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Abstract: Examples of categorical rating scales include discrete preference, liking and hedonic rating scales. Data
obtained on these scales are often analyzed with normal linear regression methods or with omnibus Pearson χ2 tests.
In this paper we propose to use cumulative link models that allow for regression methods similar to linear models
while respecting the categorical nature of the observations. We describe how cumulative link models are related to the
omnibus χ2 tests and how they can lead to more powerful tests in the non-replicated setting. For replicated categorical
ratings data we present a quasi-likelihood approach and a mixed effects approach both being extensions of cumulative
link models. We contrast population-average and subject-specific interpretations based on these models and discuss
how different approaches lead to different tests. In replicated settings, naive tests that ignore replications are often
expected to be too liberal because of over-dispersion. We describe how this depends on whether the experimental design
is fully randomized or blocked. For the latter situation we describe how naive tests can be stronger than over-dispersion
adjusting approaches, and that mixed effects models can provide even stronger tests than naive tests. Examples will be
given throughout the paper and the methodology is implemented in the authors’ free R-package ordinal.

Résumé : Les données issues d’une étude hédonique ou de préférence sont généralement représentées avec une échelle
à catégories ordonnées. Elles sont souvent analysées par des méthodes de régression linéaire ou des tests omnibus de
Khi-deux de Pearson. Nous proposons dans cet article le recours à des modèles de régression à fonction de lien cumulée
qui respectent la nature ordinale des observations. Nous décrivons comment ces modèles sont liés aux tests omnibus de
Khi-deux, et comment ils peuvent conduire à des tests plus puissants en l’absence de répétitions. Pour les notations
sur une échelle ordinale, nous présentons une approche de type maximum de quasi-vraisemblance et une approche
de type "modèles mixtes" qui sont en fait des extensions du modèle à fonction de lien cumulée. Avec ces modèles
nous comparons les interprétations de l’effet moyen et de l’effet spécifique du sujet, et nous discutons comment les
différentes approches conduisent à différents tests. En présence de répétitions, les tests «naïfs» qui ignorent celles-ci
sont souvent trop permissifs à cause de la sur-dispersion. Nous discutons aussi de la dépendance du plan expérimental,
randomisé ou en blocs. Pour ces plans en blocs nous abordons la question de savoir comment les tests naïfs peuvent
être plus puissants que les approches qui prennent en compte la sur-dispersion et comment les modèles mixtes peuvent
fournir des tests encore plus puissants que des tests naïfs. Des exemples sont présentés tout au long de l’article. Les
procédures d’analyse sont implémentées par les auteurs dans l’environnement R.
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Replicated Categorical Ratings Data 59

1. Introduction

By categorical ratings data we mean data observed on an ordered categorical scale with at least
two categories. This includes the common 5, 7, and 9 points preference, liking and hedonic rating
scales, but excludes finite continuous scales as are used in sensory profiling. The categorical rating
scales are common in sensory science as well as many other sciences where humans are used as
measurement instruments (Greene and Hensher, 2010).

There are often clear grouping structures in such data because each subject provides several
observations — a concept that is known in the sensometric literature as replications. Since two
observations from the same individual are likely to be more similar on average than observations
from different individuals, the observations are not independent and conventional statistical tests
no longer apply directly. The main objective of this paper is to propose statistical tests and models
for categorical ratings data that handle grouping structures in the data appropriately. The approach
we consider here is based on cumulative link models (CLMs); a well-known class of statistical
models (McCullagh, 1980; Agresti, 1999, 2002; Greene and Hensher, 2010).

A simple approach often described in introductory text books is to use normal linear models
(regression and ANOVA) directly on the ratings under equal distance numbering of the categories.
This approach can be a useful approximation if there are sufficiently many categories and not too
many observations in the end categories, but it treats inherently categorical data as continuous.
It is hard to quantify how this affects accuracy and consistency of parameter estimates as well
as testing accuracy and power. In particular for rating scales with a small number of categories,
linear models are inappropriate. A more appealing approach is to treat the observations rightfully
as categorical as we do in this paper.

The conventional omnibus χ2-statistics treat data as categorical, but they do not utilize the
ordering of the categories. In section 2 it will be described how cumulative link models utilize
this ordering and that they often lead to stronger tests than the omnibus tests.

Tests for replicated categorical data were considered by Ennis and Bi (1999), who proposed the
Dirichlet-Multinomial (DM) model. Conceptually this model is equivalent to the beta-binomial
model (Ennis and Bi, 1998; Brockhoff, 2003) for multinomial rather than binomial observations.
The idea is to adjust conventional statistical tests for over-dispersion. Although the DM model is
applicable to ordinal data, it does not take advantage of the ordered nature of the observations.

The first approach to handling replications in categorical ratings data that we discuss is akin to
the DM model in that it adjusts standard errors for over-dispersion. The amount of over-dispersion
is estimated in a quasi-likelihood framework for cumulative link models. In contrast to the DM
model, this approach respects the ordinal nature of the observations.

The second approach to handling replications that we propose is based on cumulative link mixed
models (CLMMs) which include random effects for the grouping variable (Agresti and Natarajan,
2001). Conceptually this is an extension of linear mixed models to ordinal observations, but
computationally this model class turns out to be much more complicated. Model specification and
interpretation also turns out to be more complex partly due to the discrete nature of the observations
and partly due to the fact that the model is nonlinear in its parameters. Due to the nonlinearity of
the link function, the two approaches that we propose lead to different interpretations. The mixed
models have so-called subject-specific interpretations while the over-dispersion adjusted models
have population-average interpretations. The quasi-likelihood approach is a simple alternative to

Journal de la Société Française de Statistique, Vol. 154 No. 3 58-79
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



60 Christensen and Brockhoff

the more satisfying, but also more complicated, framework of cumulative link mixed models.
In section 2 we outline cumulative link models, we describe their relation to standard omnibus

χ2 tests and the advantages of cumulative link models over these tests. We also describe a latent
variable interpretation of cumulative link models that connects these with Thurstonian models.
In the context of sensory discrimination tests, Thurstonian models are stochastic descriptions of
sensory perception. They provide a general measure of sensory difference as the mean difference
between latent normal distributions (Thurstone, 1927a; Lawless and Heymann, 1998). In section 3
we describe a quasi-likelihood approach to handle replicated ratings data and describe similarities
and differences to the DM model. In section 4 we describe cumulative link mixed models for
replicated ratings data and contrast this approach to the quasi-likelihood approach and the DM
model. Most emphasis is given to the approach of cumulative link mixed models because we find
that this gives the most appealing and flexible framework for modeling replicated ratings data.
We end with discussions in section 5. Examples are given throughout the paper illustrating the
different approaches on data from the literature. These datasets for our examplescan be read of
from tables in the original publications. A software implementation of the methodology described
in this paper is available in the R-package ordinal (Christensen, 2012) developed by the authors
freely available for the statistical software R (R Development Core Team, 2010).

