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Titre: L’évaluation bayésienne des risques de salmonellose, pour des élevages de poules pondeuses de
prévalence apparente nulle et un test de sensibilité évoluant autour du temps
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Abstract: A continuous time two-state hidden Markov process model was used to describe prevalence of salmonella
infected flocks over laying phase in egg production. The infection status of a flock was treated as a binary hidden
variable that can be detected as salmonella positive only by imperfect microbiological testing. Sensitivity of the test
depends on the sampling type and analysis method used, but also on the unknown phase of epidemic among the hens
within the flock. In a data set obtained from a national control programme under very low prevalence, all tests at
all ages may show negative results. However, some temporally varying uncertainty remains about the unknown true
prevalence, due to temporal changes in overall test sensitivity. By defining the sensitivity as a function of duration of
within flock epidemic, Bayesian modeling was developed for quantitative risk assessment. Using minimal assumptions
derived from expert knowledge or plausible scenarios, the effect of dynamically changing test sensitivity was accounted
for by integration over the unknown time of infection. The sensitivity model was combined with the hidden Markov
process model, conditional to temporal sequence of test results. Computations were performed using OpenBUGS.

Résumé : Un modèle à processus de Markov caché à deux états en temps continu a servi à décrire la prévalence
de cheptels infectés par les salmonelles durant la phase de ponte dans le cadre de la production d’œufs. L’état
infectieux d’un cheptel a été traité comme une variable cachée binaire susceptible d’être détectée comme étant
positive aux salmonelles uniquement par des tests microbiologiques imparfaits. La sensibilité du test dépend du type
d’échantillonnage et de la méthode d’analyse employés mais aussi de la phase inconnue de l’épidémie parmi les
poules du cheptel. Dans un jeu de données issu d’un programme de contrôle national sous prévalence très basse,
il est possible que tous les tests à tous les âges générent des résultats négatifs. Cependant, une certaine incertitude
temporellement variable demeure en regard de la prévalence réelle inconnue, du fait des évolutions temporelles de
la sensibilité d’ensemble des tests. En définissant la sensibilité comme une fonction de la durée de l’épidémie au
sein du cheptel, un modèle Bayésien a été développé pour l’évaluation quantitative des risques. En employant des
hypothèses minimales dérivées de connaissances expertes ou de scénarios plausibles, les effets de la sensibilité des
tests changeante au cours du temps ont été pris en compte par intégration sur la durée inconnue de l’infection. Le
modèle de sensibilité a été combiné avec le modèle de processus de Markov caché, conditionnellement á la séquence
temporelle des résultats de tests. Les calculs ont été effectués avec OpenBUGS.
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Bayesian risk assessment for Salmonella in egg laying flocks 9

1. Introduction

1.1. Risk assessment application

Salmonella control programmes aim to control risks over entire food production chains, to comply
with the microbial criteria set and eventually to meet the Appropriate Level Of Protection, ALOP.
On one hand, they are intended to act both directly and indirectly as interventions against the risk.
On the other hand, they provide data from microbial testing results which can be informative about
the current salmonella prevalence in food production. A positive test result means salmonella is
detected, while a negative result means no detection. Under low prevalence situation the control
samples are often all negative, showing no observable variation of results. However, the under-
lying true prevalence may not be zero, because all detection methods are imperfect. There are
reported examples where Salmonella could not be detected in pooled faeces samples and mixed
dust samples used in control programmes, nor in on-farm cloacal swabs in randomly selected
(vaccinated) flocks. Yet, in the particular example, 26% of the flocks were found positive both in
cloaca swabs and in the caeca, suggesting that the proportion of Salmonella infected laying flocks
is underestimated based on the official monitoring programme (Van Hoorebeke S., Van Immerseel
F., De Vylder J., Ducatelle R., Haesebrouck F., Pasmans F., de Kruif A., Dewulf J., 2009). This
could be due to intermittently shedding hens and/or low within herd prevalence. Consequently, all
this has an impact on the uncertainty of risk assessment and it can have implications on planning of
control programmes. The detection methods may be improved in various ways, e.g. by developing
more sensitive tests or by allocating the sampling differently. For egg production, this has been
studied in simulation models (Klinkenberg D., Thomas E., Calvo Artavia F.F., Bouma A., 2011),
based on parameter estimates from experimental settings (Thomas M.E., Klinkenberg D., Ejeta
G., Van Knapen F., Bergwerff A.A., Stegeman J.A., Bouma A., 2009). Another experimental
study was reported in De Vylder J., Dewulf J., Van Hoorebeke S., Pasmans F., Haesebrouck F.,
Ducatelle R., Van Immerseel F. (2011). However, the estimates are specific to the experiment and
different experiments would be needed to reflect different actual conditions e.g. due to different
housing systems. Ideally, relevant data should be collected from the real life production chain
in question. Unfortunately, research driven sampling in real ongoing production systems can
be very difficult to carry out in practice. Even if possible, it is obviously difficult to estimate
transmission parameters from real flocks when the apparent prevalence is zero. Rare epidemics
would provide valuable information, but often risk managers have already intervened before
sampling for research purposes could be planned and executed. All these difficulties add up to the
overall uncertainty in quantitative modeling when trying to produce estimates of true prevalence
for real flock populations of laying hens, and consequent risk estimates for the egg production.

Results from surveillance programmes can be informative for estimation of some quantities
along the production chain whereas for the estimation of others there may not be data at all.
Auxiliary information about the structure of the production system may help to construct proba-
bilistic dependency structures, and expert knowledge can be used to derive plausible estimates
of some unknown parameters within the full model. Most probabilistic Quantitative Microbial
Risk Assessment (QMRA) approaches employ ’direct’ Monte Carlo simulation based on assigned
distributions and parameter values, each based on a separate analysis that does not utilize other
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10 Ranta et al

parts of evidence. Bayesian modeling offers a theory with well structured framework for evidence
synthesis from diverse sources of data frequently occurring in quantitative food safety risk assess-
ments (Albert I., Grenier E., Denis J.-B., Rousseau J., 2008; Ranta J., Siekkinen K.M., Nuotio L.,
Laukkanen R., Hellström S., Korkeala H., Maijala R., 2010; Albert I., Espié E., de Valk H., Denis
J.-B., 2011). These models are always hierarchical and computationally more demanding than
direct Monte Carlo. Monte Carlo models and Bayesian belief networks in QMRA were discussed
in Smid J.H., Verloo D., Barker G.C., Havelaar A.H. (2010).

