpose of this
paper, reads as follows:

min
x(t),u(t)

J(x(t),u(t),p, t) (1)

subject to:

dx
dt

= f(x(t),u(t),p, t) (2)

0 = bc(x(0)) (3)

0 ≥ cp(x(t),u(t),p, t) (4)

0 ≥ ct(x(t f ),u(t f ),p, t f ) (5)

where t is the time in the interval [0, t f ], x are the state variables, u are the control variables and
p the parameters. The dynamic system equations are represented by f. The vector bc indicates
the initial conditions, the vector cp the path inequality constraints and the vector ct the terminal
inequality constraints on controls and states. Furthermore, the vector y containing the measured
outputs, is introduced. These are usually a subset of the state variables x. The degrees of freedoms
of the optimal experimental design are grouped in a vector of trajectories z = [x(t)T ,u(t)T ]T . All
vectors z that satisfy equations (2) to (5) form the set of feasible solutions S.
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This optimization problem is infinite-dimensional. These problems are solved within this work by
converting them to a finite Non-Linear Programming (NLP) problem by means of discretization.
There are two different approaches. A sequential direct method as single shooting (e.g., Sargent
and Sullivan 1978; Vassiliadis et al. 1994a,b) discretizes only the controls u using piecewise
polynomials. The differential equations are subsequently solved using standard integrators and
the objective function is evaluated. The parametrized controls are updated using a standard opti-
mization algorithm. Alternatively, simultaneous direct methods discretize both states and controls.
The simulation and optimization are performed simultaneously which results in larger NLPs than
in the sequential approach. Two different approaches exist within the class of simultaneous direct
methods: multiple shooting (e.g., Bock and Plitt 1984; Leineweber et al. 2003) and orthogonal
collocation (e.g., Biegler 1984, 2007). In multiple shooting, the integration range is split in a
finite number of intervals while in orthogonal collocation the states are fully discretized based on
orthogonal polynomials. These large NLPs require tailored algorithms that exploit the problems’
structure and sparsity. In view of brevity, the interested reader is referred to Biegler (2010) for a
general overview and discussion.

In optimal experimental design for parameter estimation, a scalar function Φ(.) of the Fisher
information matrix is used as the objective function. This matrix is defined as:

F(p) =
∫ t f

0

(
∂y(p, t)

∂p

)T ∣∣∣∣
p=p∗

Q
(

∂y(p, t)
∂p

)∣∣∣∣
p=p∗

dt (6)

The true values p∗ are unknown so the Fisher matrix depends on their current best estimate. Two
parts constitute the Fisher information matrix: the matrix Q, being the inverse of the measurement
error variance-covariance matrix and ∂y(p,t)

∂p , the sensitivities of the model output with respect to
small variations in the model parameters. The latter can be found as the solution to:

d
dt

∂y(p, t)
∂p

=
∂ f
∂y

∂y(p, t)
∂p

+
∂ f
∂p

(7)

An interesting property of the Fisher information matrix is that under the assumption of unbiased
estimators, the inverse of F is the lower bound of the parameter estimation variance-covariance
matrix, i.e., the Cramér-Rao lower bound (Ljung, 1999).

The matrix F contains the information of a specific experiment. To optimize this amount of
information a scalar function of F has to be selected as the optimization problem’s objective
function. Mathematically this is expressed as:

J = Φ(F(x(t),u(t),p, t)) (8)

where Φ(.) is one of the criteria further described. The most widely used scalar functions are
listed below (Pukelsheim, 1993; Walter and Pronzato, 1997; Franceschini and Macchietto, 2008).

– A-criterion: min[trace(F−1)] A-optimal designs minimize the mean of the asymptotic vari-
ances of individual parameter estimates. The geometrical interpretation is the minimization
of the enclosing frame around the joint confidence region.
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Trade-off between experimental effort and information content 99

– D-criterion: max[det(F)] D-optimal designs minimize the geometric mean of the eigenval-
ues of the approximate variance-covariance matrix. Geometrically, this is minimizing the
volume of the joint confidence region. Note that when only a subset of the parameters are
considered, this is the Ds-criterion (Walter and Pronzato, 1997).

