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Abstract: Many methods exist for feature selection in PLS regression when there are too many variables. Less methods
are available for selecting wavenumber regions for MidIR or RAMAN spectra. In this work, PLS has been coupled with
genetic algorithms to allow for the selection of intervals in spectra. This work was motivated by a regression issue about
transformation of cassava. Those data consist of three tables: RAMAN spectra, MidIR spectra and physico-chemical
variables. The purpose is to adapt to this regression context a strategy previously designed to select intervals in
NIR spectra in classification. A new algorithm is proposed to fit such multiblock data in PLS1 regression context.
Illustrations on simulated data are performed before application to the real dataset.

Résumé : De nombreuses méthodes adaptées pour la régression PLS, s’intéressent aux choix de variables explicatives,
quand celles-ci sont en nombre trop important. Quand il s’agit de sélectionner des intervalles pour des spectres, la
panoplie des techniques est plus réduite. Dans ce travail, PLS a été associée aux algorithmes génétiques pour permettre
la sélection d’intervalles dans des spectres. L’origine de ce travail est une problématique de régression pour des données
sur la transformation de manioc. Ces données sont constituées de trois tableaux : des spectres RAMAN, MidIR et
des variables physico-chimiques. Il s’agit d’adapter au contexte de régression une stratégie précédemment mise au
point pour la sélection d’intervalles uniquement pour des spectres NIR en discrimination. Nous avons développé un
algorithme génétique spécialement adapté à ce type de données (multitableau), pour le cas de la régression PLS1. Des
illustrations sur des données simulées sont proposées avant l’application au jeu de données réel.

Keywords: PLS Regression, Genetic Algorithm, MidIR and RAMAN spectra, Variable Selection, Selection of wavenum-
ber regions
Mots-clés : Méthode PLS, Algorithme Génétique, Spectres MidIR et RAMAN, Choix de variables, Sélection d’inter-
valles
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1. Introduction

Selecting inputs is a very common issue in chemometrics, especially in Partial Least Squares
(PLS) regression. Even if PLS is known to work for matrices with more columns than rows, this
method improves if an appropriate feature selection has been performed. Several approaches
have been proposed (Du et al., 2004; Høskuldsson, 2001; Zou et al., 2007) but few exist dealing
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with wavenumber interval selections, which generally involve more statiscally complex methods.
Indeed, selecting individual wavenumbers is a chemical nonsense and the strong autocorrelation
of variables has to be taken into account in order to produce adequate intervals. Genetic algorithms
(GAs) in particular have been used jointly with PLS to select intervals in mid-infrared (midIR)
spectra (Leardi, 2001; Leardi and Nørgaard, 2004). A few other specifical approaches have been
developed such as iPLS (Norgaard et al., 2000). In this context, a quite general review in interval
selection can be found in Høskuldsson (2001).
This work fits into the context of the production and the transformation of cassava. The consump-
tion of this product increases regularly in the world, especially in the tropical regions (Tonukari,
2004). After harvest, cassava is naturally fermented and sun-dried to give sour starch which is
mainly used in typical bread production (Bertolini et al., 2001; Demiate et al., 2000; Dufour
et al., 1995; Marcon et al., 2009; Mestres et al., 2000; Mestres and Rouau, 1997). In addition,
this product is gluten-free and shows good breadmaking ability. However, cassava processing is
currently carried out on small and uneconomic farms. Therefore, studies on this starch, especially
for industrial purposes, appear to date necessary. The aim of this work is to attempt to explain the
breadmaking ability from the different parameters studied.
In this article, we use and adapt a GA previously developed for discriminant analysis to select
wavelength interval as inputs in Near IR spectra (Reynes et al., 2006). Here, the objective is not to
perform discrimination but to predict a continuous variable (using PLS). Moreover, instead of
selecting a set of intervals within a single table, selection is performed through several blocks
using intervals in the spectral blocks and individual variables in other blocks. Hence, this method
allows to combine information of different types in order to predict a continuous variable. Se-
lecting an unknown number of intervals of unknown length combined with an unknown number
of individual variables (potentially no interval or no individual variable can be selected) leads
to a combinatorial issue which can only be approached through a heuristic method. Among
heuristic methods no method outperforms other ones and a choice has to be made. Our expertise
in the field of genetic algorithms led us to propose a method based on them. Furthermore, several
reviews (see Padgett and Saad 2009 for example) allowed to demonstrate the usefulness of genetic
algorithms in this field of research. In the real application, the dataset is a multiblock table with
three blocks (measured on the same n = 52 observations) and individual variables have to be
selected for physicochemical variables whereas wavenumber intervals should be chosen for two
spectroscopic blocks. Hence, the proposed statistical method is not a method using a multiway
criterion, however it allows to deal with data structured in multi-blocks as it is able to take into
account blocks with different types of data. Before application on the real dataset, a first running
on a simulated dataset will show the quality of the new algorithm.