1.2. Model setting

Bayesian modeling was developed for the QMRA of salmonella in laying hens with the aim
of introducing as few parameters as possible to reduce the need for overly many arbitrary as-
sumptions and to facilitate more explicit estimation from the actual data presented from a control
programme. In other words, the idea is to make inference from concrete data representing a
particular production chain and to encapsulate the existing information rather than to inflate it
by unknown parameters. Therefore, respecting the limited data and the unavoidable uncertainty,
parsimonious parametrization was preferred over overly detailed computer simulations of e.g.
within flock epidemics or contamination of individual eggs from individual hens, etc. Even if
technically possible in silico, the inferential basis of detailed mechanistic simulations would
be shallow or nonexistent, considering the actual and limited data on the observable process
in question. The lack of data on more detailed processes poses limitations for formal analysis
which cannot be overcome by increasing the complexity of the modeling. The uncertainties
in a more detailed and complex model would be "inevitably contingent on yet more assump-
tions that may turn out to be misguided" as stated in Spiegelhalter D.J., Riesch H. (2011). The
uncertainties in complex modeling, and the balance between assumptions and empirical data
are increasingly discussed in many areas of science. In a NordForsk report ’Hot Topic - Cold
Comfort’ (Hernes G., 2012) the dilemma was summarized as: "Some have argued that the models
are too simplistic to mirror the real world. Others have argued the opposite - that they are too
complex and nonlinear so that conclusions depend more on the tangled feedbacks in the models
themselves rather than on the observational material about the interconnections in the real world."

Suggesting a compromise for the dilemma, Bayesian approach combines prior assumptions
with data in a consistent framework. In probabilistic Bayesian inference with a parsimonious
QMRA model, it is hoped that the results become more evidence driven than assumption driven
compared to a more complex model, unless overly influential prior information is deliberately fed
in where it is judged to be necessary. Also, the advantage of parsimonious Bayesian modeling is
that results are reasonably easy to recalculate for each new data set to enable risk assessments
on a regular basis, reflecting actual data obtained. This is called ’updating of probabilities’, or
’probabilistic learning’ based on new evidence. Nevertheless, even with parsimonious models
in QMRA, some parameters remain more uncertain than others, and some of them could not be
eliminated from the model without losing essential structures of the original problem. For those
parameters, important expert knowledge can be elicited to formulate informative priors, or bounds
for scenarios, if judged to be reliable and essential where data are lacking. Bayesian methods
in some public policy and government settings have been discussed generally in Fienberg S.E.
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Bayesian risk assessment for Salmonella in egg laying flocks 11

(2011). For sound representation of the uncertainty of all unknown parameters, it is important that
the uncertainties are incorporated avoiding too naïve ad hoc point estimates drawn separately. The
multidimensional uncertainty can be managed by using conditional distributions in a hierarchical
structure modularly contingent on the body of evidence. In this paper we present one example
where a model of test sensitivity was combined with the hidden Markov process model of the
infection. This model is based on a generalization of an earlier Bayesian discrete time modeling
for broiler production (Ranta J., Maijala R., 2002; Maijala R., Ranta J., Seuna E., Pelkonen S.,
Johansson T., 2005). An earlier simpler version of the continuous time model was applied in a
quantitative risk assessment of laying hens by EFSA, European Food Safety Authority (2010). The
complete assessment can be found in another EFSA report, EFSA Panel on Biological Hazards
(BIOHAZ) (2010).

2. Materials

Comparable data on salmonella in egg production was based on Swedish and Finnish Salmonella
Control Programmes, SSCP & FSCP, representing two similar production systems under similar
control programmes. The number of flocks is of the same order, and it is rare to find salmonella
positive samples. From this background information, we specified the number of flocks and the
number of tests and their timing for the model. For the computational example we choose a (not
uncommon) scenario where all the tests prove to be negative over a time period corresponding
approximately to annual production. Such ’all negative results’ provide an interesting example
for modeling, when the underlying prevalence is estimated under dynamically changing overall
sensitivity of the testing scheme. Expert opinion is needed to construct prior distributions or
default values for the parameters determining the overall sensitivity.

There is no genuinely flock specific national (Finnish or Swedish) database in the sense that
every testing result would be attached with a unique flock ID, enabling records of exact flock
specific event histories to be exploited. The number of flock units is known, and it is assumed that
one flock unit is occupied by a single flock at a time. The flock unit is the unit that is sampled and
usually this is also the epidemiological unit where the within flock epidemic may take place. A
holding may have one or more flock units. The national control programme specifies the ages
at which tests are done and all flocks are tested according to this scheme. The egg laying period
varies but can be from 18 weeks of age up to 70-75 weeks. For the model, each flock is assumed
to be tested four times, at weeks 24,37,52 and 67 of age. The laying phase is assumed to start at
week 21 and to end at week 70 of age. These values closely reflect the current practice, but can be
easily changed as needed. A positive test result typically leads to destruction of the flock which is
assumed to take place without delay.

Based on the sampling scheme and the number of flock units and the approximate life span,
it can be approximately calculated how many tests and at what age they are performed during a
calendar year. As a result, the model is presented with a specific number of flocks, N = 900, for
which we assume all four testing results to be known at the given ages. Although not exact, and
ignoring that samples from some flocks would fall into the previous or the next calendar year, this
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12 Ranta et al

may be taken to represent data corresponding to annual production.

3. Modeling infection process of flocks

In the following, we define that a flock is infected by salmonella whenever salmonella still survives
in the flock house or its hens which may be excreting salmonella at various rates. The model for
infection and recovery of flocks is based on a well known continuous time Markov process with
two states. These are usually denoted as infected and uninfected (susceptible) in infectious disease
modeling, hence so called SIS-models. The process has two parameters: the infection intensity λ

∈ℜ+ and recovery intensity µ ∈ℜ+. Given that a flock is free of salmonella, the waiting time of
a new infection is then exponentially distributed with expected time 1/λ . Similarly, if a flock is
infected the expected waiting time for recovery is 1/µ . Additionally, test sensitivity p is defined
as an uncertain model parameter, which will be later defined as a function of age. According to a
two-state Markov process (Karlin S., Taylor H.M., 1975), the probability of being infected at time
(age of the flock) t depends on the starting state, I0, i.e. whether the flock was already infected in
the beginning or not. This provides the following transition probabilities

transition: 0→ 1 p01 = P(It = 1 | I0 = 0,λ ,µ) = λ

λ+µ
− λ

λ+µ
exp(−(λ +µ)t)

transition: 1→ 1 p11 = P(It = 1 | I0 = 1,λ ,µ) = λ

λ+µ
+ µ

λ+µ
exp(−(λ +µ)t).

(1)

These probabilities represent the ’undisturbed’ process of infections and recoveries of a flock up to
arbitrary time (age) t. The remaining transition probabilities are determined as p00 = 1− p01 and
p10 = 1− p11. If the state of the process can be observed without error, such set of observations
(panel data) provide information about transition probabilities over specific time intervals and the
likelihood function has a closed form solution (Cook R.J., 1999). Flocks may also be infected
from the beginning of their laying period, and this is described by probability ν . Hence, the total
probability of a flock being infected at time t is of the form:

P(It = 1 | ν ,λ ,µ) = (1−ν)P(It = 1 | I0 = 0,λ ,µ)+νP(It = 1 | I0 = 1,λ ,µ), (2)

assuming no interventions occur and that there are no observed testing results from the flock.
Although the process mathematically allows infinite number of infections and recoveries in the
long run, both intensities can be so low that practically the flock remains in its initial state over
the limited lifetime, or there may be just one event, not many. In fact, we can expect most of the
flocks to be uninfected and to remain so. Although infection is a rare event, a flock is likely to be
persistently infected once it happens. In principle, also recovery is possible although its expected
waiting time can exceed the lifetime of a flock.