2. Cumulative link models for non-replicated ratings data

In this section we outline standard cumulative link models that do not account for replications.
We describe how association, e.g. product differences, can be tested in CLMs and we establish
the connection to the conventional χ2-statistics. We also describe an appealing latent variable
interpretation of CLMs.

2.1. Outline of cumulative link models

A cumulative link model for an ordinal variable, Yi that can fall in J categories is a linear model
for a transformation of cumulative probabilities, γi j through a link function:

P(Yi ≤ j) = γi j = F(θ j− xxxT
i βββ ) i = 1, . . . ,n j = 1, . . . ,J (1)

where the intercept parameters

−∞≡ θ0 ≤ θ1 ≤ . . .≤ θJ−1 ≤ θJ ≡ ∞ (2)

are ordered, F is the so-called inverse link function and xxxT
i is a p-vector of regression variables

for the parameters, βββ . The linear model, xxxT
i βββ is assumed to apply in the same way across all

response categories as it does not depend on j. A typical choice of link function is the probit
link, F−1 = Φ−1, where Φ is the standard normal cumulative distribution function. We will adopt
this choice throughout and motivate it in section 2.5. While the linear model, xxxT

i βββ is known as
the location structure, the cumulative link model may also be extended with a scale structure,
exp(zzzT

i ζζζ ) so that the resulting location-scale cumulative link model cf. Cox (1995); Agresti
(2002); Christensen et al. (2011) reads

γi j = F
(

θ j− xxxT
i βββ

exp(zzzT
i ζζζ )

)
i = 1, . . . ,n j = 1, . . . ,J (3)
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FIGURE 1. Illustration of a cumulative link model with four response categories.

The cumulative link model (1) is illustrated in Fig. 1 where F = Φ and J = 4 is adopted. The
horizontal displacement of the three curves is determined by the values of θ j for j = 1, . . . ,J−1.
The cumulative probabilities of an observation falling in each of the response categories can be
read of the vertical axis for a value of the linear model, xxxT

i βββ . The lines for j = 0 and j = 4 are
horizontal straight lines at 0 and 1 by definition.

The ordinal response variable, Yi can be represented by the vector YYY ∗i = (Y ∗i1, . . . ,Y
∗
i j, . . . ,Y

∗
iJ)

where Y ∗i j = 1 if Yi falls in the jth category, i.e. if Yi = j is observed and zero otherwise. YYY ∗i is said to
follow the multinomial distribution YYY ∗i ∼multinom(1,πππ i), where πππ i is the probability parameter
vector for the ith observation with elements πi j = P(Yi = j) = P(Y ∗i j = 1). The parameters satisfy

∑
J
j=1 πi j = 1 and are linked to the cumulative probabilities by γi j = ∑

j
h=1 πih, or equivalently

πi j = γi j− γi, j−1.
The probability mass function for this multinomial distribution is the multivariate extension

of the Bernoulli probability mass function P(YYY ∗ = yyy∗) = ∏
n
i=1 ∏

J
j=1 πi j

y∗i j , so the log-likelihood
function can be expressed as

`(ααα;yyy) =
n

∑
i=1

wi

J

∑
j=1

y∗i j logπi j

where wi is a potential weight for the ith observation and ααα is a vector of all parameters.

2.2. Testing in cumulative link models

In this section approaches to tests of association in cumulative link models are outlined. We will
consider the situation in which k = 1, . . . ,K, K ≥ 2 products are rated on an ordinal scale with
j = 1, . . . ,J, J ≥ 2 categories with respect to preference, liking or some other aspect of interest.
The objective is to assess if and how ratings differ among products. We will assume that k index
rows and j index columns in the resulting two-way multinomial table.
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62 Christensen and Brockhoff

Tests of association in these two-way multinomial tables can be done via likelihood ratio tests.
The likelihood ratio statistic is LR =−2{`0(α̂αα;yyy)− `1(α̂αα;yyy)} for the comparison of two nested
models m0 and m1 and α̂αα is the ML estimates under the models. The likelihood ratio statistic
asymptotically follows a χ2-distribution with degrees of freedom equal to the difference in the
number of parameters for the models being compared. For binomial and multinomial observations,
this statistic can also be expressed as

G2 = 2∑
k, j

e1k j log
e1k j

e0k j
(4)

where e1k j and e0k j are the expected counts under models m1 and m0 (Agresti, 2002; McCullagh
and Nelder, 1989). For ordinal data each row in the table is a multinomial vector which has its
sum fixed by design. The expected counts are therefore given by ek j = πk jrk, where πk j is the
fitted probability in cell (k j) and rk = ∑ j ok j is the sum of the observed counts in row k. A closely
related and often very similar statistic (Agresti, 2002; McCullagh and Nelder, 1989) is Pearson’s
statistic:

X2 = ∑
k, j

(e0k j− e1k j)
2

e0k j
(5)

These two statistics measure the discrepancy between the models m1 and m0 and are related
through the power-divergence family (Cressie and Read, 1989).

Another statistic which is generally inferior to these two statistics is the Wald statistic (Pawitan,
2000, 2001). To test the existence of an effect described by a parameter vector, ααα of length p, the
multivariate Wald statistic (Wasserman, 2004) reads

W = α̂αα
T Cov(α̂αα)−1

α̂αα (6)

which follows asymptotically a χ2-distribution with p degrees of freedom under the null hypothe-
sis and Cov(α̂αα) is the variance-covariance matrix of the parameters at their maximum likelihood
estimates. For scalar ααα this can be simplified to

√
W = α̂/se(α̂) which follows asymptotically a

standard normal distribution.