– E-criterion: max[λmin (F)] E-optimal designs aim at minimizing the largest asymptotic
variance of individual parameter estimates. This corresponds to minimizing the length of the
largest uncertainty axis of the joint confidence region.

2.2. Determination of an optimal sampling scheme

In Sager (2012), an additional control function ν(t) ∈ [0,1] is introduced in the Fisher information
matrix, which is then defined as:

F(p) =
∫ t f

0
ν(t)

(
∂y(p, t)

∂p

)T ∣∣∣∣
p=p∗

Q
(

∂y(p, t)
∂p

)∣∣∣∣
p=p∗

dt (9)

This function ν(t) is a binary function indicating whether or not measurements are required at
time t. Mathematically this is expressed as v(t) ∈ {0,1} ∀t ∈ [0, t f ]. Note that in the current paper
measuring several times at the same time instance is excluded. However, to provide a tractable
optimal control problem, the problem is relaxed to ν(t) ∈ [0,1] and the strategy described in
Sager (2012) is followed. Note that there is a subtle difference between the experiment time
and the measurement time. The experiment time is assumed to be a predetermined number of
hours. The measurement time is the amount of hours the experimenter is willing to spend to
take measurements. This value is assumed not to be set a priori. The measurement time can of
course never exceed the total experiment time. When the measurement time is not constrained to
a certain value, the maximum information content is found by measuring continuously during the
experiment time. As performing experiments is cost-and labor-intensive, the following additional
objective is taken into consideration:

min
ν(t)

W (10)

in which:

dW
dt

= ν(t) (11)

W (0) = 0 (12)

This objective represents the experimental/measurement effort in the sense that it represents
the total amount of hours spent measuring during the experiment. This objective can also be
formulated as a constraint W (t f ) ≤ α ≤ t f in a single objective optimization problem. This
problem formulation closely resembles the work of Fedorov (1989). In the latter work, a numerical
procedure for optimal design is presented based on the idea to delete less informative sets and
to include more informative ones at every step of the procedure. Furthermore, the idea that the
total amount of measurements is constrained to an a priori specified value is also present and
equivalent to the approach in the current paper. However, the difference is that the current paper
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does not require the model to be linear in the parameters, which is one of the assumptions in
Fedorov (1989). This means that the Fisher information matrix depends on the best estimates of
the parameters and no guarantee on global optimality of the design can be provided. Note that, in
the current work, the experimental effort is computed as the time integral of the measurement time.
This approach can be generalized by taking the integral of a different function (e.g., computing
the financial cost) by taking into account the cost to take samples at different points.

2.3. Multi-objective optimization

The formulation of a dynamic optimization problem involving multiple objectives J1 to Jm is
described as:

min
z
{J1(z), . . . ,Jm(z)} (13)

subject to equations (2) to (5).

In multi-objective optimization, Pareto optimality is used (see, e.g., Miettinen 1999). A solution is
called Pareto optimal if there exists no other feasible solution that improves at least one objective
function without worsening another. The decision variables z belong to the feasible set S, de-
fined previously, and the vector of all individual cost functions is defined as J= [J1(z), . . . ,Jm(z)]T.

The (convex) weighted sum (WS) is in practice the most widely-used technique for combining
different objectives. By consistently varying the weights assigned to each cost Ji an approximation
of the Pareto set is obtained. However, despite its simplicity, the weighted sum has several intrinsic
drawbacks (Das and Dennis, 1997): a uniform distribution of the weights does not necessarily
result in an even spread on the Pareto front, and points in non-convex parts of the Pareto set cannot
be obtained.