2. The real dataset

In this work, native and modified cassava starches from Colombia have been investigated in order
to provide information on expansion ability. 13 varieties have been selected (10 from highland
and 3 from lowland) after 4 controlled processes: non fermented oven-dried (NFO), fermented
oven-dried (FO), non fermented sun-dried (NFS) and fermented sun-dried (FSR). The bread-
making ability, which is represented by the values of loaf volume, is strongly impacted by the
varietal effect and also by the treatment effect. The problematic is to try to explain one variable of
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interest (breadmaking ability) from different physicochemical parameters (amylose content and
RVA parameters), MidIR and Raman spectra.
Starches are composed basically of two different glucose polymers: amylose (linear polymer) and
amylopectin (branched polymer). The amylose content is determined by Differential Scanning
Calorimetry (DSC) (Bertolini et al., 2001). When starch is dispersed in water, the viscosity of
the medium changes as a function of the temperature (Thomas et al., 1999). These changes in
viscosity are recorded with a Rapid Visco Analyser (RVA) during controlled mixing, heating
and cooling programs. Dry starch, when heated in water, starts swelling as the water is absorbed
by the granules. Past a certain state, the phenomenon is irreversible and is called gelatinisation
which is a temperature range in which the starch granules lose their forms and cristallinity. Once
the gelatinised temperature is reached, the viscosity increases rapidly as the swelling reaches a
maximum (peak viscosity). During this process, the amylose molecules leach out of the granules
creating a medium around the particles. The granules keep swelling until they have reached
equilibrium. After maximum viscosity is reached, if the temperature continues to increase, the
granules will burst and disperse completely. Solubilised starch polymers and remaining insoluble
granular fragments have a tendency to reassociate after heating. This reassociation is referred to
as retrogradation and results in an ordered structure and an increase in viscosity. Retrogradation is
especially evident when starches are cooled and results in the formation of crystalline aggregates
and a gelled texture. RVA profiles obtained lead to 12 parameters of time, temperature and viscos-
ity during the gelatinisation and retrogradation processes.
Mid-infrared and Raman spectra were recorded in the 650-4000 cm−1 (3351 variables) and
230-3800 cm−1 (4562 variables) spectral ranges, respectively. Raw spectra were pre-processed
using a baseline correction and a vectorial normalisation of the total spectral region with Lab-
Spec5 software. The baseline correction mentioned is a linear one which is realised with a linear
regression through the chosen points on spectrum and removes the linear baseline thus found.
Finally, 52 samples (13 varieties x 4 treatments) were analysed to determine chemical and physic-
ochemical characteristics as (i) the breadmaking ability, which represent the dough expansion, (ii)
the amylose content, (iii) the RVA parameters and (iv) the MidIR and Raman spectra.