2.3. Connection to conventional χ2 statistics

In this section the connection between testing in cumulative link models and conventional omnibus
G2 and X2 tests is explored. The omnibus χ2-tests can be written as in eq. (4) and eq. (5), where
e1 are the observed cell counts and e0 are the expected cell counts given by the familiar formula
e0k j = rk · c j/N, where c j = ∑k e1k j are the column totals and N = ∑k j e1k j is the overall sum.
The statistics asymptotically follow a χ2-distribution on (J− 1) · (K− 1) degrees of freedom.
Formally, the omnibus tests assume the following null and alternative hypotheses for our setting:

H0 : YYY ∗k ∼ multinom(mk,πππ) (7)

H1 : YYY ∗k ∼ multinom(mk,πππk)

where H0 specifies that the multinomial probability does not depend on k with J−1 parameters,
and H1 specifies that the multinomial probability depends on k with (J−1) ·K parameters. The
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Replicated Categorical Ratings Data 63

difference in the number of parameters is (J− 1) · (K− 1), further, the expected counts under
model m1 corresponding to H1 are exactly the observed counts, so testing the hypotheses in (7) is
equivalent to application of the omnibus G2 and X2 tests.

The models implied by the hypotheses in (7) can be written as cumulative link models;
m0 : γ j = Φ(θ j) and m1 : γ jk = Φ(θ jk), where the cumulative probabilities, γγγ are linked to πππ

as described in section 2.1. The model, m0 implied by H0 is known as the null model because it
describes no other structure than that imposed by design, and model m1 implied by H1 is known
as the full model because it completely describes the observed data with no residual degrees of
freedom.

One of the main benefits of cumulative link models is that models intermediate between the null
and full models can easily be specified and this often leads to stronger tests of product differences
or other associations.

A cumulative link model that specifies a location difference, i.e. an additive shift on the probit
scale reads

γ jk = Φ(θ j− ck) j = 1, . . . ,J k = 1, . . . ,K ≥ 2 (8)

where ck describes the effect of the kth product. This model uses (J− 1) + (K− 1) degrees
of freedom, which, for J > 2, is less than the full model given by H1 and therefore a model
intermediate to the null and full models.

A model that specifies location as well as scale differences, i.e. additive and multiplicative
effects on the probit scale reads

γ jk = Φ{(θ j− ck)/gk} j = 1, . . . ,J k = 1, . . . ,K ≥ 2 (9)

where gk is the multiplicative effect of the kth product. This model uses (J−1)+2(K−1) degrees
of freedom which is less than the full model if J > 3 and equal to the full model if J = 3. For
J ≥ 4 a comparison of model (9) to the full model can be considered a test of differences of higher
order than location and scale differences. In general the comparison of a particular working model
to the full model is a goodness-of-fit (GOF) test of that model. Recall that an insignificant GOF
test does not imply that the model fits well, only that the test had not enough power to provide a
significant result. On the other hand a model based on plenty of data can yield a significant GOF
test while still being useful and possibly an appealing model for the data generating mechanism —
consequently GOF tests may be used rather informally.

Usually differences of higher order than location and scale are hard to identify and often even
scale differences are negligible. The discrepancies between location and null models will therefore
often be comparable in size to the omnibus G2 and X2 statistics but on fewer degrees of freedom
and therefore provides a more powerful test.

An approach related to cumulative link models is that of decomposition of χ2 statistics. The
basic idea is that the omnibus statistics can be decomposed into orthogonal components each
having a χ2 distribution such that all components with appropriate degrees of freedom add up to
the omnibus test. One degree of freedom tests for location and scale differences can be constructed
in this way. (Agresti, 2002, sec. 3.3.3) gives a brief description of the basic idea and Nair (1986) is
a thorough description and discussion of a particular decomposition. Similar ideas are described
by Rayner and Best (2001) and Rayner et al. (2005) and briefly considered in (Bi, 2006, sec.
5.3.2).
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64 Christensen and Brockhoff

TABLE 1. Ratings for a replicated paired degree-of-difference test adopted from Bi (2002). Data are aggregated over
assessors.

ratinga

pair 1 2 3
concordant 45 40 15
discordant 36 34 30

a: 1 means identical and 3 means different

In contrast to the cumulative link models, the nonparametric approach does not easily generalize
to the regression framework and to replicated data. While tests merely describe the degree of
evidence of association, a model based approach also makes it possible to investigate the nature
of association; the direction of differences and the strength of association, see (Agresti, 2002, sec.
3.3.6 and 3.4) for further discussion.

2.4. Example 1

In this example we compare various χ2 tests. Bi (2002) describes a replicated paired degree-of-
difference test where 25 subjects each assess four concordant and four discordant product pairs.
The subjects were asked to rate the degree of difference between the sample product pairs on a
three point rating scale, where 1 means identical and 3 means different. In this example we will
ignore the grouping structure in the data and analyze the data as if they were independent. The
data are summarized in Table 1.

A test of differences in ratings between concordant and discordant sample pairs is a test of
product differences. Using eq. (5), we find that the omnibus Pearson χ2-test statistic is X2 = 6.49.
On 2 degrees of freedom, we may find using tables or statistical software that the p-value is
p = 0.039. Similarly, by application of eq. (4) the omnibus likelihood ratio χ2-test statistic is
G2 = 6.59, which on df = 2 gives p = 0.037. Since the full model is equivalent to the location-
scale model (9), the same test could be obtained as a likelihood ratio test of the comparison of
model (9) and the null model.

The likelihood ratio test of a location difference is obtained by comparing the null model with
model (8). This leads to G2 = 4.70, df = 1, p = 0.030 and therefore a slightly stronger test than
the omnibus tests. The likelihood ratio test of scale and higher order differences while controlling
for location differences is G2 = 1.88, df = 1, p = 0.170. This test can be obtained as the likelihood
ratio test of models (8) and (9) or, since the χ2 statistics are additive, as the difference between the
omnibus G2 test and the likelihood ratio test of a location difference: 6.59−4.70 = 1.88 save for
rounding errors. Observe also that the likelihood ratio test of scale and higher order differences
can be considered a GOF test of the location model (8).

