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Abstract: Let (X;,Y;) be a bivariate stationary time series in some environmental study. We are interested to estimate
the failure probability defined as P(X; > x,Y; > y), where x and y are high return levels. For the estimation of high
return levels, we consider three methods from univariate extreme value theory, two of which deal with the extreme
clusters. We further derive estimators for the bivariate failure probability, based on Draisma et al. (2004)’s approach and
on Heffernan and Tawn (2004)’s approach. The comparison on different estimators is demonstrated via a simulation
study. To the best of our knowledge, this is the first time that such a comparative study is performed. Finally, we apply
the procedures to the real data set and the results are discussed.

Résumé : Nous nous intéressons a deux variables quantitatives mesurées au cours du temps, formant ainsi une série
temporelle bivariée (X;,Y;) supposée stationnaire. Nous souhaitons estimer une probabilité de défaillance, définie
comme la probabilité P(X; > x,¥; > y), ol x et y sont deux valeurs extrémes (trop grandes pour étre observées, ou
presque). Plus précisément, x et y représentent des niveaux de retour dont I’estimation sera effectuée par trois méthodes
concurrentes issues de la théorie univariée des valeurs extrémes. La théorie multivariée des valeurs extrémes fournira
des estimateurs de la probabilité de défaillance prenant en compte la dépendance, pouvant subsister ou au contraire
s’effacer lorsque I’on se focalise sur les valeurs extrémes. Nous présenterons plusieurs méthodes d’estimation, fondées
sur des approches introduites par Draisma et al. (2004) d’une part, et par Heffernan and Tawn (2004) d’autre part.
Nous mettrons ensuite en concurrence les estimateurs déduits sur des simulations dans un premier temps, puis sur des
données réelles environnementales. Les résultats obtenus seront finalement discutés.
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1. Introduction

Extreme value theory (EVT) is now considered as a “classical” mathematical framework to
evaluate some exceptional risks. See for example the books of Leadbetter et al. (1983), Resnick
(1987), Embrechts et al. (1997), Coles (2001), Beirlant et al. (2004), de Haan and Ferreira
(2006), or Resnick (2007). EVT models make it possible to extrapolate outside the range of the
observations using the highest observations. A typical issue is to estimate a “failure probability",
that is to say the probability that a given random vector (Xj,...,X;) belongs to a “rare set" A.
Here, the failure region A corresponds to a zone where damages should be observed, so that
hopefully only very few (or no) observations have been observed in this set. In the multivariate
framework discussed here, a capital element is to properly take into account the dependence
between the different variables X1, ...,X;. This has been for example noticed by Patrick Galois
(Météo France), who explained in the newspaper Le Monde of March 1st, 2010 : “Si la tempéte
Xynthia présente un caractere remarquable, elle n’est pas pour autant le phénomene du siecle.
Elle est ainsi moins exceptionnelle que celles de 1999 et ses vents sont moins intenses qu’en 2009.
Mais son issue dramatique réside dans sa conjonction a un fort coefficient de marée sur la cote
atlantique, au moment méme de la marée haute. Ce sont ces trois phénomenes naturels réunis qui
ont provoqué les inondations des cbtes et des dégats humains et matériels.” A misspecification
of the dependence between the variables can induce a substancial under-estimation of the risk.
See for example the contributions of Bruun and Tawn (1998), de Haan and de Ronde (1998), and
Chapter 8 of de Haan and Ferreira (2006) for more on this subject.

This paper applies EVT to answer a concrete question raised in the environmental context.
The work presented here is the result of a collaboration with Electricité de France. Due to
confidentiality constraints, we will not describe in detail the environmental variables that have
been considered, but we will start instead from a preprocessed data set, that can be considered
as stationary. The data of interest have two univariate components that can be considered as
stationary time series (X;) and (Y;). The aim of this paper is to estimate via different methods
based on EVT a pre-defined failure probability of the form

]P)(Xt >sz7Yt >yty) )

where x;, and y,, are respectively the tx-year return level of X and the ty-year return level of Y,
for given tx and ty, as defined in Section 2.1. Due to confidentiality constraints again, we will not
give the values of 7y and ty that have been considered.