3. Reminder about Genetic Algorithms

Genetic Algorithms (GA), introduced by Goldberg (1989); Holland (1975), are powerful tools in
optimisation issues. They are inspired by nature imitation and especially by natural selection. In
our context, a GA will be used to determine the selected intervals by optimising a regression-based
criterion. Before detailing the developed method, let us begin with an introduction about the
general unfolding and main steps of GAs.
GAs are population based heuristics, indeed, the algorithm begins with a population of Tpop

potential solutions to the optimisation problem. Those solutions are encoded by a numerical vector
allowing a complete description of each solution. Then, this population evolves according to three
operators: cross-over, mutation and selection. Selection is a crucial step as it favours the survival
of good individuals with regards to the optimised criterion. This fitness value quantifies the quality
of each solution with regards to the problem. Cross-over and mutation are independent from the
problem and are therefore randomly performed without consideration to the fitness value. Then,
any GA can be described as in Table 1.
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TABLE 1. General unfolding of GAs.

Main steps of a GA:
1. construction of the first generation,
2. evaluation,
while stopping criteria not met do:

3. selection step,
4. crossover,
5. mutation,
6. evaluation,

end.

Concerning the stopping criterion, the chosen approach is to set a maximum number of generations,
Ngene. Global convergence is ensured by the fulfillment of the theoretical required conditions (see
Section 4.7) hence there are two usual ways of stopping a GA: defining a maximum number of
generations or defining a minimum fitness improvement. We consider that they are equivalent as
they both require prior steps of trials. Indeed, the fitness variation control might seem smarter
but as the global behaviour of the fitness function is unknown, it is impossible to define what is
a negligible improvement of its value without performing several trials aiming at studying the
global evolution of the fitness value. Actually, performing such trials leads to being able to define
both the negligible fitness improvement and the maximum number of generations required to
reach it. We think that using a maximum number of generations is more honest as it does not lead
to believe that the criterion is based on a fake knowledge of the fitness function.

4. A new proposal for multiblock datasets

The proposed method consists in simultaneously using PLS1 for a multiblock table X and a GA
whose characteristics fit each block specificities. In our application, X = [X1,X2,X3] with X1 the
matrix of physicochemical variables, X2 gathers MidIR spectra and X3 Raman spectra. The output
variable, y as well as X are measured on the same n = 52 observations.
Seeking for presentation simplicity, the proposed method is described for K = 3 blocks and PLS1
but it can easily be generalised to K > 3 and/or PLS2. From now on, the developed approach will
be denoted selGAmPLS (selection Genetic Algorithm in multiblock PLS).

4.1. Overview of selGAmPLS

The method consists of two nested steps: on one hand, the selection of relevant wavenumber
intervals (namely, X̃2 for MidIR data and X̃3 for RAMAN data) and individual variables (X̃1 a
subset of the physicochemical variables) gathered in X̃ =

[
X̃1, X̃2, X̃3

]
and on the other hand, the

modelling of y thanks to PLS. Finally, number of PLS components A will be automatically chosen
thanks to cross-validation inside the algorithm. In the following paragraphs, the different parts of
the GA are described.
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4.2. The fitness for selection of wavenumber regions and variables

The optimisation issue has to make a balance between two objectives: achieving a precise
modelling of y while keeping a simple model using as few variables as possible. This last
constraint allows to obtain a more interpretable model as well as a model which is less prone to
overfitting. Hence, the fitness function can be defined as follows:

f itness = cor2(y, ŷ)+ c× (αNselvar +β ) (1)

where cor is the usual correlation coefficient between y and its modelling ŷ thanks to cross-
validated PLS1 applied on X̃ . The second term of the fitness value deals with the total number of
selected variables (summing both individual variables and wavenumbers selected by intervals),
denoted Nvarsel . The c coefficient aims at balancing those two parts. α and β allow to scale Nselvar
into [0,1].
In order to choose meaningful wavenumber intervals, during GA generations, a minimal interval
width denoted wmin and a minimal distance between successive intervals, dmin. If two successive
intervals are less than dmin, the two intervals are merged.

4.3. Solution encoding

The first step in GAs is to define the encoding allowing to describe any potential solution as a
numerical vector. In our application, a solution is a subset of variables (either individual ones or
intervals). In order to encode solutions the three blocks are combined into a single matrix so that
variables are numbered from 1 to 7926 (13+3351+4562). Selected intervals are encoded by both
the number of the first variable of the interval and the number of the last one. Individual variables
are encoded as their number repeated twice.