Production of eggs is roughly proportional to the number of days spent in laying phase. Hence,
the proportion of egg production under nonzero risk is proportional to the number of days the flock
was infected while laying. This proportion of total production at risk (from a flock) is described
by calculating the expected infection prevalence over its laying phase:

E(Q) =
1

T2−T1

∫ T2

T1

P(It = 1 | ν ,λ ,µ)dt. (3)
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Bayesian risk assessment for Salmonella in egg laying flocks 13

where T1 is the beginning of the laying phase, and T2 is the end of it. The above expression is
conditional to the given parameter values only, not assuming any observations yet. Assuming
the parameters are the same for all flocks, so that there are no differences in rates of infection
and recovery, E(Q) can be interpreted to represent the proportion of total egg production at risk.
Alternatively, if these would depend on flock specific variables such as flock size, then we might
define a stratification of flock population, with distinct parameters in each stratum. However, a
meaningful application would then require observations to be reported accordingly for each flock
type. For simplicity of exposition, we do not assume any background variables of the flocks, such
as flock size or housing type although the model could be extended in that direction. However,
the results will usually be conditional to national data which implicitly implies stratification by
countries. Therefore, E(Q) can be used for comparisons between production systems in different
countries. Once the uncertainties of the parameters are described as posterior distributions derived
from production chain specific observations, we also obtain a posterior distribution of E(Q). We
will consider the role of observations next.

3.1. Modeling observed testing results and intervention

According to the Salmonella Control Programmes, all detected positive flocks are destroyed. The
testing times during laying period are denoted tk, where k = 1,2, . . . ,K is the index of these times
and: T1 = t0 < t1 < .. . < tK < tK+1 = T2. Hence, the probability of surviving up to a given testing
time is needed for the likelihood function based on test results. The expression for E(Q) should
also account for this.

Since a detected positive flock is assumed to be destroyed, the observations consist of a series
of negative results, possibly ending with a positive test result. In our example scenario, all results
were negative. The probability of a test result depends on the hidden true infection status at that
time, and the test sensitivity. In turn, the probability of the true infection status depends on the
whole history of past observations. The probability can be written using a recursive formula given
by Nagelkerke N.J., Chunge R.N., Kinoti S.N. (1990). Also, EM-algorithm could be exploited
for likelihood inference as shown by Bureau A., Shiboski S., Hughes J.P. (2003). More general
methods for Bayesian inference are discussed in Douc R., Garivier A., Moulines E., Olsson J.
(2011). For a Bayesian approach, we use the recursive solution to evaluate the likelihood function
as follows. Define ρtk = P(Itk = 1 |Dt1 , . . . ,Dtk) for observed (binary) testing results Dt for a flock,
then trivially P(Itk = 1 | Dt1 , . . . ,Dtk−1 ,Dtk = 1) = 1 but if Dtk = 0, then

ρtk =


(1−p)[(1−p01−p10)ρtk−1+p01]

1−p[(1−p01−p10)ρtk−1+p01]
k > 1

(1−p)P(It1=1)
(1−p)P(It1=1)+P(It1=0) k = 1

,

where the probabilities P(It1 = 1) at the first testing time are given as in equation (2), and pi j

are defined as transition probabilities between two testing times, as given in equation (1). Let us
denote the observation history {Dt1 = 0, . . . ,Dtk = 0} up to some testing time tk as H0

tk , and the
history at a time t0 before the first observation as H0

t0 = /0. Now, the conditional probability of a
positive test result at time tk, given the past history of negative results, can be written as

P(Dtk = 1 | H0
tk−1

) = pP(Itk = 1 | H0
tk−1

) = p(p01(1−ρtk−1)+ p11ρtk−1). (4)
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14 Ranta et al

Note that the test sensitivity p could be replaced by a time dependent sensitivity ptk , to be modeled
too. This detection probability provides the binomial likelihood, given that the number of tested
flocks and test results at each testing time are specified. The proportion of total production at
risk, the expected prevalence over laying phase, given the observations and assuming removal of
detected positive flocks may be defined as

E(Q | H0
tK ) =

1
t1−t0

∫ t1
t0 P(It = 1 | H0

t0)dt × P(It1 = 1 | H0
t0)p

+∑
K
k=2

[
[ 1

tk−t0 ∑
k
i=1
∫ ti

ti−1
P(It = 1 | H0

ti−1
)dt] ×

[
∏

k−1
i=1 (1−P(Iti = 1 | H0

ti−1
)p)
]
P(Itk = 1 | H0

tk−1
)p

]
1

tK+1−t0 ∑
K+1
i=1

∫ ti
ti−1

P(It = 1 | H0
ti−1

)dt ×
[

∏
K
i=1(1−P(Iti = 1 | H0

ti−1
)p)
]
.

(5)
The expression makes exhaustive stratification of possible events into ’detection at 1st test’,

’detection at 2nd test’, etc., up to ’detection at the last test’, and finally ’no detection’. The
probabilities of these events are given by survival probabilities (of a flock) over previous tests
multiplied by detection probability at a given testing time, respectively, and the survival probability
over all tests for ’no detection’. The survival probabilities account for the effect of ’pruning’ due
to elimination of possible detected positive flocks. Each probability depends on the observed
past testing results. Within this stratification of possible events, the integrals are calculated of
P(It = 1|H0

t−1) analogous to equation (3). It can be noted that if the sensitivity of testing (p)
becomes zero, the equation yields the sum of K +1 integrals covering the entire interval [T1,T2]
(whole laying period), similar to E(Q) in the simple case which did not account for observed
testing results. E(Q | H0

tK ) is simplified because it only describes the predicted proportion of
production time under infection, i.e. proportion of time when the eggs are produced under risk. It
does not take into account variation in the rate of laying contaminated eggs which may depend
on finer state of the epidemic cycle within the flock. It also assumes that detected positive flocks
are eliminated without delay. Note also that the expression is only predictive for this type of
production process and the ’events’ described here are not used for Bayesian inference of model
parameters. E(Q) is not likelihood function and the posterior inference relies on priors and the
binomial likelihood based on detection probabilities given in equation (4). This also means that it
is not necessary to evaluate E(Q | H0

tK ) during MCMC in OpenBUGS. It may be more convenient
to calculate it afterwards e.g. in R, from the already drawn MCMC sample of parameters.