The study has been driven in several stages, that will give the structure of the paper. Section 2
concerns the analysis of the extremal behaviors of both univariate components X and Y. In this
section, the rx-year return level of X and the ty-year return level of Y will be estimated by three
methods, see Sections 2.2 to 2.4. A conclusion of this part is given in Section 2.5. Section 3
first introduces different estimators of the probability of a bivariate failure set, based on Draisma
et al. (2004)’s approach (see Section 3.1) and on Heffernan and Tawn (2004)’s approach (see
Section 3.2). A simulation study is then presented in Section 3.3 that explores the performances
of the different competitors. To the best of our knowledge, this is the first time that such a
comparative study is done. Finally, the analysis of the real data set is provided in Section 3.4, and
some conclusions are drawn in Section 4.

Journal de la Société Frangaise de Statistique, Vol. 154 No.2 178-199
http://www.sfds.asso.fr/journal
© Société Francaise de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



180 Cai, Fouggres, Mercadier
2. Univariate analysis

A first step in the analysis is to consider both variables separately. So we are here concerned by
the analysis of an extremal behavior in a univariate setting.

2.1. Definition of the Return Level

Let X be the quantity of interest. The tx-year return level, denoted by x;,, is defined to be the
i—tail quantile of the annual maximum of X ; see for instance (Coles, 2001, page 49). Namely,
the level x;, satisfies
1
IP)<maXXS >x,X> = ol

seyear X

where maxe year Xy denotes the annual maximum of X. In our setting, the stationary phenomenon
is observed each year on a grid of size ng. Then one can approximate x;, with the level defined by

IP’(_ max X; >x,X> = 1 .
i=1,...,np tx
Note that in the displayed formula above, the X;’s are not necessarily independent.

Since we are interested in the tx-year return level of X and ty-year return level of Y, with
both #x and #y large, the empirical quantile on annual maxima are not directly tractable. Three
extrapolation methods based on extreme value theory will be used instead, as presented below.

2.2. Estimation of the return level: GEV method

It is possible to fit a generalized extreme value (GEV) distribution on the sample of annual
maxima. Such distribution depends on three parameters: i denotes the location parameter, ¢ the
scale parameter and 7y the shape parameter. The cumulative distribution function is given by

X — _
Gu,o,y(x) == exp (—(1 —1—}’%) 1/7> ,

for 1+ }/)% > 0. The case y = 0 is obtained as the limit of the formula. Once the model is fitted,
the return levels are obtain as the quantile of the generalized extreme value distribution. Even if it
is not the best choice since the number of observations is drastically reduced, this method is very
well known. Figure 1 and 2 give goodness-of-fit diagnosis of the annual maxima with the GEV
distribution, and show that the GEV model used fits quite well. The independence assumption of
the sample is debatable, as can be seen for small values of lag on Figure 3 and 4 via Ljung-Box
test. Recall that it compares the set of the first autocorrelations with the set of autocorrelations
that are all zero, see Ljung and Box (1978). For a reasonable value of lag (here 10, chosen by
taking into account our sample size), this test gives a p-value equal to 0.2035 for Variable X and
to 0.2366 for Variable Y.
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Figure 1: GEV plots for annual maxima of Variable X.
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Figure 2: GEV plots for annual maxima of Variable Y.

Journal de la Société Frangaise

de Statistique, Vol. 154 No.?2 178-199

http://www.sfds.asso.fr/journal

© Société Francaise de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238

50.0

181



182 Cai, Fougeres, Mercadier

p values for Ljung-Box statistic p values for Ljung-Box statistic
2 =,
2 = o
4 . 2 N
o~ ~ ) o
S o ° s 7 o °
o ° ° o o o o
o
S P .
° T T T T T ° T T T T T
2 4 6 8 10 2 4 6 8 10
lag lag
Figure 3: Ljung-Box tests for annual Figure 4: Ljung-Box tests for annual
maxima of Variable X. maxima of Variable Y.

Table 1 summarizes our estimations for zx and ty-year return levels. Due to the dramatically
reduced sample size and distant extrapolating, the confidence intervals (see Table 1) are too wide
to be really informative. This leads to consider more sophisticated methods.

TABLE 1. Estimation of return levels for X and Y with GEV model. The 95% confidence interval (denoted by 95% CI)
is based on asymptotic normality of the estimator.