4.4. Crossover operator

The objective of this step is to make combinations of the characteristics from the previously
selected solutions in order to potentially gather interesting selections. Two parents (solutions)
are crossed to obtain two children (to keep the same population size). A one point crossover is
applied and results in exchanging the first part of one parent characteristics with the same part of
the other parent characteristics. To perform the crossover, the population is randomly permutated
in order to form Tpop/2 new pairs. Each of these pairs has probability πc ∈ [0,1] (the crossover
rate) to undergo crossover. Then, πc represents the proportion of the population which is crossed.
It is important to notice that this operator is completely independent from the issue. Indeed, such
a crossover can generate children which are indiscriminately better or worse than the parents
according to their fitness value.

4.5. Mutation operator

This step brings the necessary hazard to efficiently explore the solution space. It has to ensure that
any point of this space can be reached. Moreover, if a local optimum is obtained, mutations will
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avoid a too quick convergence to it. Thus, efficient convergence of the GA is highly dependent
upon this step.
In practice, mutation consists in adding, deleting or modifying an interval or individual variable.
The mutation probability, πm, is defined to control the mutation rate in the population: each
solution has probability πm to undergo mutation.

4.6. Selection operator

The goal of selection step is to select, at each generation, the best individuals according to their
fitness values. However, keeping only the very best individuals would probably lead to quick
convergence. In such a case, the selected solution would be likely to be suboptimal. The selection
scheme described in Reeves and Rowe (2003) will be used here. In this method, a selection
probability is computed for each individual of the current population. In this way, a good solution
(with regards to the fitness) will have a higher probability to be selected but even a bad solution
will have a positive probability to be selected. This allows to maintain heterogeneity in the
population. It has to be taken into account that a bad solution can possibly evolve to a solution
which is better than the best one in the current population (especially at the beginning of the
algorithm).
For each individual, the fitness is computed. Then, the solutions are ranked according to their
fitness value (the best one having the highest rank). Thus, to each solution i, a rank r(i) is affected.
These ranks allow to compute a selection probability as follows:

p(i) = a× r(i)+b. (2)

a and b parameters are computed so that:
– the sum of selection probabilities equals one: ∑

Tpop
i=1 (a× r(i)+b) = 1,

– the best individual has a selection probability twice as high as the individual having median
rank: p(Tpop) = 2p(Tpop/2).

4.7. Convergence necessary and sufficient conditions

Bhandari et al. (1996) defined two necessary and sufficient conditions for such an algorithm to
converge:

– elitism step: the best solution in the present population has a fitness value no less than the
fitness value of the optimal individuals from the previous populations,

– each solution has a positive probability of going to an optimal solution within any given
iteration.

The first condition is quite easy to implement. The best solution at each generation has to be
automatically introduced in the next generation. For the second condition, it depends on the
mutation step. Indeed, the mutation step has to be defined so that any solution can evolve into any
other one in any given number of iterations. This is allowed by the previously defined mutation
operator.
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4.8. Implementation of selGAmPLS methodology

In the use of selGAmPLS, some parameters have to be chosen. Tpop, Ngene, πc and πm are the GA
dependent tuning parameters and have been given default values thanks to preliminary analyses
(results not shown). The proposed default parameters are: Tpop = Ngene = 200, πm = 0.9 and
πc = 0.5. It should be noted that the values of those parameters only influence convergence speed
and not convergence itself (see previous section for more about convergence).
This set of default parameters is quite pessimistic and allows to obtain good results for data up
8000 variables (the maximum number of variables used in our applications). πm and πc values do
not need to be modified. The Tpop value provides a satisfactory exploration of solution space, it
may be tuned by the user if he wants to intensify search but the simplest solution is to keep it at
default value and to tune Ngene. Indeed, there is a very simple tool to visually study the required
number of generations: a plot is automatically generated after each generation allowing to show if
average parameters of the population stabilise or not. Hence, if the parameters are stable from
50 to 100 generations, the user may want to reduce Ngene, on the contrary, if parameters are
still evolving after 200 generations, the user should try a higher Ngene. It is then possible to use
the algorithm without any parameter tuning except if a graphical convergence is not observed
after 200 generations (which should not be the case with less than 8000 variables). So tuning
parameters is most of time not necessary.
The other parameters Nselvar, wmin and dmin are more connected to the application and must be
chosen according to physicochemical criteria.
The algorithm has been implemented into R (R Development Core Team, 2011) and can be
obtained on request to the corresponding author.