3.2. Modeling overall test sensitivity

In the above formulations, test sensitivity was assumed constant over time (age). The detection
sensitivity due to way of sampling (sock samples, pooled samples or other) and the associated
laboratory methods may be assumed reasonably constant (p) and even fairly high in ideal situation.
However, the overall sensitivity of detecting an infected flock is a more complicated function,
mainly of the within flock infection process, but also of other possible factors. For comparison,
in other applications, e.g. paratuberculosis in cattle (van Schaik G., Schukken Y.H., Crainiceany
C., Muskens J., VanLeeuwen J.A., 2003), the sensitivity of testing has been reported to depend
significantly on the clinical state of infection, thus compromising the overall sensitivity when
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Bayesian risk assessment for Salmonella in egg laying flocks 15

the infection is in the early stage. Likewise, when detecting salmonella in cattle herds (Ranta J.,
Tuominen P., Maijala R., 2005), the herd level sensitivity can depend on a combination of events.
For example, whether the infection is clinical or subclinical, within herd prevalence, possible
pooling of a varying number of individual samples, in addition to the analytical sensitivity of the
test. Bayesian estimation of flock-level sensitivity for laying-hen houses was described by Mahé
A., Bougeard S., Huneau-Salaün A., Le Bouquin S., Petetin I., Rouxel S., Lalande F., Beloeil
P.A., Rose N. (2008) and sensitivity of pooled vs individual samples have been compared (Arnold
M.E., Carrique-Mas J.J., McLaren I., Davies R.H., 2011). Related examples are found in human
epidemiology, where the diagnosis probabilities can be specific to disease stage and calendar
time, e.g. in HIV diagnosis (Sweeting M.J., De Angelis D., Aalen O.O., 2005). At the risk of
introducing unidentifiable parameters, modeling of all these effects that influence the overall
sensitivity can be feasible, provided that sufficient information exist about each contributing factor.
However, in the absence of gold standard, working only with sensitivity (Se), specificity (Sp)
and prevalence θi for i = 1, . . . ,n populations, vaguely informative (’objective’) priors may still
suffice, assuming that testing results are conditionally independent given the parameters and true
infection status, and that properties of testing are constant while prevalence is variable between
populations (Bonde M., Toft N., Thomsen P.T., Sørensen J.T., 2010; Branscum A.J., Gardner I.A.,
Johnson W.O., 2005).

In its elementary form, in a population with prevalence θ , the detection model with M individual
samples tested, with X detected positive, is simply

X ∼ Bin(M,θ ×Se)

when assuming Sp to be 100%. Using the observed data X and M, the goal would be to compute
posterior distribution

π(θ ,Se | X ,M) ∝

(
M
X

)
(θ ×Se)X(1−θ ×Se)M−X

π(θ)π(Se)

where the prior π(θ) is typically vaguely informative, whereas π(Se) aims to be informative
about the sensitivity. If both are vague, the resulting distribution would show strong posterior
dependency between θ and Se, due to non-identifiability. Also, we could not infer much about
prevalence if we believe the sensitivity to be very low. Hence, it is crucial to the problem to specify
what can be assumed of the sensitivity. In our application, we elaborate this by modeling an age
dependent sensitivity, pt .

3.3. Modeling age dependent sensitivity

3.3.1. Parameterizations of simple functions

After the onset of infection in a laying flock, there can be a short period during which the new
infection might not be detectable due to low within flock prevalence. The sampling methods are
designed for reliable detection when the within flock prevalence is at least 5 %. Based on expert
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opinions and other studies Thomas M.E., Klinkenberg D., Ejeta G., Van Knapen F., Bergwerff
A.A., Stegeman J.A., Bouma A. (2009), this level can be reached in 2-4 weeks time. After this, the
detection probability can peak, possibly to decline later again. The possible decline may be due to
hens gradually recovering or acquiring immunity to salmonella, and particularly if shedding of
salmonella is gradually decreasing or intermittent. The process is not too well known and only
some expert opinions could be drawn, which are still difficult to elicit exactly in the form of a
mathematical function. For an expert, it may also be difficult to separate the loss of sensitivity
on one hand from the actual recovery from the infection on the other hand, since these are not
directly observable events in practice. The observations inevitably depend on the testing method,
giving the apparent status of the flock instead of the true status. Therefore, we choose to sketch
simple scenarios for overall sensitivity, and then compute results under each scenario. Microbial
detection problems have been discussed and further elaborated in an EFSA report on salmonella
in laying hens EFSA Panel on Biological Hazards (BIOHAZ) (2010). In a very simplified model,
detection probability would jump to p after some time (d1) from the start of infection and drop to
zero after some more time (d2) from the onset of infection. Hence, expert knowledge would be
required to set plausible values for d1,d2 and p. To specify the sensitivity at a given testing time,
we consider a possible presence of infection at that time and how long it might have lasted. This
depends on its starting time. Let τ0 denote the unknown starting time of such last (yet undetected)
infection before being in infected state, It = 1, at testing time t at which it may become detected.
The simplest model of sensitivity is then:

P(Dt = 1 | τ0, It = 1) = p(d) =


0 , if d < d1
p , if d1 < d < d2
0 , if d > d2

(6)

where d = t− τ0. Taking into account the uncertainty of when the infection started τ0, (0 <
τ0 < t) we calculate the integral

pt = P(Dt = 1 | It = 1) =
∫ t

0
P(Dt = 1 | τ0, It = 1)π(τ0 | It = 1)dτ0

where we choose (see appendix)

π(τ0 | It = 1) =
e−(t−τ0)µ

(1− e−µt)/µ
.

The integration results to:

pt = P(Dt = 1 | It = 1) =
pe−µt

1− e−µt

(
eµ max{t−d1,0}− eµ max{t−d2,0}

)
(7)

which is a continuous smooth function although the simplistic p(d) was not. Finally, taking
into account the possibility (ν) of infection starting at time zero, we would obtain

pt = P(Dt = 1 | It = 1) = (1− v)
pe−µt

1− e−µt

(
eµ max{t−d1,0}− eµ max{t−d2,0}

)
+ν p1{d1<t<d2}(t)
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FIGURE 1. Detection probability for an infected flock at different ages, assuming fixed values ν = 0, p = 0.9, d1 = 2,
and µ = 0.1 (red) and µ = 1 (blue), and d2 = ∞ (left), d2 = 8 (right). At each time t, uncertain start of infection τ0 is
accounted for by integration over possible values τ0 ∈ [0, t].

This overall sensitivity is thus a function of age t, and it can be plotted, see Figure (1), with
chosen values for p,µ,d1,d2,ν . The function is always zero when t < d1 because then the duration
of infection would have been too short for detection. After t = d1 the detection probability rises
until time t = d2 after which it decreases due to increasing possibility that the duration may
have lasted longer than d2 in which event the detection probability would be zero again. If the
initial infection probability ν is high, there is more pronounced stepwise change in the detection
probability. In the extreme case where ν = 1, the detection probability is p for d1 ≤ t < d2 and
zero elsewhere. In our application, initial infection probability is very low, so that practically the
sensitivity can be calculated from the equation (7). This corresponds to the shapes of the example
functions in Figure (1).

The above simple step function in equation (6) easily leads to cumbersome numerical eval-
uations in more complicated settings. A computationally more feasible alternative could be to
define sensitivity as a smooth function of duration of infection. This can also be more appropriate
assumption in the application. Three different simple functions could be proposed to represent
different assumptions. One assumption is that the overall sensitivity will be monotonically in-
creasing to its maximum after which it similarly decreases to zero, with the shape of a Gaussian
function.

p(d) = pe−0.5(d−a)2/σ2
for d = t− τ0 > 0.