Xty Yty
Point estimate 1.506 29.585
95% CI [1.308,2.681] | [26.933,39.601]

2.3. Estimation of the return level: Extremal index method

The serial dependence of time series affects the behavior of the extremes and requires different
and more sophisticated statistical tools than those used for independent and identically distributed
(i.i.d.) data. Let G be the distribution function of the maximum of the stationary collection
Xi,...,X,, and G denote the distribution function of the maximum of an i.i.d. sequence Xi,.... X,
With same distribution as Xj.

Thanks to Leadbetter (1983)’s theorem, the two distribution functions G and G are linked in a
simple way via G := G®, where 6 € [0, 1] is called the extremal index. Thus, the tx-return level is
the value x;, that will be calculated through the following approximation

IP’( max X; gxtx> :]P’()?,» Sxtx>no><9 .

i=1,...,n9

In this approach, x;, is the quantile of order (1 — 1/tx)"/("*®) of X;. In real applications, the
order remains very high so that an extrapolation based on the extreme value theory is needed in
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order to estimate x;, . For a fixed threshold u, one fits the exceedances by the generalized Pareto
distribution, denoted by GPD(y,0), which cumulative distribution function is

=4y ify#£0
Ho (%) '_{ l—exp(—%) ify=0,

for x > u when y > 0 and u < x < u — /7 otherwise. As for the GEV, the parameter o is a scale
parameter whereas 7 is a shape parameter. For u chosen as X,,_;1 , (the k-th greatest value of the
observed series), the (1 — 1/ty)"/(*®) quantile is estimated by:

kY

. - 1

where & = 1 — (1 —1/1y)"/(0%0) ~ 1 /(tx x ng x 6).

Let summarize the different steps of the estimation procedure.

— Estimate 6 of the stationary series with the method proposed in Ferro and Segers (2003).
Denote the estimator with 6.

— Fit the tail of X; with GPD. Specifically, we apply the classical maximum likelihood method
(see e.g. Beirlant et al. (2004)) to the data as if the observations were independent.

— Keepthe 1 — (1 —1/tx)" (nox6) quantile of X as the estimate of the rx-year return level.
Note that the second step mentioned above makes use of a method the asymptotic normality of
which has been typically studied for independent and identically distributed data. Under short-term
dependence, the estimators remain consistent however present different asymptotic variance (see
e.g. (Coles, 2001, chapter 5)).

Figures 5 and 6 show the return level estimations for Variables X and Y respectively. In these
plots, the x-axis is the thresholding probability, which is the empirical cumulative probability of
the threshold chosen for the estimation of 6 and the GPD fit. For instance, in the estimation of a
large quantile by the GPD above, the thresholding probability is the empirical probability to be
lower than the threshold X,,_x1 , and thus corresponds to (n — k) /n. A simple aid in the selection
of a suitable threshold is to look for the threshold stability of the estimator, i.e. to choose the lowest
threshold above which the estimates are approximately constant. In our case, the probability .9
seems to be an acceptable choice for the thresholding probability.

To construct confidence intervals, we resort to a bootstrap method for stationary sequences
(Politis and Romano (1994)). One can find a different bootstrap method in Ferro and Segers
(2003). Let A be the parameter of interest, and /A\m be its m-bootstrap estimates.

— Bootstrap normal method (BNM) The (1 —2a).100% CI of A is given by

[k —21-063.,4 +Zl—a61*] ;

where 6, is the sample standard deviations of A, and where z;_g represents the quantile
of order 1 — a for the standard normal distribution.
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Figure 5: Return level estimates for Variable X Figure 6: Return level estimates for Variable ¥
based on the Extremal index method. based on the Extremal index method.

— Bootstrap percentile method (BPM) The & and 1 — o sample percentiles of A,, define the
(1 -2).100% CI of A by
Ao, Al -

We also report the point estimates and the CI of x;, and y;, in Table 2. The values correspond
to the thresholding probability .9.

TABLE 2. Estimation of the return level for Variable X and Variable Y with the Extremal index method.