5. Applications

In this part, before working with the dataset described in Section 2, we used a simulated dataset
in order to assess the method performances.

5.1. The simulated dataset

The simulated dataset is constructed so that it contains information close to the target dataset.
The variable of interest (whose value is to be predicted), y, is randomly generated according to a
uniform distribution for n = 60 observations. The explanatory variables are organised into K = 4
blocks: three blocks simulating spectra type data and one block of individual variables (similar to
physico-chemical variables in the real dataset).
The spectra type blocks are produced according to the method proposed in Shariati-Rad and
Hasani (2010). They are generated by combinations of Gaussian peaks, with different variances.
Each spectrum contains p1 = p2 = p3 = 500 wavenumbers. An individual gaussian noise (with
standard deviation of 0.03% of the maximum value in each block) and a global background noise
(analogous to baseline) is added to each block of spectra. Spectra profiles contain three peaks for
the second block and four peaks for the first and third blocks. In the first two blocks, the second
peak is correlated to y with correlation coefficients of 0.7265 and 0.7596 respectively. No peak of
the third block is related to y. Uncorrelated peaks are randomly generated with average absolute
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TABLE 2. Results obtained by the three methods applied on the simulated dataset (var nb: number of variables used in
the model, int nb: number of intervals chosen by the algorithm, A: PLS model dimension chosen thanks to PRESS,
R2

CVtrain
: average squared correlation coefficient between y and ŷ obtained with the training set using 4-fold cross

validation, R2
test squared correlation coefficient between y and ŷ obtained with the test set). For selGAmPLS, the given

results are averages of the ten runs.

Method var nb int nb A R2
CVtrain

R2
test

selGAmPLS 60.4 3.5 3.8 0.7986 0.6877
PLS + VIP (>1) 226 9 2 0.7636 0.6204

PLS 1510 - 2 0.6715 0.6383

values of correlation coefficients with y of 0.1468 for the first block, 0.0707 for the second one
and 0.1308 for the last one. The average spectrum for each block is depicted in the right panel of
Fig. 1.
The fourth block, like in the real dataset, is a collection of p4 = 10 individual variables, generated
by ten gaussian laws. The first two variables are generated so that they have a linear correlation
coefficient with y of 0.7135 and 0.5912 respectively. The eight other ones are randomly generated
(leading to an absolute value of linear correlation coefficient with y ranging from 0.0564 to
0.2425).
The obtained data are split into two subsets: the learning set contains forty randomly chosen
observations and the test set contains the twenty remaining ones. selGAmPLS has been applied
to the simulated dataset with the following parameter values: Tpop = 200, Ngene = 200, πm = 0.9,
πc = 0.5 (one run takes about 22 minutes on a desktop computer with processor Intel Core i7 2.93
GHz). The results obtained after ten runs of selGAmPLS are given in Fig. 1 and Tab. 2. According
to Fig. 1, it appears that in the final populations most solutions contain selected intervals from the
target ones (shaded in gray) for the first two blocks, most solutions contain no selected intervals
in the third block and at least one of the two correlated individual variables of the fourth block.
Moreover, if we focus at the best solution of each run, no one selected intervals in the third block.
Furthermore, seven out of ten solutions contain intervals overlapping the targets ones and at least
one of the two correlated individual variables of the fourth block.
As far as we know there is no other method allowing to perform comparable variable selection
(allowing both interval and individual selection through multiblock tables). If we wanted to
compare to other interval selection algorithms, our blocks would have to be concatenated. Yet,
selecting intervals on the physicochemical parameters is not relevant and there is a risk of selecting
intervals which overlap two blocks. That is why we chose to compare to the standard method
to perform individual variable selection in PLS context: VIP methodology (Wold et al., 1993).
The results of selGAmPLS were compared with PLS used on the whole dataset and with the
variables selected through VIP with a threshold value of one. By looking at Tab. 2, it appears that
selGAmPLS achieves the most stringent choice of variables and the best R2 value for the test set.