The main discrepancy in these data is due to location differences, while there is no evidence of
differences in scale and higher order moments. The test of location differences is a stronger test
than the omnibus tests because the main discrepancy in the table can be summarized as a location
difference on only one degree of freedom. This is a fairly typical result that is often even more
pronounced in situations with more response categories.
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FIGURE 2. Illustration of a cumulative link model in terms of the latent distribution.

2.5. Latent variable interpretation

The cumulative link model can be interpreted as a model for a continuous latent variable. Suppose
for instance that preference for a particular product type, S can be described by a normal linear
model: S ∼ N(µ,σ2), where µ describes structural differences in preference, for instance the
average difference in preference between consumers from different regions and σ is the residual
standard deviation. The variation in preference could be due to differences in product samples,
differences in perception of the samples or variations in preference. Preference, S is not observed
directly — only a categorized version, Y is observed. This latent variable interpretation is concep-
tually similar to the Thurstonian model of paired preferences (Thurstone, 1927a,b,c). Suppose that
Y is observed in the jth category if S falls between the thresholds θ j−1 and θ j obeying (2), then the
cumulative probabilities can be expressed as a function of the model parameters: γi j = Φ(θ j−µi).
This is the cumulative link model with a probit link, where µi can be described by a general linear
predictor; µi = xxxT

i βββ as in eq. (1). In this model µi refers to a location difference relative to the
origin, µ0 and scale, σ of the latent distribution; µi = (µ∗i −µ0)/σ ; similar arguments appear in
Catalano and Ryan (1992) and Christensen et al. (2011).

The latent variable interpretation of a cumulative link model is illustrated in Fig. 2 where a
probit link and J = 4 is adopted. The three thresholds, θ1, . . . ,θ3 divide the area under the curve
into four parts each of which represent the probability of a response falling in the four response
categories. The thresholds are fixed on the scale, but the location of the latent distribution, and
therefore also the four areas under the curve, change with xxxT

i βββ . Assuming other latent distributions
lead to other link functions, for example, assuming that S has a logistic distribution leads to a logit
link. The location-scale model (cf. eq. (3) and (9)) arise if the spread of the latent distribution is
also allowed to depend on i.

Likelihood ratio tests of effects are often fairly unaffected by the choice of link function
and often very large amounts of data are necessary to distinguish between the links in terms of
goodness-of-fit (Genter and Farewell, 1985). Different link functions, however, lead to different
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66 Christensen and Brockhoff

parameter estimates and interpretations can differ.

2.6. Example 2

The test of location differences in example 1, section 2.4, is a test of H0 : c2− c1 = 0 versus
H1 : c2 − c1 6= 0 in model (8) with K = 2 and J = 3. This implies the latent distributions;
Sk ∼ N(µ0 + ck,σ), where the absolute location, µ0 and scale σ are unknown and not estimable
from data, but the maximum likelihood estimate of the location difference c2− c1 is 0.3462
with standard error 0.160. The maximum likelihood estimates of the threshold parameters are
θ̂θθ = (−0.073,0.939).

3. Adjusting for over-dispersion in replicated ratings data

It was recognized by Ennis and Bi (1999) that standard statistical tests are not appropriate when
grouping structures violate the assumption of independent observations. They proposed to adjust
the test statistics by an amount related to the degree of over-dispersion in the data relative to what
would be expected for independent observations. The degree of over-dispersion is estimated in a
Dirichlet-multinomial (DM) model where the multinomial probabilities are allowed to vary. A
disadvantage of this approach for rating data is that it treats ordinal data as unordered. We present
in this section an alternative approach of adjusting tests for over-dispersion within models that
take advantage of the ordered nature of the ratings.

3.1. Quasi-likelihood approach

A well-known way of modeling over-dispersed discrete data is the quasi-likelihood approach
(Wedderburn, 1974; McCullagh and Nelder, 1989). The basic idea is to model the population
mean of the observations with a linear predictor through a link function. The amount of over-
dispersion is estimated by comparing the observed variation with the variation that would be
expected if the observations were independent. This approach conceptually amounts to estimating
parameters with a standard cumulative link model, but adjusting the variance-covariance matrix
of the parameter estimates by multiplication with an over-dispersion parameter φ .

Over-dispersed cumulative link models are specified in terms of the first two moments of the
distribution of the observations and so does not assume a full likelihood specification including
higher order moments. This means that likelihood ratio tests are unavailable, but Wald tests of
individual parameters and multivariate Wald tests of model terms can be constructed. Approximate
F-tests for model terms can also be constructed that are similar to likelihood ratio tests for
likelihood based models, but these F-tests tend to be rather conservative, so we do not consider
them further. See Collett (2002) for construction of these F-tests in binomial models; see also
McCullagh and Nelder (1989) and Venables and Ripley (2002) for relevant discussion. In this
approach, observations are assumed to follow a quasi-multinomial distribution with expectation
E[YYY ] = mπππ and covariance Cov[YYY ] = φm(diag(πππ)−ππππππT ), where the over-dispersion parameter,
φ distinguishes the distribution from a genuine multinomial distribution which has φ ≡ 1. A
cumulative link model is assumed to describe the mean structure in the observations and the
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TABLE 2. Replicated degree of liking data from 104 subjects reported by Ennis and Bi (1999) aggregated over subjects.

ratinga

city 1 2 3 4 5
New York 9 26 15 120 154
San Francisco 5 21 28 129 117

a: 1 means “dislike very much” and 5 means “like very much”.

variance-covariance matrix of the parameters is given by Cov[ααα] = φGGGααα , where GGGααα is the variance-
covariance matrix of ααα in a standard full likelihood approach. The quasi-likelihood approach
therefore amounts to inflating the standard errors of the parameter estimates with,

√
φ .

There are two standard approaches to estimate φ related to the G2 and X2 statistics (Pawitan,
2001; McCullagh and Nelder, 1989):

φ̂G =
2

n− p ∑
k, j

e1k j log
e1k j

e0k j

φ̂P =
1

n− p ∑
k, j

(e0k j− e1k j)
2

e0k j

where n = (J−1) ·K is the total number of degrees of freedom, p is the number of parameters in
the model, e1k j are the observed cell counts and e0k j are the expected cell counts under the model.
This corresponds to a generalized estimation equation (GEE) approach assuming a so-called
independence working correlation model (Fahrmeir and Tutz, 2001, sec. 3.5). The estimators are
only valid when the multinomial table is not sparse; as a general rule the expected frequencies
should be at least five. There are generally only minor differences between the two φ -estimators.
A considerable difference is an indication that the model is inappropriate and tests in the model
should not be trusted. When this occurs the expected frequencies are small or important structures
have been ignored in the data.