Xix Yty

Point estimate 1.523 28.56
95% BNM CI | [1.288,1.757] | [25.569,31.551]
95% BPM CI | [1.311,1.778] [25.659,31.64]

2.4. Estimation of the return level: Declustering method

In terms of extremes, the short-term dependence induces that large values will have a tendency
to occur in clusters. A classical way to take this dependence into account is thus to focus on
maximum per cluster. This approach is based on the following decomposition

]P’( max X; Sx,x> :]P’( max maxXy Sxtx> ,

i=1,....n J=1ec LEE;

where ¢ denotes the mean number of clusters per period, and ¢; denotes the j-th cluster. One
needs to estimate the mean number of clusters per year ¢, and for this, we will simply consider
¢ = N./N, where N, is the total number of clusters, and N is the number of years considered in
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the study. Rewrite Z; := 1;112(16XX@, and assume that the clusters ¢; are defined in such a way that
€%

the Z;’s form an independent and identically distributed collection of size c. Then

P < nax X; gxtx) ~[P(Z;j <xy)]° .

1=1,...,n9
In this approach, x;, is therefore seen as the quantile of order (1 — 1/1x)'/¢ of the cluster maxima
Z;. Again the estimation of the high order quantile x;, requires an extrapolation based on Extreme
Value Theory. In the same way as in the Extremal index method described above, exceedances
over a fixed threshold Z, 1 , are fitted by a GPD(y,0) based on the sample {Zj,j =1,...,c},
and x;, is obtained via the following formula:

kT
=) 1
ﬁtx =Lp—k+1,n +GOM),)7 s

where & = 1 — (1 — 1/x)"/¢ ~ 1/(tx¢). Note that this last method can actually be seen as a
particular case of the second one, where the extremal index is estimated as the inverse of the mean
size of a cluster.
Let summarize the different steps of the estimation procedure.
— Apply the automatic declustering method proposed by Ferro and Segers (2003), and exhibit
a subset of cluster maxima denoted by Z,...,Zy, . See Beirlant et al. (2004, page 393) for a
sketched presentation.
— Check that the Z, ..., Zy, can be considered as independent.
— Fit the tail of the Z;’s with GPD. Again, the classical maximum likelihood method (see e.g.
Beirlant et al. (2004)) is used.

— Keep the 1 — (1 — 1/tx)"/ tail quantile of Z; as the estimate of #x-year return level.
Ferro and Segers (2003) automatic declustering method relies on the estimation of the extremal
index of a sequence of excesses above a threshold which allows the identification of independent
clusters of excesses above that threshold. See their paper for more details. This has been recently
implemented by Southworth and Heffernan (2012).

The point estimators of the return level are provided on Figure 7 for Variable X and Figure 8
for Variable Y, as functions of the thresholding probability. The two confidence intervals provided
are those described in Section 2.3.

According to Figures 7 and 8, empirical quantile with probability 0.9 might be considered
as a suitable threshold. For this threshold, apply the first step of the algorithm. In order to
check that these selected data Z;,...,Zy, can be considered as independent (second step of the
algorithm), we conduct three independence tests; the first one (denoted by IT1) is the graphical
Ljung-Box test (see e.g. Brockwell and Davis (2002)), the second one (denoted by IT2) is the
serial independence test proposed by Genest et al. (2007), and the third one (denoted by IT3) is
a graphical permutation test, shortly explained here: 99 pseudo-samples are built from random
permutations of the Zy,...,Zy,, for each of which the auto-correlation function (acf) is drawn.
Under assumption of independence, the acf of the original sample Z;,...,Zy, should be within
the set built by the resulting acfs.

Figures 9 and 11 provide the Ljung-Box test (IT1) for the cluster maxima built from the first
step of the algorithm, for the Variables X and Y respectively. Making use of the global Cramer-von
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Figure 7: Return level estimator for Variable X Figure 8: Return level estimator for Variable ¥
based on the Declustering method. based on the Declustering method.

Mises statistic for IT2 gives respectively a p-value of 0.1233766 for Variable X, and of 0.453047
for Variable Y. Finally, Figures 10 and 12 provide the permutation test IT3 for Variables X and Y
respectively. It consists in a visual appreciation of the independence through the acf (from lag 1)
of 100 permutations of the original sample (gray lines) and the acf of the original series (black
line). These tests all strengthen the hypothesis that the cluster maxima obtained from Ferro and
Segers (2003) automatic declustering method (used with thresholding probability 0.9) can be
considered as independent.