5.2. The cassava starches dataset

The algorithm has been run ten times with the same parameters as for the simulated dataset (one
run takes about 46 minutes on a desktop computer with processor Intel Core i7 2.93 GHz). Taking
into account the best solution of the ten final populations, an average cross-validated cor2(y, ŷ)
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TABLE 3. Results obtained by the three methods applied on cassava data (var nb: number of variables used in the
model, A: PLS model dimension chosen thanks to PRESS, R2: squared correlation coefficient between y and ŷ obtained
in the training set, R2

CV average squared correlation coefficient between y and ŷ obtained through 10-FCV).

Method var nb A R2 R2
CV

selGAmPLS 311 12 0.9936 0.8273
PLS + VIP 4 3 0.7210 0.6650

PLS 7926 7 0.7836 0.6605

value of 0.885 was achieved with 0.017 standard deviation. On average, 2.7 physicochemical
variables, 2.8 MidIR intervals (corresponding to an average of 46.3 wavenumbers) and 1.8
RAMAN (37.6 wavenumbers) intervals have been selected.
Fig. 2 gives a representation of the selected variables across the ten final populations. Selected
variables are concentrated in some favoured zones confirming the convergence of the algorithm
even if a few equivalent solutions can be found.
Actually, four physicochemical variables, two MidIR intervals and four Raman intervals have
been selected. It corresponds to a total of 311 variables covering about 4% of the total number of
variables.
In order to evaluate the relevance of this selection, it has been compared to a PLS run on the whole
datasets (7926 variables) and to a PLS run on the variables selected through VIP methodology.
This approach allowed to selected only four physicochemical variables and no spectroscopic
wavenumbers. The corresponding results are given in Tab. 3.
By applying PLS to the whole dataset, the obtained model fails to extract interesting information
from those very noisy data (many variables, sometimes strongly correlated). The VIP selection
only extracts four physicochemical variables and the obtained model is quite interesting achieving
less overfitting than the PLS on all variables (the loss between learning set and cross-validated
results is smaller for PLS+VIP). selGAmPLS achieves the best modelling for both learning and
cross-validated results.
According to these results, it appears that physicochemical variables play a very important part in
modelling (using only four of them leads to performances very close to using the whole dataset).
However, taking into account spectroscopic variables allows to account for 16% extra variability.

The physicochemical variables selected are derived from RVA data (cf. Fig. 3): peak viscosity,
holding strength, breakdown and relative breakdown. As the temperature is increased, the starch
granules swell and increase the viscosity of the paste until the peak viscosity is reached. This
parameter is related to the granule size and reflects the molecular degradation of starch (Dias
et al., 2011). The holding strength is related to the behaviour of starch during processing and
illustrated the stability of the paste during cooking (Dias et al., 2011; Klug Tavares et al., 2010).
The breakdown parameter is related with the rigidity of swollen granules and with the amylopectin
content which is responsible for water uptake (Juhász and Salgo, 2008). Finally, these three
parameters are positively correlated with the water absorptivity (Tamaki et al., 2005) and they are
therefore key pasting parameters to describe the breadmaking ability.
Regarding spectroscopic variables, as samples analysed have very similar chemical compositions
(15.7 to 21.7 % of amylose), the vibrational spectra recorded do not show significant differences
(cf Fig. 4 and 5). However, the spectral regions selected by selGAmPLS, whether high or low
frequency do not correspond to specific vibrational bands or combination bands, but contain
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relevant information as they significantly improve the model.