Two recent scalarization-based multi-objective optimization techniques are the normal boundary
intersection (NBI) (Das and Dennis, 1998) and the (enhanced) normalized normal constraint
((E)NNC) (Messac et al., 2003). Both techniques mitigate the discussed disadvantages of the WS
and allow the use of fast gradient-based solvers. For a more detailed description of the NBI and
(E)NNC, the interested reader is referred to Logist et al. (2010); Logist and Van Impe (2012). In re-
cent, work a connection (Logist and Van Impe, 2012) between the WS, NBI and (E)NNC is proven.

In Sager (2012), a different approach is presented to make the trade-off between experimental
effort and information gain. The author suggests adding a linear penalty of the control ν(t) to
the objective. In this penalty term, there is a factor ε which is shown to be a minimum bound
on the information gain. As this ε is set a priori this approach leads to a single optimal solution
in a similar manner as fixing the total amount of measurement time which is equivalent to the
ε-constraint method (Haimes et al., 1971). The authors of the current paper prefer to solve
this trade-off in a multi-objective framework to ensure the experimenter can make an informed
decision.
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Trade-off between experimental effort and information content 101

2.4. Validation of the confidence regions

To assess the viability of the obtained experiments, simulations with pseudo-measurements are
performed for different workload settings. To this extent, random white noise is added to the
expected state evolution. This noise is drawn from a normal distribution with zero mean and a
variance equal to the state measurement variance, σ2

n .

To estimate the confidence intervals, the approximate variance-covariance matrix C is calcu-
lated parameter estimation. The individual confidence intervals of the parameters are given
as:

pi± tnt−np
α/2

√
Cii (14)

where tnt−np
α/2 is the upper critical value of the Student’s t-distribution with tolerance level α and

nt −np degrees of freedom, nt is the number of measurements, np is the number of parameters
and α is the (1−α)100% confidence level employed by the user.

The model under study is non-linear in the parameters. As a result, the parameter estimation
may yield an inaccurate estimation of the real confidence region (Balsa-Canto et al., 2007; Heine
et al., 2008; Schenkendorf et al., 2009). In order to assess the viability of the obtained confidence
regions, a Monte-Carlo-analysis is performed (Walter and Pronzato, 1997). In this work, 500
pseudo-measurement sets are generated. For each set, the model parameters are identified. Next,
the 95% empirical confidence bounds on the parameters pi are computed.

2.5. Predictive microbial growth model for E. coli

In this case study, optimal experiments for identifying the parameters of the Cardinal Temperature
Model with Inflection (CTMI) (Rosso et al., 1993) are designed. This is a secondary model to the
model of (Baranyi and Roberts, 1994). This latter model describes the cell density as a function
of time while the former incorporates the dependency on temperature. The model equations of the
Baranyi and Roberts model are:

dn(t)
dt

=
Q(t)

Q(t)+1
µmax(T (t))[1− exp(n(t)−nmax)] (15)

dQ(t)
dt

= µmax(T (t))Q(t) (16)

with the states x(t) = [n(t) Q(t)]T . The state n(t) [ln(CFU/ml)] is the natural logarithm of the cell
density and Q(t) [-] the physiological state of the cells. The observable state is y(t) = n(t). The
control input to this system is the temperature profile u(t) = T (t). The temperature dependency
of the CTMI is given by:

µmax = µoptγ(T (t)) (17)

with:

γ(T (t)) =
(T (t)−Tmin)

2(T (t)−Tmax)

(Topt −Tmin)[(Topt −Tmin)(T (t)−Topt)− (Topt −Tmax)(Topt +Tmin−2T (t))]
(18)
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FIGURE 1. Cardinal Temperature Model with Inflection with illustration of the meaning of the four parameters.