Under the quasi-likelihood model a modified Wald statistic, W ∗ =W/φ̂ is used instead of the
standard Wald statistic (6) to test association.

3.2. Example 3

In Ennis and Bi (1999) the degree of liking among consumers in a replicated rating experiment
conducted in New York and San Francisco was considered. A five-point liking scale was adopted
where 1 means “dislike very much” and 5 means “like very much”. 54 subjects from New York
and 50 subjects from San Francisco were included in the study and each of the subjects evaluated
six samples of the product. The main objective is to consider whether there is a difference in
liking between cities. Data are summarized in Table 2 aggregated over subjects.

The omnibus Pearson and likelihood ratio tests applied directly to Table 2 yield X2 = 10.07, df
= 4, p = 0.039 and G2 = 10.15, df = 4, p = 0.038 indicating a difference between the cities with
respect to liking.

The joint test of location and scale differences while ignoring the grouping structure (replica-
tions) in the location-scale model (9) with K = 2 and J = 5 is LR = 6.71, df = 2, p = 0.035. The
multivariate Wald test for the same hypothesis yields W = 7.31, df = 2, p = 0.023. The likelihood
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ratio test for higher order differences is LR = 3.44, df = 2, p = 0.179, so there is no evidence of
more than location and scale differences.

In Ennis and Bi (1999) a Dirichlet-Multinomial (DM) model was fitted to the data from each of
the two cities and obtain estimates of over-dispersion correction parameters, which employed in a
(bivariate) Wald test yields p-value = 0.38 of the difference in liking between the two cities. They
conclude that when adjusting for over-dispersion, there is no evidence of a difference in liking
between the two cities.

The estimate of φG based on model (9) is the likelihood ratio statistic for the test of higher order
differences scaled by the residual degrees of freedom, n− p= 4 ·2−6= 2, i.e. φ̂G = 3.44/2= 1.72.
The Wald statistic for the joint test of location and scale differences is W ∗ = 7.31/1.72 = 4.25,
which on 2 degrees of freedom gives p = 0.119. This test is adjusted for the over-dispersion
caused by the replications and is therefore more appropriate than the naive test; consequently
the naive test assuming independent observations is too liberal. The test of regional differences
based on quasi-likelihood leads to an answer (p = 0.119) in between the too liberal naive test
(p = 0.038) and the DM model proposed by Ennis and Bi (1999) (p = 0.38).

4. Cumulative link mixed models for replicated ratings data

In this section we consider an extension of cumulative link models where random effects are
included in the location part of the predictor. As such it can also be viewed as an extension of
linear mixed models to ordered categorical observations. This framework is more flexible than
the quasi-likelihood approach and allows for a more insightful modeling of grouping structures.
Cumulative link mixed models is a member of a class of models sometimes referred to as
multivariate generalized nonlinear mixed models (Fahrmeir and Tutz, 2001). The latent variable
interpretation carries over to the mixed versions of cumulative link models and if the probit link is
assumed, the model amounts to a standard linear mixed model for the latent variable. A cumulative
link mixed model with a single random effect term can be expressed as

γi jl = F(θ j− xxxT
il βββ −bi) i = 1, . . . ,n l = 1, . . . , li j = 1, . . . ,J

where it is assumed that the conditional distribution of the observations given the realizations of
the random effects is multinomial and the random effects are normally distributed

(Yil|Bi = bi)∼Multinom(1,πππ il) Bi ∼ N(0,σ2
b )

The βββ and θθθ parameters describe the structure in the conditional distribution of the observations,
and σb describes the heterogeneity in the population. This model is akin to a normal linear mixed
model where the response is treated as ordinal rather than normally distributed. If the inverse
link function, F is taken to be the standard normal cumulative distribution function, this model
corresponds to assuming the following linear mixed model for the latent scale:

Sil = xxxT
il βββ +bi + eil Eil ∼ N(0,σ2) Bi ∼ N(0,σ2

b ) (10)

This is possibly the simplest model for the latent scale that accounts for the grouping structure in
the data.
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The population spread, σb is estimated relative to the spread of the latent scale, so it can be
interpreted as a ratio of between-to-within subject variation. Observe also that the size of σb
changes with the link function. This is not only because this means another mapping from the
linear predictor to the probability scale, but primarily because the variance of the residuals (cf.
eq. (10)) change with the distributional assumptions entailed by the link function. For instance a
logit link corresponds to assuming a logistic distribution for the latent scale, and since the standard
logistic distribution has variance π2/3, the estimated σb will be scaled by approximately π/

√
3

compared to the estimate obtained with a probit link.
The log-likelihood function for the models we consider may be written as

`(θθθ ,βββ ,σb;y) =
n

∑
i=1

log
∫
R

p(yyyi|bi)p(bi)dbi (11)

where p(yyyi|bi) is the conditional multinomial probability mass function of the observations given
the random effects, and p(bi) is the (marginal) normal density of the random effects. The log-
likelihood is a sum of n independent contributions since observations from different individuals
are assumed independent.

Estimation of CLMMs is complicated by the fact that the integral in eq. (11) does not have
a closed form solution. Several different approximations have been proposed and two of the
most popular are the Laplace approximation and adaptive Gauss-Hermite quadrature (AGQ)
(Liu and Pierce, 1994; Pinheiro and Bates, 1995; Skrondal and Rabe-Hesketh, 2004; Joe, 2008).
The Laplace approximation is a fast and reasonably accurate approximation while AGQ is
computationally more intensive, but it has the advantage that the accuracy can be increased by
adding more quadrature nodes. Often the Laplace approximation is sufficiently accurate while
essentially exact estimates can often be obtained from AGQ with a few, e.g. 5–10 nodes. Following
Joe (2008) we recommend that the Laplace approximation is used initially; the final model may be
estimated accurately with AGQ by increasing the number of nodes until the parameter estimates
do not change by any relevant amount.

The Laplace approximation and AGQ are implemented in R-package ordinal (Christensen,
2012) for CLMMs and AGQ is also implemented in the NLMIXED procedure for SAS (Inc.,
2008).