We report the point estimates and the CI of x;, and y;, in Table 3. The values are obtained at
the thresholding probability .9.

TABLE 3. Estimation of the return level for Variables X and Y with the declustering method.

Xy Yty

Point estimate 1.479 29.936
95% BNM CI | [1.231,1.726] | [26.105,33.768]
95% BPM CI | [1.219,1.740] | [25.993,33.543]

2.5. Summary of the univariate studies

The return levels estimated thanks to the three previous methods (GEV method of Section 2.2,
Extremal index method of Section 2.3 and Declustering method of Section 2.4) are plotted on
the same graphics, see Figure 13 for Variable X and Figure 14 for Variable Y. In these plots, the
x-axis is the return period. The six circles are the empirical estimations (based on annual maxima)
of the T-return levels calculated for the particular values T = 4,9,14,19,24 and 29. This method
performs well for big but observable return period 7. One can check from Figure 13 that the three
methods behave quite similarly on Variable X. It is less satisfying for Variable Y (see Figure 14),
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maxima of Variable X.
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maxima of Variable Y.
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Figure 13: Return levels for Variable X: via GEV  Figure 14: Return levels for Variable Y: via GEV
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method. method.

where one observes three parallel curves. The reasons could be a choice of threshold that has to be
improved, or a stationarity assumption that has to be carefully revisited. However, both confidence
tubes (that are omitted here) contain the curves.

3. Bivariate analysis

In this section, we study several methods for estimating bivariate failure probability. First we
describe in Sections 3.1 and 3.2 the approaches in details and then implement a simulation study
to justify the performance of the methods (see Section 3.3). Afterwards we consider the real data
to obtain knowledge on the extremal dependence structure of Variables X and Y, and statistical
inference on the targeted failure probability is made (see Section 3.4).

Let (X;,Y;),i =1,...,n, be a stationary sequence from the distribution of (X,Y). Recall that
we are interested in estimating the probability of the following set

{Xt >xlant >yly}7 (1)

where x;, and y;, are the return levels of X and Y estimated in Section 2. To this end, we need
statistical techniques from bivariate extreme value theory, which involves both the study of
marginal distributions and that of the tail dependence. The marginal distributions have been
analyzed carefully in Section 2. Consequently, our remaining task is to model the bivariate
tail dependence. For comprehensive study on multivariate extreme statistics, see for instance
Chapters 6 — 8 in de Haan and Ferreira (2006) and Chapters 8 and 9 in Beirlant et al. (2004).

For our specified goal of estimating the failure probability, we will use two different approaches
to model the problem. Five estimators of the failure probability will be deduced that we explain in
details in the following two subsections.
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3.1. Bivariate regular variation approach

This method is based on Draisma et al. (2004) and further tailored for our purpose. Let F' be the
distribution function of (X,Y) with marginal distributions Fx and Fy. Suppose that F is in the
domain of attraction of a bivariate extreme value distribution. This implies that firstly, the marginal
distributions Fy and Fy are in the domain of attraction of univariate extreme value distributions
and secondly that

o PO Fe(X) <x/t,1—Fy(Y) <y/t) _| c(x,y) ?)
= P(1—Fx(X) < 1/t,1—-Fy(Y) < 1/t)
exists, for x,y > 0. The function c is thus homogeneous of order 1/n for some 1 € (0, 1]. The
index 7 is called the coefficient of tail dependence of (X,Y). It was first studied in Ledford and
Tawn (1996).

Remark: n characterises the pattern of the extremal dependence of (X,Y).

— Asymptotic dependence (17 = 1): Under this situation, lim,_,o. P(X > x;|Y > y;) > 0; in
words, the extremes of X and Y tend to occur simutaneously. The tail feature of (X,Y)
is often studied using the stable tail dependence funtion [(x,y) := lim;_,tP(1 — Fx (X) <
x/torl —Fy(Y) <y/t).

— For n < 1, the variables are asymptotically independent as lim, .. P(X > x;|Y >y,) = 0.
We can categorize them into three classes.

— Positive association (1 € (1/2,1)): For this type of distributions, one has
P(X >x;,Y >y) > P(X >x;)P(Y > y;). The joint extremes of (X,Y) happen more often
than those of the distribution wih independent components X and Y.

— Near extremal independence (17 = 1/2): The joint tail of (X,Y) behaves as if X and Y
were independent.