The values of the parameters p = [µmax Tmin Topt Tmax]
T for the model (Van Derlinden et al., 2010)

are shown in Table 1. The Cardinal Temperature Model with Inflection is illustrated in Figure 1.
Tmin is the minimal temperature needed for growth, Tmax is the maximal temperature where growth
can occur. In case of temperatures lower than Tmin or higher than Tmax, no growth is assumed.
Topt is the temperature at which the growth rate µ is optimal. When designing experiments, the
end time is fixed to 38 h (Van Derlinden et al., 2010). For model validity reasons the dynamic
temperature profiles are constrained to:

15◦C≤ T (t) ≤ 45◦C (19)

−5◦C/h≤ dT (t)/dt ≤ 5◦C/h (20)

The temperature profile is designed as a combination of piecewise linear parts (Van Derlinden
et al., 2010) to ensure practical implementation. The simplest approach is to estimate the four
parameters from one single experiment. In previous work, the following practical strategy was
proposed and validated experimentally. The four parameters are divided in six 2-parameter
combinations ((Tmax,µopt), (Tmax,Tmin), (Tmax,Topt), (Tmin,µopt), (Tmin,Topt) and (Topt ,µopt)) and
for each combination an optimal experiment was designed. By only considering two parameters,
the Ds-criterion is actually used instead of the D-criterion (Walter and Pronzato, 1997). Although
the four parameters are unknown, only two are of interest in the design while the others are
considered nuisance. Note that Ds-designs can be singular. By performing these six experiments,
each individual parameter is considered three times (with each of the other parameters). This
approach increases the experimental load, but was chosen as an acceptable trade-off with respect
to parameter accuracy (Van Derlinden, 2009; Van Derlinden et al., 2010). In Van Derlinden
et al. (2010) it was illustrated on simulation level that four 2-parameter combinations lead to an
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Trade-off between experimental effort and information content 103

acceptable level of parameter accuracy provided each individual parameter is considered twice in
two combinations. Note that three such possible combinations exist. To enable a fair comparison,
the strategy of dividing into six 2-parameter combinations is also followed in this work.

TABLE 1. Parameter values used for the design of the optimal experiments for the predictive growth model.

Tmin 11.33 ◦C Topt 40.85 ◦C
Tmax 46.54 ◦C µopt 2.397 1/h
nmax 22.55 ln(CFU/mL) σ2

n 3.27×10−2 ln(CFU/mL)2

3. Results

In the first subsection, the individual results for the different parameter combinations are discussed.
The trade-off between the experimental burden and the information content is discussed in the
second subsection. The third subsection presents the discussion of the parameter accuracy.

3.1. Maximizing information content

In order to estimate the four model parameters, six possible two-parameter combinations can
be used. For each combination, the corresponding cost function is optimized using the Ds-
criterion (Van Derlinden et al., 2010). The six criteria as used in Van Derlinden et al. (2010) are:
J1 = DsTmax,µopt , J2 = DsTmax,Tmin , J3 = DsTmax,Topt , J4 = DsTmin,µopt , J5 = DsTmin,Topt , J6 = DsTopt ,µopt .
The individual maxima are summarized in Table 2. These values are obtained using a multiple
shooting (Bock and Plitt, 1984) approach using the ACADO-toolkit (Houska et al., 2011) which
allows for a fast computation of the optimal profiles. The integrator tolerance of the RungeKutta78
and the KKT-tolerance of the resulting SQP-problem are set to 10−6. In this case, the assumption
is that the measurements are performed continuously during the 38 hours of the experiment. These
results are used as initialization in the next section as they represent the upper bound of available
information content. The results in Table 2 are similar to those in Van Derlinden et al. (2010). It
should be noted that the employed non-linear programming does not guarantee global optimality,
only local optimality is ensured. The effect of increasing the number of discretization intervals is
clearly visible in Table 2. The third column depicts the results for a different control action every
fifteen minutes whereas the second column requires a control action every two hours. By a finer
control discretization, slightly better results are obtained. However, nineteen control intervals will
be chosen in the subsequent simulations to limit computational time. Compared with the approach
in Van Derlinden et al. (2010), there are more degrees of freedom in this paper. In Van Derlinden
et al. (2010) the temperature profile is constrained to two constant phases and a connecting linear
section. The degrees of freedom in Van Derlinden et al. (2010) are: the initial temperature profile,
the switching time to start the linear phase, the slope of the linear phase and the switching point
to the second constant phase.