4.1. Attenuation effects

A mixed effects model is known as a conditional model because the model is formulated for the
conditional distribution of the response given the random effects. This means that the parameters
of the model apply at the level of subjects and not at the population level, so these parameters are
known as subject-specific parameters.

Models like the quasi-CLM and DM model are known as marginal models since these models
are formulated for the marginal distribution of the response EB[Y ]. Usually in such models the
correlation structure is treated as a nuisance and only needed to obtain inference for the mean
structure. Since the marginal distribution is modeled directly, the parameters of these models
apply at the population level and are denoted population-average parameters (Diggle et al., 2002;
Agresti, 2002; Fitzmaurice et al., 2009).
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f(Si|x1)

f(Si|x2)

β

FIGURE 3. Illustration of the attenuation effect of a CLMM in terms of latent distributions.

Marginal models do not model individuals explicitly like conditional models, where a subject-
distribution is assumed. Conditional models are models for the data-generating mechanism
whereas quasi models are not full distributional descriptions.

While it is not possible to obtain subject-specific interpretations from a marginal model, it is
possible to obtain population-average interpretations from a conditional model because a particular
conditional model implies a marginal model (Zeger et al., 1988; Zeger and Liang, 1992). Marginal
predictions and population-average parameters can therefore be obtained in two general ways:
1) by modeling the marginal distribution directly or 2) by obtaining the marginal predictions
and parameters implied by a conditional model. Often these two population-average parameter
sets are of similar magnitude and usually lead to the same inference. Consequently, conditional
cumulative link mixed models constitute a richer framework than the marginal models.

In normal linear mixed models subject-specific and population-average parameters coincide, but
in cumulative link mixed models, and generalized linear mixed models in general, the population-
average parameters implied by a conditional model are attenuated, i.e. smaller in absolute size,
relative to the subject-specific parameters. In the CLMM with a probit link, the expectation over
the random effects distribution, i.e. the implied marginal model, can be derived explicitly, for
details see appendix A:

EB[γi jl] = EB[Φ(θ j− xxxilβββ −bi)] (12)

= Φ(θ pa
j − xxxilβββ

pa)

where θθθ
pa = θθθ/

√
1+σ2

b and βββ
pa = βββ/

√
1+σ2

b are the population-average parameters implied
by the conditional model.
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The attenuation effect is illustrated in Fig. 3. Each of the dashed curves represent the latent
distribution, f (Si) for an individual at two predictor values, x1 and x2. At x2 the latent distributions
are shifted an amount, β relative to x1. The solid curves are the latent distributions at the population
level which are averaged over individuals. Due to the variation among individuals, the population-
average distributions have higher variance than the subject-specific distributions. The relative shift
of the curves, that is the size of the shift relative to the spread of the curves, is therefore smaller
for the population-average distributions than for the subject-specific distributions.

If all individuals assess a single sample, the indexes i and l coincide (cf. eq. (10) and (12)) and
the variance components, σ2

b and σ2 are completely confounded. Thus, if there is heterogeneity
among individuals, the estimate of βββ from the non-replicated design (or if individual heterogeneity
is not accounted for in a replicated design), βββ

pa is attenuated, i.e. too small in absolute size. While
the standard tests are valid for non-replicated designs even if there is variation among individuals,
the parameter estimates are not consistent and too small in absolute size.

4.2. Tests in marginal and conditional models

In marginal models, inter-individual variation will always translate into over-dispersion, inflation
of standard errors and therefore more conservative tests of e.g. product differences. In conditional
models this is not always the case. Not only can the naive test; the test ignoring replications all
together, be more appropriate than the test in a marginal model with inflated standard errors, the
test in a conditional model can also be even more powerful than the naive test. In some cases the
naive test will even be unreasonable and a more appropriate test is provided by the conditional
model.

This may happen in randomized block settings, that is, in situations with crossed factors, as
in example 1, where each consumer evaluated both concordant and discordant product pairs.
The randomized block setting is the most common structure for consumer preference studies
— although typically with only one evaluation for each combination of product and consumer
— or even less in incomplete settings. In the example here, there are replications on top of the
randomized blocks, but this is not of key importance for the point to be made here. As opposed to
this we have the purely nested (“completely randomized”) situation illustrated in example 3, with
a grouping of the consumers as the effect of interest — again with additional replications within
consumers on top of this.

In the randomized block settings, the proper test for product/treatment differences does not
include the block (main) effect — it is removed from the error — this is the main idea of making a
blocked experiment. In normal linear models with complete data for an unreplicated randomized
block experiment, the sums of squares (SS) decompose into: SS(total)=SS(block)+SS(treat)+SS(error),
and the treatment effect is tested against mean square for error. Ignoring blocks in this setting
would lead to an error term based on SS(block)+SS(error) rather than SS(error) which in turn
leads to a conservative test. Only in situations with either a very weak block effect or a very high
number of products relative to the number of blocks, this is not a major problem, but indeed for
the typical consumer experiment the pooling of the block effect into the error will grossly affect
the analysis.

In analyses of binomial and ordinal data the tests cannot be expressed exactly in terms of
mean squares like this, but only approximately so. Consider for example that for binomial data
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with observations away from the extremes and high enough binomial denominator, a normal
approximation analysis would give more or less the same results as a standard logistic regression
analysis. Clearly, even though the data come in a binomial or ordinal form, it will generally be
inadequate to pool the (random) block effect into error, which is exactly what a marginal analysis
corresponds to. To summarize, the simple over dispersion approach entailed by marginal models
is not well suited to handle random effect models other than purely nested ones. This point is
not commonly realized nor even discussed in the literature. A clear advantage of mixed effects
models is that they lead to correct tests irrespective of experimental design and effect sizes.