— Negative association (1 € (0,1/2)): The joint extremes of (X,Y) happen less often than
those when X and Y are independent as P(X > x;,Y > y;) < P(X > x;)P(Y > y;).

3.1.1. Estimating the coefficient of tail dependence 1

We follow the procedure suggested in Draisma et al. (2004). Write 7 = min (ﬁxm, %) .
It comes from (2) that for x > 0,
limM:x_]/n. (3)
t—e P(T > 1)

This means that the distribution of 7" has a heavy right tail with extreme value index 7). It is natural
to consider the estimator of 1 based on a sample of 7. Write for 1 <i <n,

T; = min (1/P*,1/F)),

where PX = 1 — Fx(X;) and PY = 1 — Fy(Y;). Note that we do not observe the sample {7;,i =
1...,n} as the marginal distributions Fx and Fy are unknown. We obtain pseudo observations
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of T by estimating (PX,PY), fori = 1,...,n. The empirical counterparts are the straightforward
estimators. Put

T 1 1
:i=min ,
|- Ry

n+1

— |.i=1....n, 4)

n+1

where R is the rank of X; among (X, ...,X,) and R that of ¥; among (Y1, ...,Y,). The collection
{T},i =1,...,n} forms the empirical pseudo sample of T, denoted by T,

An alternative way is to make use of the fact that the marginal distributions are in some
max-domain of attraction which enables us to estimate (PX, P’') with empirical or GPD method.
Precisely, for 1 <i<n

o |1 if X; < up; U (B P Y, < o
B = | g Ko —1/n . and B = Y\ VP _
pu \1+175 otherwise; puw (1+0752 otherwise,

where the knowledge on (¥, 6;,u;, py,), i = 1,2 comes from Section 2. Now define
— 1 1
Ti:=min| =, = |,i=1...,n. 5

We call T,y = {T,i =1,...,n} the GPD pseudo sample of 7. Then we apply Hill (1975) and ML
methods to the pseudo samples of T to obtain the estimators of 77, and use the following notation:
e is the Hill estimator on T,,,; fe is the ML estimator on Tp,p; T is the Hill estimator on
Typa; fimp is the ML estimator on Ty .

3.1.2. Estimating the failure probability

The probability of (1) can be written as
P(1—Fx(X) <p1,1 - F(Y) <p2) =t p, (6)

where p; =1 — (1 —1/1x)"/8) and py =1 — (1 —1/1y)"/(192) See Section 2 for the value of
0;, i = 1,2. Considering the bivariate regular variation of (1 — Fx(X),1 — Fy(Y)) as written in
(2), we employ the usual extrapolation technique in extreme value theory to approximate p. Let

po = po(n) be a small probability such that pg — 0, npy — o0 as n — oo. Write ¢o = 1/ p? + p3.

Replacing ¢ in (2) with 1710 and % respectively, we have

P(1=Fe(X) < o, 1= Fr(¥) < co2) P (1= Fx(0) < pol2, 1= Fr(¥) < po2)
P(1—Fx(X) <co,1—Fy(Y) <cp) P(1—Fx(X) <po,1 —F(Y)<po)

and thanks to (3), one gets

P(1—Fx(X) <co, 1 —Fy(Y) <o) . (a))l/n
P(l1—Fx(X) < po,1 —Fy(Y) < po) Do :

Journal de la Société Frangaise de Statistique, Vol. 154 No.2 178-199
http://www.sfds.asso.fr/journal
© Société Francaise de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Environmental data: multivariate Extreme Value Theory in practice 191

Combining these two relations, p can be approximated as following

1/
p%<6‘0> P(l—FX( )<p0 l—Fy( )<popj)

Po

In order to estimate p, it is sufficient to estimate P (1 —Fx(X) <pofl, 1 -Fy(Y) < polcj—(f). We

derive two estimators from this approximation:

— Observe that 0 < ‘Z e 2 < 1 and npg — c. Roughly speaking, there is a sufficient amount of
observations falhng in this range, which makes the empirical estimation feasible. Our first
estimator of p is defined as

1/f X Y
. co 1 R; P R} p2>
= 2 I(1-— LA £ 7
Pe = (p0> n= < n+1 co n+1 < Po co @

where I denotes the indicator function and where 7 is one of the estimators discussed in
Section 3.1.1.
— Utilizing the GPD estimators for the tail probabilities as in (5), we obtain the second estimator