3.2. The trade-off between information content and measurement burden

In order to study the trade-off between information content and the measurement burden, a multi-
objective optimization approach is employed, where the additional objective is the minimization of
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TABLE 2. Values for the Ds-criterion for all the possible two-parameter combinations for 19 and 152 discretization
intervals.

Combination 19 intervals 152 intervals
Tmax−µopt 8.41×105 8.45×105

Tmax−Tmin 9.38×104 1.12×105

Tmax−Topt 7.40×104 8.49×104

Tmin−µopt 1.80×106 1.81×106

Tmin−Topt 7.76×104 7.76×104

Topt −µopt 1.58×106 1.62×106

the experimental effort. The extra decision variable introduced in this case is ν(t), which indicates
whether to measure or not. Each of the six criteria described in Section 3.1 are combined with the
criterion which aims at minimizing the measurement time. Note that nineteen control intervals are
again used in order to limit the computational burden. These trade-off experiments are designed
using NNC, as possible non-convex parts are expected. As software tool, the multi-objective
extension of the ACADO-toolkit (Logist et al., 2010, 2012, 2013) is employed. For each of the
combinations, the number of Pareto points is set to 21. The maximal observed CPU time for 1
of the 6 combinations is 167 seconds, the minimal time observed is 73 seconds. The maximum
number of SQP iterations is 256, the minimum number is 118. The 6 combinations are computed
in 1002 seconds. The resulting Pareto fronts for each of the parameter combinations are displayed
in Figure 2. Note that the values for the information content are normalized. The obtained Pareto
fronts clearly indicate non-convex feasible regions. Hence, the choice for NNC is justified. These
Pareto fronts allow the experimenter to select a specific experiment with a given amount of work.
Based on the Pareto front he or she then knows the expected information amount of the experiment.

The decision when to measure influences the designed experiment. This is illustrated in Figures
3 and 4. In this paragraph w, is used to indicate which multi-objective point of the utopia plane
is considered. The utopia plane is the line/plane connecting the two individual objectives. The
weights, w indicate how this line is discretized in the NNC. The case with w = [1 0]T corresponds
to measuring at each of the multiple shooting nodes during the experiment, so every two hours
and a maximum total of 20 samples per experiment. Other weight combinations have a reduced
workload. The lowest workload combination taken into consideration relates to weight combi-
nation w = [0.25 0.75]. In the cases with a reduced workload, the experimenter is expected to
sample continuously in the time horizons indicated by the rectangles in the temperature profiles of
Figures 3 and 4. The total amount of hours denoted by the integral over the intervals indicated by
the rectangles constitutes the measurement time. These coincide again with the 2-hourly multiple
shooting nodes and a possible change in control action.

For the three combinations where Tmax is involved, the temperature profile starts at the max-
imal allowed temperature of 45◦C. For these experiments, the decreasing part of the temperature
profile is an interesting part for optimizing the information content. So, if only a few samples
are taken, it is advisable to do it in this part of the experiment. Note that the temperature pro-
file changes in view of when samples are taken. This is shown for the parameter combination
Tmax−Topt .
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FIGURE 2. Pareto fronts for the six different criteria in relation to measurement time. The plus and circle indicate the
individual optima of the two considered objectives, respectively.

When Tmin is combined with Topt or µopt , the temperature profile does not start at the maxi-
mal value. There also seems to be a more gentle decrease in the lower temperature region of the
experiment compared with the profiles where Tmax is present.

Combining Topt −µopt results again in a temperature profile that starts at the maximum allowed
temperature value. Note again the change of the obtained temperature profile when reducing the
amount of samples that are taken.

A general observation is that all parameter combinations except Tmax− µopt have some mea-
surements taken at the end of the experiment. Also the sharp decrease in temperature present in all
profiles generates information. Biologically, this corresponds to the fast growing phase of the cell,
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as illustrated in the corresponding cell concentration profiles (see Figure 3 and 4). Based on these
observations, one can conclude that it is important to sample at the start (i) of the experiment, (ii)
during a period of decreasing temperature, and at the end (iii) of the experiment. In previous work,
this was done from practical point of view (need of night rest) (Van Derlinden et al., 2010), but is
now validated with these results.