This has a peak value of p at d = a, the duration at which maximum sensitivity is reached.
Parameter σ determines the width of time window around optimal duration, within which detection
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18 Ranta et al

is reasonably possible, ≈ a±1.96σ . If parameter σ is small, detection is possible only very near
the optimal duration. With large σ , the detection is not drastically decreased even when testing
much earlier or later relative to the optimal duration. Therefore, an expert opinion would be needed
to specify a and σ . This model expresses the simple idea of a peaking sensitivity, assuming it to
be symmetric in time with respect to the optimal duration. This may not be epidemiologically
ideal assumption, though. An alternative assumption is that the sensitivity will only increase as a
duration of infection. Hence the function would be:

p(d) = p(1− e−ad) for d = t− τ0 > 0.

This requires only one parameter, which can be assigned by expert opinion by setting the
duration d∗ at which e.g. 95% of the maximum sensitivity is reached, solving a =− log(0.05)/d∗.
An extension to this assumption is that the sensitivity would ultimately decrease after sufficient
duration. The function would then be:

p(d) = p(1− e−ad)e−amax(d−d2,0) for d = t− τ0 > 0 and a =− log(0.05)/d1.

This assumes that the slope of the decreasing part of the function is similar as in the increasing
part. Hence, two parameters would be needed as expert opinion, d1 and d2. For example, with
d1 = 4 and d2 = 8 we would assume that 95% of the maximum overall sensitivity is reached in
4 weeks after start of infection, and that the decline of sensitivity will begin after 8 weeks since
start of infection.

With the Gaussian function, the sensitivity at the first testing time would be calculated as:

pt = P(Dt = 1 | It = 1) =
∫ t

0
pe−0.5(t−τ0−a)2/σ2 e−(t−τ0)µ

(1− e−µt)/µ
dτ0

=
pµ

1− e−µt e−0.5(a2−(a−µσ2)2)/σ2√
2πσ [Φ((t−a+µσ

2)/σ)−Φ((−a+µσ
2)/σ)]

Here, Φ is the cumulative distribution function of standard normal density. Similarly, we could
solve the integration based on the other two functions. As a result, we obtain the sensitivity as
a function of age only, and we have accounted for the uncertain time of infection, τ0. However,
things become more complicated after knowing that negative test results have been obtained at
some earlier time points because these provide evidence for τ0.

3.3.2. Accounting for previous negative tests

By time t, we also know the number of negative test results so far, and their timing as our obser-
vations. This provides evidence about when the infection probably has started, given that it has
started. Consequently, this has an effect on what the sensitivity at time t probably is. The more
we have negative test results in the history, the less plausible it becomes that the infection started
before all these tests - it probably would have been caught then.

Journal de la Société Française de Statistique, Vol. 154 No. 3 8-30
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Bayesian risk assessment for Salmonella in egg laying flocks 19

When information from the previous negative tests is included, the solution of the conditional
density π(τ0 | It = 1) involves integration over a piecewise function. For a time point t before the
first testing time t1, t ∈ [0, t1], we obtain

π(τ0 | It = 1) =
e−(t−τ0)µ

(1− e−µt)/µ

and pt is solved as before. For a time point between the first and the second testing time, t ∈ [t1, t2],
assuming the increase-decrease function, we obtain

π(τ0 | It = 1) ∝

{
e−(t−τ0)µ(1− p(1− e−a(t1−τ0))e−amax(t1−τ0−d2,0)) if τ0 ∈ [0, t1]
e−(t−τ0)µ if τ0 ∈ [t1, t]

where a =− log(0.05)/d1. Likewise, for a time point between the second and third testing time,
t ∈ [t2, t3], with the increase-decrease function, the density of τ0 would be

π(τ0 | It = 1) ∝
e−(t−τ0)µ(1− p(1− e−a(t1−τ0))e−amax(t1−τ0−d2,0))(1− p(1− e−a(t2−τ0))e−amax(t2−τ0−d2,0)) if τ0 ∈ [0, t1]
e−(t−τ0)µ(1− p(1− e−a(t2−τ0))e−amax(t2−τ0−d2,0)) if τ0 ∈ [t1, t2]
e−(t−τ0)µ if τ0 ∈ [t2, t]

In any case, after computing the normalized density π(τ0 | It = 1), a second integration is
needed to obtain

pt =
∫ t

0
p(1− e−a(t−τ0))e−amax(t−τ0−d2,0)π(τ0 | It = 1)dτ0.

For the computational task, there are basically two numerical possibilities: either to simulate the
unknown τ0 or to solve the integral by numerical integration routines. Notice that the conditional
distribution of τ0 was defined to depend only on µ and the negative test results in the past. The
distribution is not a marginal distribution from the full posterior density which would involve all
remaining parameters too. This is to separate the sensitivity model from the infection process
model which leaves only one common parameter, µ , in both modules. We will discuss this in the
section on posterior computations.

4. Computations

4.1. Prior distributions and assumptions from expert opinion

Expert opinion is needed mainly for the following parameters:

p maximum sensitivity of testing in a infected flock
d1 duration of infection when the maximum test sensitivity is reached
d2 duration of infection when the test sensitivity starts declining, d2 ≥ d1

These will determine the overall test sensitivity and how it changes over the age of flock. Informa-
tive prior for recovery rate µ is also needed because real life observations from test results are not
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FIGURE 2. DAG of the detection model for two consecutive testing times. Primitive model parameters together with
probability of hidden infection ρt , detection sensitivity pt and observed testing results Dt are shown. Dotted arrows
denote deterministic dependency, solid arrows stochastic dependency. τ0 is explicitly included only in the model where
evidence feedback from the rest of the model is cut.