4.3. Example 4

In this example we will revisit the paired degree-of-difference test from example 1 in section 2.4
where 25 subjects each assessed four concordant and four discordant product pairs. A Stuart-
Maxwell test adjusted for over-dispersion was suggested in Bi (2002). This test gave X̃2

p = 3.85, df
= 2, p = 0.146, which is more conservative than the tests that assumed independent observations.
Similarly, for a Wald test in a quasi-CLM we find φ̂G = 1.88, so W ∗ = 1.58, df = 1, p = 0.114 with
essentially the same conclusion. A cumulative link mixed model that allows for subject-specific
effects reads

γi jk = Φ(θ j− pk−bi) j = 1, . . . ,3 k = 1,2 i = 1, . . . ,100 (13)

Observe that product and subject factors are crossed in the sense of section 4.2, so we can expect
the test of product differences to be as strong, or perhaps stronger, in the mixed effects model in
comparison with the naive test. The likelihood ratio test of pk in model (13) is LR = 5.84, df = 1,
p = 0.016, which provides strong evidence of a product difference. Not only is the test stronger
than the adjusted Stuart-Maxwell test and the Wald test from a quasi-CLM, it is also stronger than
the naive tests reported in example 1 for the same data where individual differences were ignored.

4.4. Tests of random effects terms in cumulative link mixed models

Likelihood ratio tests can be used to test fixed-effects model terms in the same way for cumulative
link mixed models as in cumulative link models — tests of random effect terms is a bit more
complicated. A likelihood ratio test of a random-effects term is a test of the following hypotheses
for the variance parameter:

H0 : σb = 0 versus H1 : σb > 0 . (14)

Observe that the test is one-sided, since the random effects standard deviation is non-negative. The
usual asymptotic theory for the likelihood ratio statistic, LR dictates that the LR asymptotically
follows a χ2

1 -distribution with one degree of freedom. However, since the σb is on the boundary
of the parameter space, the usual asymptotic theory does not hold. Following Self and Liang
(1987); Stram and Lee (1994) the LR more closely follows an equal mixture of χ2-distributions
with zero degrees of freedom (a point mass distribution) and one degree of freedom. The p-value
from this test can be obtained by halving the p-value from the test assuming LR ∼ χ2

1 . This
adjusted test can be motivated by the following: for a single parameter, we can consider the
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FIGURE 4. Profile likelihood of σb in model (13) for the paired degree-of-difference example.

likelihood root statistic, r = sign(σ̂b−σ0)
√

LR; the signed square root of the likelihood ratio
statistic (Brazzale et al., 2007; Pawitan, 2001), which under the usual asymptotic theory follows a
standard normal distribution. Here, σ0 is the value of σb under the null hypothesis and σ̂b is the
maximum likelihood estimate of σb. The p-value from the one-sided test of the hypotheses in (14)
can be computed as p = 1−Φ(r) and is exactly the p-value from the adjusted likelihood ratio
test.

Wald tests of the variance parameter can also be constructed, but since the profile log-likelihood
function is only approximately quadratic when σ̂b is not small and well defined, such tests cannot
be recommended (Pawitan, 2000; Boyles, 2008). Confidence intervals for parameters should
preferably be constructed from profile likelihood functions rather than from inverted Wald tests as
is for instance implemented in the R-package ordinal (Christensen, 2012).

4.5. Example 5

In this example we continue the analysis of the paired degree-of-difference test from example 1 in
section 2.4 and illustrate how inference for the assessor population can be conducted.

The estimated location difference between the two products is 0.404 with standard error 0.168
and the random-effects standard deviation is σ̂b = 0.614. Observe that estimate and standard error
of the location parameter are larger as expected. The thresholds estimates are θ̂θθ = (−0.073,0.939).
The relative profile likelihood for σb in Fig. 4 displays the evidence in the data about this parameter.
The 99% confidence interval includes zero while the 95% confidence interval does not. While a
random-effects spread of zero has some support, it is not likely to be considerably larger than one.
The one-sided hypotheses in (14) yields p = 0.014, but the significance of σb was already visible
from the profile likelihood in Fig. 4.

The variance parameter can be interpreted as the variation in the subjects’ use of the response
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scale, i.e. the variation in the thresholds among the subjects. Roughly 95% of the population will
be within ±2σb = 1.23, so the shift of the thresholds will span roughly 1.23 units among the
population. In comparison, the distance between the thresholds is 1.01 and the product effect is
0.404, so the variation in the population is considerable compared to the distance between the
thresholds and the product effect.

4.6. Example 6

In this section we continue the analysis of the consumer liking example in section 3.2 where
we found very weak evidence of a difference in liking (p = 0.119) in a Wald test adjusting for
over-dispersion. A cumulative probit mixed model for these data reads

γi jk = Φ

(
θ j− ck−bi(k)

gk

)
i = 1, . . . ,nk j = 1, . . . ,5 k = 1,2 , (15)

where the parenthesized index on b indicates that subjects are nested within cities. The joint LR
test of ck and gk in model (15) gives p = 0.35 which is close to the result by Ennis and Bi (1999)
(p = 0.38) who took an overdispersion approach. The cumulative probit mixed model confirms
that there is no evidence of a difference in liking between the two cities. In this case subjects are
nested in cities and the naive test is liberal compared to the tests that take account of replications in
line with the discussion in section 4.2. Further, tests from the conditional and marginal models lead
to equivalent conclusions. There is, however, a considerable variation among consumers in their
perception of the liking scale. The maximum likelihood estimate of σb is 0.944 in model (15). The
normalized profile likelihood in Fig. 5 confirms that the spread is well-determined. The likelihood
root statistic from the one-sided test of σb is 12.84 corresponding to a p-value of essentially zero
(around 5 ·10−38).

TABLE 3. Maximum likelihood parameter estimates (standard errors) in models for the city preference data in Table 2.

Parameter Model (9) CLM Model (9) quasi-CLM Model (15) CLMM
c2 –0.183(0.084) –0.183(0.111) –0.231(0.208)
g2 –0.185(0.088) –0.185(0.115) –0.154(0.098)
σb 0.944
θ –1.93, –1.28, –0.98, 0.056 –1.93, –1.28, –0.98, 0.056 –3.00, –1.86, –1.34, 0.14
log-lik. –714.15 — –658.73

The cumulative link model (CLM), the cumulative link model with over-dispersion adjusted
standard errors (quasi-CLM) and the cumulative link mixed model (CLMM) are summarized in
Table 3. The parameter estimates for the CLM and quasi-CLM are identical and only the standard
errors differ reflecting the adjustment for over-dispersion in the quasi-model. The estimated
location and threshold parameters are larger in absolute measures for the CLMM in line with
the discussion in section 4.1. Also observe that the standard error of the location parameter is
larger in the CLMM than in the CLM. In the quasi-model the standard errors are inflated by the
same amount while only the standard error of the location parameter is appreciably bigger in the
CLMM.