3.3. Assessing parameter accuracy when reducing number of samples

The obtained parameter values and the corresponding confidence regions are presented in Tables
3, 4, 5 and 6. In each table, the results are grouped according to the number of measurements in
the experiments.

Parameters are estimated using a least squares objective function. Multiple shooting is em-
ployed, where the shooting nodes coincide with the in silico measurements. The bounds on the
parameters are:

1.5≤ µopt ≤ 4.5 (21)

6≤ Tmin ≤ 13 (22)

37≤ Topt ≤ 42 (23)

44≤ Tmax ≤ 50. (24)

The initial parameter values passed to the optimization routine are the middle values of the
above intervals. Two different approaches for computing the parameter variance are compared.
One of the main possible drawbacks of the Fisher information matrix is that it can lead to an
underestimation of the confidence bounds (Balsa-Canto et al., 2007). This means that the confi-
dence regions obtained by the Fisher information matrix are smaller than those obtained by other
approaches (Heine et al., 2008; Schenkendorf et al., 2009). In this work, a Monte-Carlo simulation
is performed to check whether this is also the case for the CTMI. In the first approach, the model
parameters are identified, and their uncertainty is computed using the obtained FIM. The second
approach uses 500 Monte-Carlo noise realizations, each time re-estimating the parameters. The
500 individual estimates are used to construct the empirical 95% confidence region. Their average
value is taken as the final parameter estimate.

The results show that the original parameters are each time located inside the obtained con-
fidence region. As can be expected, the parameter confidence intervals become broader when the
number of measurement points are decreased (and thus the workload reduced). This holds for
both the Fisher information approach and the Monte-Carlo approach. When only 45 samples are
taken compared to the 120 in the nominal case, the confidence interval, on average doubles in
size.

From the simulation results shown in Tables 3 to 6, one infers that the size of the confidence
intervals of the FIM and MC approaches is approximately equal. In Figure 5, the evolution of the
parameter estimates and the confidence bounds for both approaches are displayed. This figure
illustrates that there are only three cases where the 95% confidence bound given by the asymptotic
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(a) State evolution n(t) and temperature profile T (t) for parameter combi-
nation Tmax−µopt .
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(b) State evolution n(t) and temperature profile T (t) for parameter combi-
nation Tmax−Tmin.
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(c) State evolution n(t) and temperature profile T (t) for parameter combi-
nation Tmax−Topt .

FIGURE 3. Evolution of cell concentration n(t) and temperature profile T (t) of different parameter combinations for
several weight combinations of the Pareto front obtained by NNC.
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(a) State evolution n(t) and temperature profile T (t) for parameter combi-
nation Tmin−µopt .
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(b) State evolution n(t) and temperature profile T (t) for parameter combi-
nation Tmin−Topt .
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(c) State evolution n(t) and temperature profile T (t) for parameter combi-
nation Topt −µopt .

FIGURE 4. Evolution of cell concentration n(t) and temperature profile T (t) of different parameter combinations for
several weight combinations of the Pareto front obtained by NNC.
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normal distribution of the least squares estimator is smaller than the Monte-Carlo estimate of the
95% bound. Note, however, that in all cases the total width of the confidence region obtained by
the Fisher information is broader than the one obtained by the Monte-Carlo simulation. From
these observations, it can be inferred that the Fisher information matrix can be used to get a robust
estimate of the real confidence bounds of the parameter estimates for the current case study.