available after a positive test due to elimination of detected positive flocks. Hence, the data rarely,
if ever, contain information about how long time a natural recovery would take, but experts might
provide some knowledge about the persistence of infection (Gradel K.O., Andersen J., Madsen
M., 2002), or experimental results might be used. Generally, salmonella contamination in a flock,
in hens and/or environment, can be persistent. It can survive long times e.g. in dust (Carrique-Mas
J.J., Davies R.H., 2008). A quick recovery and clearance seems therefore very unlikely. Indeed,
this is the reason for depopulating detected infected flocks. Without extensive investigations,
pending on still limited data, it could be assumed that the expected time for recovery is longer
than the expected time for infection. Therefore, the conditional prior would be µ | λ ∼ U(0,λ ).
Parameter p, the maximum sensitivity, can be given either as a fixed value or as a prior distribution.
This should describe the plausible sensitivity under an ideal situation for detection. An assumption
could well be that in ideal conditions, the sensitivity is 95% since the sampling is designed to
detect an infected flock in such conditions. This has been phrased in alternative ways (EFSA
Panel on Biological Hazards (BIOHAZ), 2010) which are thought to correspond to sampling 300
individual faeces, which would give 1− (1−1%)300 > 0.95, assuming 1% design prevalence. For
example, 60 faecal droppings cultured as one pool would give 1− (1−5%)60 > 0.95, assuming
pooling does not affect laboratory sensitivity. Parameter d1 can be described by an informative
prior 52(d1−1)∼ Gamma(6.8,(6.8−1)/2) with a minimum of 1 week, mode at 3 weeks, and
upper 95th percentile at 5 weeks. This is roughly based on other modeling results in Thomas M.E.,
Klinkenberg D., Ejeta G., Van Knapen F., Bergwerff A.A., Stegeman J.A., Bouma A. (2009).
Parameter d2 is more difficult because it is hard to judge how long exactly it takes before the
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sensitivity begins to decline. We cannot use very vague priors because there is no information
about this parameter in the observed data. Without assigning very arbitrarily informative prior
distributions it may be best to assume alternative fixed values describing the ’worst case’ and ’best
case’. In the worst case, sensitivity starts declining after only three weeks after the maximum,
d2 = d1 + 3/52, which could make detection difficult. In the best case, there is no decline, i.e.
d2 = ∞. For the remaining parameters, priors were chosen as vaguely informative. Knowing that
the infections are rare to begin with, Jeffreys’ prior was adopted for ν ∼ Beta(0.5,0.5) (Miconnet
N., Cornu M., Beaufort A., Rosso L., Denis J.-B., 2005). For the infection intensity the prior was
λ ∼ U(0,103) with an arbitrarily large upper bound. A flat prior π(log(λ )) ∝ 1, i.e. π(λ ) ∝ λ−1,
was also tried but this lead to extremely small values of λ in the posterior sample, < 10−22, and
numerical errors in evaluations. This is due to the combined effect of a prior density increasing
towards infinity at zero and the data showing no observed infections.

The effects of various prior assumptions are shown in Figure (3). Since we can expect µ to
be very small, the values of d1 and d2 are most influential on pt , which can be seen as a function
pt(µ,d1,d2) after averaging over τ0.
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FIGURE 3. Overall sensitivity. Left: d1 = 3/52,d2 = 6/52, p = 0.95,µ ∈ {0.00001,0.1,1}. Center: d1 ∈
{1/52,3/52,5/52},d2 = d1 + 3/52, p = 0.95,µ = 0.00001. Right: d1 ∈ {1/52,3/52,5/52},d2 = ∞, p = 0.95,µ =
0.00001. Testing times were at weeks 3, 16, 31 and 46 after start of laying. Figure produced by R-function, using the
procedure integrate().

4.2. Posterior computations: sensitivity model within the larger model

For a given set of parameters, the sensitivity pt needs to be computed as described above in
the corresponding submodel, requiring integration over the unknown τ0 which determines pt ,
together with p,d1 and d2. Firstly, it should be noted that the proposed numerical integration
involves a conditional density π(τ0 | It = 1,H0

t− ,µ, p,d1,d2) which is not the same as the marginal
posterior density of τ0 from the full model. The density of τ0 represents the information given in
the submodel which is to be used nested within the larger model as a ’fixed’ prior distribution of
pt , apart from the one common parameter, µ . Secondly, by doing this integration we effectively
obtain the expected sensitivity, i.e. averaged over all possible values of τ0 instead of a sensitivity
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that is conditional to a specific τ0. Hence, we obtain marginalized model for pt from the more
detailed model by eliminating parameter τ0. The marginalization corresponds to viewing any
sensitivity as a conditional probability, where the conditions include true infection status It = 1
among other specified conditions. In principle, knowing all conditions in detail would lead to
a sensitivity (detection probability) of either zero or one. In this case, the essential condition is
τ0, the onset time of the infection. Since τ0 is an unknown parameter which nevertheless defines
pt in our model, we actually solve Eτ0(pt(τ0,µ,d1,d2)) with respect to the specific density of
τ0. However, we do not want integration over the full posterior density of τ0 because that would
constitute posterior dependency between τ0 and the unknown true prevalence P(It = 1), and
consequently between τ0 and λ and ν . This can be experimented in MCMC simulations where τ0
is explicitly sampled among all other parameters from full posterior. The convergence becomes
poor and results useless, likewise in the introductory example with flat priors on both Se and
prevalence. Interestingly, when the MCMC simulations are done in BUGS using cut-function
to cut evidence feedback from the remaining model to τ0, (apart from µ), the results become
similar to the above model. The cutting effectively removes likelihood contributions stemming
from the child nodes when sampling the parameter in question. In particular, when simulating
each τ0 separately from its specific density cut(τ0t1

), . . . ,cut(τ0t4
) we obtain distributions of pt

which range from zero to p (95%), depending on the corresponding value of τ0 at each iteration.
The simulated average of pt then corresponds to the Eτ0(pt) above. This exemplifies the issue of
non-identifiability occurring if both sensitivity and true prevalence are unknown parameters in the
same full model. To avoid the problem, we need conditionally independent information to model
pt , which was achieved by eliminating τ0 by integration over the specific density in the nested
submodel.

Computational burden of integration is that, firstly, we need to solve the normalizing constant of
the density of τ0 by numerical integration. Secondly, pt is then obtained by yet another numerical
integration, divided by this normalizing constant. Integration over defined densities can be done
by using the procedure integral() provided in OpenBUGS. This procedure was only used for
computing pt as a function of parameters at each iteration step within the MCMC, while the
parameters were simulated in OpenBUGS. In the results, we monitor the MCMC sample of the
true infection prevalence P(Itk | H0

tk−1
) and the overall sensitivity pt at the given testing times. In

order to choose a sufficient level of error tolerance for the numerical integration, bivariate plots
were used, Figure (4). With too large error tolerance the mapping between pt and d1 becomes
ragged and piecewise continuous, which should not be the case. The posterior distribution of all
unknown parameters of interest is of the form:

P(λ ,µ,ν ,d1 | {D},{N}) ∝ ∏
K
k=1 Binomial(Dtk = 0 | ptk P(Itk = 1 | H0

tk−1
),Ntk)×Prior(λ ,µ,ν ,d1),

where t1, . . . , tK represent all testing times (K = 4) during the laying period and Ntk are the
corresponding numbers of flocks under testing. For Finnish flocks, Ntk = 900. Notice that the
probability of infection P(Itk | H0

tk−1
) is nevertheless a function of model parameters according to

the recursive equation, and the posterior distribution of these parameters is computed conditional
to whole data Dt1 , . . . ,DtK , depicted in the Directed Acyclic Graph (DAG) in Figure (2). In this way,
the data are informative not only on the current time point, but also retrospectively when we assess
the probabilities after finally having all data. Alternatively, one might compute strictly stepwise
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by using only the data that have been revealed before and up to a ’current’ time point. Likewise,
E(Q | H0

tK ) is a function of model parameters, but since it is not part of likelihood function or
prior, one can evaluate it also afterwards from the obtained MCMC sample of parameters. This
was done by using an R-function to evaluate the corresponding equation (5).
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FIGURE 4. Each value of d1 corresponds to a nearly unique value of pti(µ,d1,d2) (i = 1,2,3,4) because µ is very
small and d2 is either ∞ or d1 +3/52. Clear outliers from the curve then indicate possible numerical errors due to the
tolerance level set in numerical integration over τ0. With a small tolerance level errors can be minimized, although
computation time will increase. Left: d2 = ∞. Right: d2 = d1 +3/52. 50,000 iterations.