The parameter estimates for the CLMs have population-average interpretations, i.e. they
correspond to the effects that we see at the population level. The parameter estimates in the
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FIGURE 5. Profile likelihood for σb in model (15) for the consumer liking example. The 95% and 99% confidence
intervals are indicated by horizontal lines and given by (0.75, 1.18) and (0.70, 1.26) respectively.

TABLE 4. The probabilities of rating a product in the five categories for the city preference data in Table 2.

Segment dislike very much 2 3 4 like very much
Sample 0.022 0.075 0.069 0.399 0.434
Population-averagea 0.015 0.079 0.083 0.398 0.424
Subject-specific 0.001 0.029 0.063 0.515 0.392
5% percentile subject 0.077 0.344 0.219 0.335 0.025
95% percentile subject <0.001 <0.001 0.001 0.078 0.920

a: Population-average predictions from CLM and CLMM models coincide.

CLMM have subject-specific interpretations. This is not particularly important for the location
and scale differences in this example since these effects are small and insignificant, but it makes a
difference in the interpretation of the fitted probabilities. For simplicity of exposition we ignore
location and scale differences and consider a CLMM only accounting for subject differences,
γi j = Φ(θ j−bi). The threshold estimates are (–3.11, –1.88, –1.32, 0.27), and the random effects
spread estimate is σ̂b = 1.02. The probabilities that ratings fall in each of the five categories are
presented in Table 4. The first line presents the raw sample proportions. The fitted probabilities
from a CLM with no predictors, γ j = Φ(θ j), were identical to the population-average predictions
from the CLMM only accounting for subject differences to three digits. These are presented
in the second line and are seen to correspond very well to the raw sample proportions. The
third line are the fitted probabilities for an average subject, i.e. with bi = 0, which is distinctly
different from the probabilities at the population level. From the sample or population estimates
we might be tempted to conclude that an average individual would have the highest probability of
responding in the “like very much” category because the highest probability is associated with
this category, but this is not correct. This kind of subject-specific interpretation should be based
on the conditional model predictions presented in line three of Table 4. From this line we see that
an average subject is most likely to respond in the fourth category and not the fifth. To illustrate
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the variation between subjects, the ratings of the 5% and 95% percentiles in the distribution
of subjects has been included as well reflecting how subjects that are relatively extreme would
tend to rate samples. People that like the products the least primarily use the middle categories,
while virtually no one would primarily use the “dislike very much” category. On the other hand
people that like the products the most almost exclusively rate the products in the “like very much”
category.

5. Discussion

In this paper we have shown how cumulative link models can be used for sensory tests on
categorical ratings data. We have described how cumulative link models relates to standard
omnibus χ2 tests and how cumulative link models often lead to stronger tests of association
because the ordinal nature of ratings data can be utilized. We have suggested two extensions
of cumulative link models for replicated data and compared these approaches to the Dirichlet-
Multinomial model suggested in Ennis and Bi (1999). Our first suggestion is a quasi-likelihood
cumulative link model which leads to Wald tests adjusted for over-dispersion, and our second
suggestion is a cumulative link mixed model that explicitly models the population of subjects.
When the factor of interest is crossed with the subject factor, marginal models in adjusting for
over-dispersion can lead to tests that are weaker and more conservative than naive tests while
more correct tests like those of (conditional) mixed models are actually stronger than naive tests.
So while approaches adjusting for over-dispersion are not always appropriate, mixed (conditional)
models lead to appropriately sized tests irrespective of experimental design. The mixed model can
also provide insight into how subjects use the rating scale and can provide subject-specific as well
as population-average interpretations. All models discussed in this paper can be fitted with the
authors’ freely available R-package ordinal (Christensen, 2012).

It was shown in Brockhoff and Christensen (2010) how several common discrimination pro-
tocols (m-AFC, duo-trio, triangle and A-not A) can be identified as generalized linear models.
This makes it possible to adjust analyses for the effects of e.g. gender differences or varying
concentrations of an additive. In this way sensory discrimination and preference protocols are
combined with statistical models that enhance the models with a general regression framework.
In the same line of work it was shown in Christensen et al. (2011) how the identification of the
Thurstonian model for the A-not A with sureness protocol as a cumulative link model with a probit
link could allow the analysis of such data to take account of explanatory variables describing the
assessors/consumers or the experimental conditions. In this paper we have shown how cumulative
link mixed models accommodate replications via random effects. Cumulative link mixed models
also extend naturally with a general regression framework and makes it possible to model and
control for the effect of explanatory variables — these extensions are also supported by the ordinal
package (Christensen, 2012).

In more complicated settings, e.g. in larger consumer preference studies including for instance
many consumers, many products and possibly many sessions, it may be of interest to include two
or more cross-classified factors as random terms in the model. Cumulative link mixed models with
cross-classified random terms can be fitted with the Laplace approximation in ordinal package,
while Gaussian quadrature methods are not available for such model structures.

One of the examples considered a degree-of-difference rating experiment. This protocol is
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an extension of the same-different protocol to a rating scale, and while a Thurstonian model
has been derived for the same-different protocol, see Macmillan et al. (1977) and Christensen
and Brockhoff (2009) for further details, we are not aware of derivations of the Thurstonian
model for the degree-of-difference protocol, see, however Irwin et al. (1993) for a discussion. The
cumulative link model is not a Thurstonian model for degree-of-difference ratings data per say.

Cumulative link models were also considered for analysis of data from the A-not A with
sureness protocol in Christensen et al. (2011). Replicated A-not A with sureness data are also
replicated ordinal data, and the methods proposed in this paper can also be used to handle the
issue of replications in this situation.

Appendix A: Marginal parameters in a CLMM with a probit link

Following Ten Have et al. (1996) taking the expectation with respect to the distribution of B gives

EB[γi jl] = EB[Φ(θ j− xxxilβββ −bi)]

= EB[P(Z ≤ θ j− xxxilβββ −bi)]

= P

Z ≤
θ j− xxxilβββ√

1+σ2
b


= Φ

θ j− xxxilβββ√
1+σ2

b


= Φ(θ m

j − xxxilβββ
m)
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