An additional observation is the fact that the confidence regions for Topt and Tmax exhibit a
non-symmetrical confidence region in the Monte-Carlo simulations. The empirically obtained
distributions have been tested for normality using the Kolmogorov-Smirnov test. The hypothesis
that Topt is normal, could not be rejected on a 5% discrimination level for all workload cases.
For Tmax this hypothesis can be rejected using the same test with the same discrimination level.
Note, that the Fisher information matrix yields a conservative bound for Tmax, even in view of
the non-normal distribution of Tmax. This clearly illustrates that the uncertainty estimation by the
Fisher information matrix can be inaccurate and too conservative in this case study. In this case
study, the uncertainty was too conservative. Therefore, a careful assessment of the uncertainty
through other means than the Fisher information matrix is advisable if computationally feasible.
Furthermore, if the assumption that the parameters are normal, is rejected, this means that the
sample size is too small and that asymptotic normality is not reached.

TABLE 3. Parameter values and confidence regions for 120 samples in the six experiments.

Parameter FIM approach (95% CI) Monte-Carlo approach (95% CI)
µopt 2.357 (±0.1299) 2.399 (−0.1042 +0.1030)
Tmin 11.44 (±0.4571) 11.32 (−0.3436 +0.3876)
Topt 40.68 (±0.5203) 40.86 (−0.4108 +0.4679)
Tmax 46.94 (±0.8874) 46.55 (−0.5018 +0.5995)

TABLE 4. Parameter values and confidence regions for 95 samples in the six experiments.

Parameter FIM approach (95% CI) Monte-Carlo approach (95% CI)
µopt 2.329 (±0.2380) 2.400 (−0.1651 +0.1685)
Tmin 11.54 (±0.7664) 11.34 (−0.5012 +0.4803)
Topt 40.65 (±1.012) 40.86 (−0.7078 +0.7837)
Tmax 47.02 (±1.867) 46.60 (−0.8269 +1.1326)

TABLE 5. Parameter values and confidence regions for 71 samples in the six experiments.

Parameter FIM approach (95% CI) Monte-Carlo approach (95% CI)
µopt 2.298 (±0.2191) 2.399 (−0.1624 +0.1837)
Tmin 11.34 (±0.7546) 11.35 (−0.5803 +0.6183)
Topt 40.60 (±1.0550) 40.87 (−0.9038 +0.8960)
Tmax 47.07 (±1.960) 46.64 (−0.9326 +1.3696)

TABLE 6. Parameter values and confidence regions for 45 samples in the six experiments.

Parameter FIM approach (95% CI) Monte-Carlo approach (95% CI)
µopt 2.415 (±0.2748) 2.4059 (−0.1936 +0.1973)
Tmin 11.52 (±0.9985) 11.33 (−0.6406 +0.6547)
Topt 40.68 (±1.6010) 40.91 (−0.9943 +1.0931)
Tmax 46.75 (±2.0020) 46.59 (−0.9596 +1.4530)
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FIGURE 5. Evolution of the parameter estimates (relative to their nominal values) obtained by the Fisher information
approach and the Monte-Carlo approach and the corresponding 95% confidence regions for a decreasing work load
scheme (with 1 = [1 0]T , 2 = [0.75 0.25]T , 3 = [0.5 0.5]T , 4 = [0.25 0.75]T ).

4. Conclusion

In this work, a practical procedure is proposed to systematically evaluate trade-offs between infor-
mation content and experimental effort in the design of dynamic experiments for calibrating the
Cardinal Temperature Model with Inflection. In the employed procedure, advanced multi-objective
dynamic optimization approaches are exploited. The considered objectives were parameter accu-
racy on the one hand, and the total time reserved for measuring on the other. With respect to the
latter objective, the determination of optimal measurement/sampling schemes specifying when
to measure is added as a degree of freedom. The use of advanced multi-objective optimization
allowed the experimenter to generate the set of Pareto optimal solutions. This set enables the
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experimenter to obtain an overview of all the possible trade-offs. The accuracy of the designed ex-
periments with reduced workload is assessed in a simulation study, because one known drawback
of the Fisher information matrix approach is that, for models non-linear in the parameters, it can
give a possibly inaccurate estimate of the confidence intervals. Hence, the validity of the Fisher
information matrix approach is checked by performing a Monte-Carlo simulation.
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