5. Results

The estimates of true prevalence (in percentages %) at the four testing times are listed in Table (1)
for two sensitivity models. Marginal posterior distributions of model parameters are shown in
Figure (5). For comparison, some results from simulation of τ0 and using cut-function are also
shown. The first model assumes that sensitivity is an increasing function of duration of infection,
whereas the second model assumes that it will also decrease after the infection has lasted over
three weeks. The latter is a somewhat pessimistic assumption because it leads to very quickly
decreasing sensitivity. These two alternative models could nevertheless be thought to provide
the worst and the best case estimates of true prevalence. Although the dynamically changing
sensitivity leads to different detection probabilities over time, the upper bound of posterior 95%
intervals are in the range of 0.15% to 1.1% at all testing times, given that the test results were
all negative in 900 flocks. There is logical connection between the estimates and the sensitivity
function: when the sensitivity is clearly increasing, the estimates become smaller, i.e. the negative
result is more likely to be truly negative. Likewise, when the sensitivity is decreasing, the estimates
become higher, i.e. there is more uncertainty about whether the negative result indicates a truly
negative status or not. From the posterior distribution of the sensitivity it may be concluded that
although the ideal sensitivity was set to 95%, this is most likely not reached over the laying period.
In the worst case, the sensitivity could be expected to be as low as 18%. On the other hand, the
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FIGURE 5. Marginal posterior distributions of µ,λ and ν . Left: d2 = ∞. Right: d2 = d1 +3/52.

estimates of true prevalence based on all data remained low even in the worst case.

Based on the MCMC sample of parameters, posterior distribution of the ’proportion of produc-
tion under infection of flock’, E(Q | H0

tK ), was computed for the two scenarios, Figure (6). In the
best case, the posterior 95% CI was [0.00%, 0.21%], but in the worst case it was [0.01%,1.08%].
The underlying assumption in both is then that any possible detected positive flocks would be
removed from production at the time of their detection. This describes only the proportion of
production that could be produced while the flocks are infected and still not removed. The result-
ing egg prevalence is expected to be much smaller because only a proportion of eggs produced
by an infected flock are actually contaminated. Reported percentages of Salmonella Enteritidis
positive eggs for such flocks have been below 1.8% (eggshell) and below 0.4% (egg content),
Dewaele I., Van Meirhaeghe H., Rasschaert G., Vanrobaeys M., De Graef E., Herman L., Ducatelle
R., Heyndrickx M., De Reu K. (2012). Also, egg contents have been reported to be clean in
randomly selected battery cages (n=50) even at a Salmonella Enteritidis positive farm, with 92%
of fecal samples positive, and 34% of eggshells positive (García C., Soriano J.M., Benítez V.,
Catalá-Gregori P., 2011). Any presence of salmonella in a flock may cause contamination of eggs,
either eggshells or contents. For now, salmonella contamination of eggshell and egg content were
not further described, although this would be the natural extension in a farm-to-fork continuum.
Model codes are available from authors by request.
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TABLE 1. Posterior estimates (%), conditional to full data, of the underlying true flock prevalence P(Itk = 1 | H0
tk ) and

sensitivity ptk at the testing times, and of E(Q | H0
tK ). 50,000 iterations (R/OpenBUGS).

Assumed sensitivity function: p(d) = p(1− e−ad)e−amax(d−d2,0) with d2 = ∞

mean sd 2.5% median 97.5%
Numerical integration of Eτ0(pt1(τ0,µ,d1,d2)), . . . ,Eτ0(pt4(τ0,µ,d1,d2))

P(It1 = 1 | H0
t0) 0.06 0.07 0.00 0.04 0.28

P(It2 = 1 | H0
t1) 0.06 0.04 0.01 0.04 0.17

P(It3 = 1 | H0
t2) 0.04 0.04 0.00 0.03 0.15

P(It4 = 1 | H0
t3) 0.04 0.04 0.00 0.03 0.15

pt1 64 5.6 54 64 75
pt2 88 1.4 85 88 91
pt3 89 1.2 87 89 91
pt4 89 1.2 87 89 91
E(Q | H0

tK ) 0.06 0.06 0.00 0.04 0.21

Simulating cut(τ0t1
), . . . ,cut(τ0t4

)

P(It1 = 1 | H0
t0) 0.06 0.08 0.00 0.04 0.28

P(It2 = 1 | H0
t1) 0.06 0.05 0.00 0.04 0.19

P(It3 = 1 | H0
t2) 0.04 0.04 0.00 0.03 0.16

P(It4 = 1 | H0
t3) 0.04 0.04 0.00 0.03 0.16

pt1 62 25 6.2 70 92
pt2 87 17 25 95 95
pt3 88 16 29 95 95
pt4 89 16 29 95 95
E(Q | H0

tK ) 0.06 0.06 0.00 0.05 0.21

Assumed sensitivity function: p(d) = p(1− e−ad)e−amax(d−d2,0) with d2 = d1 +3/52
mean sd 2.5% median 97.5%

Numerical integration of Eτ0(pt1(τ0,µ,d1,d2)), . . . ,Eτ0(pt4(τ0,µ,d1,d2))

P(It1 = 1 | H0
t0) 0.08 0.09 0.00 0.05 0.34

P(It2 = 1 | H0
t1) 0.10 0.09 0.01 0.08 0.35

P(It3 = 1 | H0
t2) 0.15 0.14 0.01 0.11 0.54

P(It4 = 1 | H0
t3) 0.20 0.20 0.01 0.14 0.75

pt1 64 6.3 51 64 75
pt2 42 4.8 34 41 52
pt3 26 4.0 19 25 34
pt4 18 3.2 13 18 26
E(Q | H0

tK ) 0.28 0.28 0.01 0.19 1.08

Simulating cut(τ0t1
), . . . ,cut(τ0t4

)

P(It1 = 1 | H0
t0) 0.10 0.12 0.01 0.06 0.42

P(It2 = 1 | H0
t1) 0.13 0.13 0.01 0.10 0.48

P(It3 = 1 | H0
t2) 0.19 0.21 0.01 0.13 0.76

P(It4 = 1 | H0
t3) 0.25 0.29 0.01 0.16 1.08

pt1 63 25 6.2 71 92
pt2 42 39 0.0 31 95
pt3 26 37 0.0 0.6 95
pt4 19 33 0.0 0.0 94
E(Q | H0

tK ) 0.33 0.39 0.01 0.20 1.39
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FIGURE 6. Posterior distribution of E(Q | H0
tK ), the expected proportion of total production under infection of the

flocks. Black density: assuming sensitivity would start decreasing after 3+52∗d1 weeks of infection. 95% interval
[0.01%,1.08%]. Red density: assuming duration of infection does not decrease sensitivity. 95% interval [0.00%,
0.21%]. 50,000 iterations.