To give more sense to the interpretation of selected data, especially on spectroscopic ones, we
have eliminated non informative regions in MidIR and Raman spectra and worked in the MidIR
range between 800 and 1180 cm−1 and in the raman range between 50 and 1200 cm−1.
This spectral region was shown to correspond to the conformational and crystalline order of starch
(van Soest et al., 1995). The bands in this region essentially result from C-O and C-C vibrational
modes that are highly coupled, making the exact band assignment difficult (Goodfellow and
Wilson, 1990; Kizil et al., 2002).
After another run of selGAmPLS, two MidIR intervals and four Raman intervals have been
selected. The two wavenumber ranges selected in MidIR spectra (960-983 cm−1 and 1017-1045
cm−1) are sensitive to the crystalline state of starch (Mutungi et al., 2011). Moreover, the bands
at 1044 cm−1 and 1017 cm−1 are associated to the ordered and amorphous structure of starch,
respectively (van Soest et al., 1995). The ratio of absorbances 1044/1017 cm−1 can be used to
quantify the degree of order in starch samples (Mutungi et al., 2011). In the case of the Raman
spectra, three selected intervals (517-523 cm−1, 628-669 cm−1 and 799-822 cm−1) are associated
with the skeletal modes of the glucose ring, whereas the range between 996 and 1036 cm−1 is
related to starch crystallinity, as in MidIR. Therefore, the spectral regions corresponding to the
crystalline order of starch play an important role in the breadmaking ability.

6. Conclusion

Feature selection is an important issue in data analysis. It allows to provide more powerful and
meaningful models leading to a better understanding of studied phenomena. When dealing with
thousands of variables, an exploration of all possible combinations is unworkable and a step by
step approach is most of time not appropriate to provide an optimal model. Furthermore, usual
methods (including VIP) select individual variables and not intervals that are the only meaningful
entities in spectrometry. Using a heuristic method is therefore necessary.
Genetic algorithms provide a very adaptable and efficient solution when dealing with both several
kinds of variable selections (individual vs intervals) and multiblock tables. It can be noticed that
generalisation to PLS2 is easy, for example by using the Escoufier RV instead of R2.
In this work, the result obtained is very interesting for a predictive use. In terms of interpretation,
the method allowed to highlight the importance of some physico-chemical variables and to select
a small number of short intervals to significantly complete the resulting model. These intervals are
difficult to interpret for chemists and therefore do not participate in understanding the phenomenon
but are essential for the quality of the final model. However, the use of part of the spectra gives
more sense to the interpretation of physicochemical interpretation at the expense of the quality
of the model. It appears that the wavelength regions which have been selected to explain the
breadmaking ability are those associated to the ordered and amorphous structures of starch. Due
to the small learning sample size, improving model interpretation implies a loss in prediction.
Despite this small size probably implies a part of overfitting, it nevertheless provides interesting
insights in the model meaning. Further analyses on new data will allow to confirm these promising
results.
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FIGURE 1. Representation of the final solutions of selGAmPLS for the simulated dataset. On the left panel, selected
variables (depicted in black points) in the ten final populations (that is to say 2000 solutions) are given on the vertical
axis. The horizontal axis gives the variable numbers (from 1 to 1510). Blocks are separated by vertical dotted lines.
The target intervals are surrounded by vertical solid lines. On the right panel, only the best solution of each run is
represented in the same way. The average spectra of the first three blocks are also given.
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FIGURE 2. Representation of selected variables (depicted in black points) in the ten final populations (that is to say
2000 solutions on the vertical axis). The horizontal axis gives the variable numbers (from 1 to 7926 like in solution
encoding). Blocks are separated by vertical dotted lines.

FIGURE 3. General pasting profile of starch using RVA and showing typical pasting parameters.
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FIGURE 4. MidIR spectra of cassava starch samples and selected wavenumber regions with selGAmPLS.

FIGURE 5. Raman spectra of cassava starch samples and selected wavenumber regions with selGAmPLS.
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