6. Discussion

The estimation of true flock prevalence under dynamic test sensitivity can potentially reveal
age-dependent prevalence patterns in egg production chain under typical salmonella control
programme. However, the probabilities of infection remain low, given that all test results were
negative as they typically are in e.g. Swedish and Finnish production chains. With a parsimonious
model, estimates of the true prevalence could be obtained by inserting the actual data and comput-
ing the posterior estimates based on that empirical evidence. Also, the model might be further
used to study the optimal timing and number of the flock tests. The model utilizes only a small
number of parameters, with minimal prior assumptions, aiming at a compact implementation in
R/OpenBUGS. With robust but minimal external assumptions, data based results can be obtained
individually for each production chain data, instead of forcing the same assumed default values
and, consequently, similar simulation results for all populations. Hence, the probabilistic risk
assessment can be made more data based process where probabilities are updated by new evidence.
Sensitivity of the results to the most uncertain assumptions still needs to be explored. Since there
are only a few of them in a parsimonious model, extensive cross tabulations of large number of
assumptions is avoided. In this analysis, the most uncertain parameter concerns the duration of
infection that would be required before the detection sensitivity would start declining. This can
have considerable effects on results. Plausible parameter value for this remains difficult to obtain
as expert opinion and it is impossible to estimate it from currently available data. Therefore, two
scenarios were computed based on the best case and worst case assumptions.

Specification of the overall sensitivity of the surveillance method implemented in the control
programme is a prerequisite for assessing the underlying true prevalence (hidden infection status
of laying flocks). Albeit the optimal sensitivity may be assumed fairly high and well known in
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ideal conditions, the actual sensitivity over time is more complicated and depends on the within
flock epidemic process. However, detailed within flock data are seldom, if ever, available and
directly linked to the same test positive flocks in national data. Making fixed assumptions about
the evolution of the within flock process, based on completely external sources of information
would easily drive the outcome of the estimation, overrunning the actual data obtained from
testing results. The national testing results currently only report whether the flock as a whole was
detected positive or not. When the test sensitivity can be modeled, the underlying true flock status
can be estimated from the hidden Markov process model, using the reported observations. An
assumption was made that the sensitivity can be roughly determined from the duration of infection,
which depends on the unknown starting time τ0 of the infection. The observed testing results then
provide also information about when the infection probably started, given that the flock would
be infected at time t, τ0 < t. Hence, both the hidden infection status, and the overall sensitivity
conditionally depend partially on the same parameters and the posterior distribution of parameters
depends on the entire history of testing results. The probability distributions of parameters cannot
be assessed completely separately and independently of each other. Therefore, the combined
uncertainties and probabilistic inference of all model parameters are not sufficiently described by
mechanistic models with ’forward simulation’ or expert opinions, drawing independently from
external sources of information. In our example, the sensitivity parameter was modeled nested
within the larger model, to supply partially independent information for its submodel, to be used
as a fixed prior in the larger model. Related examples of cut-function in OpenBUGS are e.g. from
pharmacokinetic modeling (Lunn D., Best N., Spiegelhalter D., Graham G., Neuenschwander B.,
2009), but also joint models may be used when information feedback in full model is considered
advantageous and if poor identifiability of parameters is not a problem.

Every model contains some core assumptions which need to be acknowledged. The hidden
Markov process here makes the assumption of time-homogeneous intensities. In other words,
intensities λ and µ are assumed to be constant in time. If these were assumed to be some functions
of time, describing e.g. varying infection pressure over the age of flocks, we would need strong
additional assumptions about the nature of these functions. This would further complicate the
analysis and effectively override the information in the available data. It can be hard to obtain
meaningful results from the data unless one assumes either that the intensities are constant over
time together with a sensitivity that is a function of time, or vise versa. More informative data
might be obtained for further modeling concerning within flock prevalence at the times of default
samples. Also, comparison of more effective microbial detection methods with the current method
could be used to address the remaining uncertainty about possible percentage of false negatives
and their significance for the consequent consumer risk. Nevertheless, extensions of the current
example model would hardly be feasible without significant additional data.

7. Appendix A

Sensitivity of the testing method at time t depends on the status of the within flock epidemic
process. This depends, at least, on the duration of the epidemic, determined by the time of onset
τ0. Therefore, we aim to quantify the sensitivity as a function of duration d = t− τ0, and finally,
to account for the uncertain time of onset. First, the conditional density function of the onset time
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τ0 of the still ongoing infection at t is derived as

π(τ0 | It) ∝ π(It = 1 | τ0)π(τ0)

where the prior π(τ0) is chosen as uniform. More exactly, the prior should be the density of the
last onset time of the still ongoing infection, based on the two-state Markov process, conditional
to its observed history. But, apparently, this does not lead to an easily computable function. In our
case, both λ and µ are rather small because infections are rare, and recovery slow. The waiting
times exceed the life time of a flock. Therefore, we can expect that there is only one infection
time, if any. Conditional to It = 1 and the constant intensity λ , the density of the event time is
U(0, t), so that this can be very reasonable approximation. Given the onset time τ0 of the ongoing
infection, the probability to be still infected at time t is the ’survival probability’

π(It = 1 | τ0) = 1−F(t− τ0 | µ) = e−(t−τ0)µ .

Therefore, by normalizing we obtain:

π(τ0 | It = 1) =
e−(t−τ0)µ∫ t

0 e−(t−τ0)µdτ0
=

e−(t−τ0)µ

(1− e−µt)/µ
.

Conditionally on It = 1, it is always more probable that the ongoing infection started recently
than a longer time ago, but the steepness of the density depends on the recovery rate µ . For
example, if µ is large, it is even less likely that the infection started long time ago, because the
flock would have recovered already - if µ indeed was large.

8. Appendix B

TABLE 2. List of notations. Time unit is one year, hence e.g. ’3 weeks’ is transformed to 3/52. Time zero is defined as
the beginning of laying period.

λ intensity (rate) of new infections of flocks.
µ intensity (rate) of recovery of infection of flocks.
ν probability of being infected already in the beginning of laying period.
It binary indicator of infection of a flock at age t.
Dt number (or indicator for single flock) of positive testing results at testing age t.
Nt number of flocks tested at age t.
τ0 starting time of infection, given that it has started.
d duration of infection.
p maximum overall sensitivity of detecting an infected flock.
d1 duration of infection at which the maximum sensitivity is reached.
d2 duration of infection at which the sensitivity starts declining.
pt overall test sensitivity of detecting a flock at age t.
t1, t2, t3, t4 testing ages of the flocks.
E(Q) expected infection prevalence over laying period under no intervention

(percentage of infected flocks in a large population of laying flocks).
E(Q | H0

tK ) as above, accounting for the effect of eliminating all detected positives
at the time of detection, i.e. survival of non-detects only.

π(·) probability density of "·".
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