1/f
ﬁ,,:(“) 121<Px<p PY<pp02> (8)

Po

The third estimator of p is a structure variable method. Motivated by the nice property of 7', we
construct a structure variable 7, as following. Let r = p,/p; and T, = min
Note that p is linked to 7, by

1
lF()’le()

P(l —Fx(X) <p1,1—Fy(Y) <p2) :P(Tr > l/pl)

In other words, p is the tail probability of 7, being above i Similarly to (3), it follows that the
distribution of T, has a heavy right tail with extreme value index 7.
— Based on the empirical pseudo sample of 7, defined as

=~ . 1 r .
T,; := min ra &7 Jd=1,...,n, )
n+1 - n+1
the third estimator of p is given by
R k ~ /7
pr==(mToim) (10)

where k = k(n) is well chosen sequence of integers and T}(n_kﬁ) is the (n — k)-th order
statistics of the sample T;.
Note that the estimators p,, p, and pr are all based on the assumption that the observations are
independent. In the following method, we study the short term dependence of the pseudo sample
of 7, to take into account the serial dependence of (X;,Y;),i=1,...,n
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— Based on T}i,i =1,...,n, we compute the estimators of the GPD parameters, (¥, 6,u) and
the estimator of the extremal index 6 by methods described in Section 2.3. From equation
(10.7) in Beirlant et al. (2004), the tail of 7, can be fitted with a GPD, the parameters of

which can be estimated by
6 6(1-67) o
=, U+ g | = (10.d).
(7 57 767 > (7,6,i)

We define the fourth estimator of the failure probability, p = P(T, > 1/p;) as below:

ln /pl *1/?
H; Trl>u)<1+y 5 ) . (11)

To conclude this section, remark that the first two estimators p, and p, have been studied in
de Haan and de Ronde (1998) and Draisma et al. (2004), whereas the two others pr and p, are
new estimators (also based on the bivariate regular variation).

3.2. Conditional Probability Approach

Heffernan and Tawn (2004) proposes a conditional approach for multivariate extreme modeling.
We briefly explain how to apply this approach to estimate bivariate failure probabilities. First we
have

P(X > x4, Y > y,) = P(X > x4 )P(Y >y, |X > 0 ) = p1P(Y >y |X > ).

As aforementioned, p; is considered known in this part. In order to handle the conditional
probability of P(Y >y, |X > x,, ), it is assumed that there are normalizing functions a|y and by
such that

. Y —ax(X)
)}1_I>I.}OP <bX(X) §Z|X:x> :G\X(Z>v

where the limit distribution G|y is non-degenerate. Heffernan and Tawn (2004) gives detailed
procedure on estimating the normalizing functions and the limit distribution. Now,

e (Y max(X) vy —axX) o\ dFx(X)
pir =yl > ng) = [ (S > B ) SR

e (yw—ax(X)\  dFx(X)
s GX( bix(X) >I—Fx<x,X>'

By sampling from the simulated distributions CA;‘ x and Fx, a Monte Carlo procedure is suggested
to estimate the targeted probability by Heffernan and Tawn (2004). Denote p. the estimator of p

by this approach:
. 0 [ Yy —ax(X)\ dFx(X
pc:pl/ G, [ 22— x(X) (12)
Ix blx (X) 1 - FX (x,x)

The inference procedure used in Heffernan and Tawn (2004) has been recently published in
Southworth and Heffernan (2012).
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3.3. Simulation Study

Throughout this section we use simulated data to illustrate the performance of the estimators
proposed in the previous sections.

3.3.1. The models

We consider two bivariate time series models, both constructed from the following recursive

formula
X; X1 eX >
=A + ! )
(3 )05 )+ (%

where A is a 2x2 diagonal matrix with entries 0.4 and 0.3, and (¢*,&)),# = 1,...,n are indepen-

dent and identically distributed positive noises. This construction leads to a stationary process

with short term dependence. Then the two cases considered here differ in terms of tail behavior.
(a) Student model: the noise (£X er ) follows a bivariate positive Student distribution with 2

degrees of freedom and correlation matrix < 15 '1

> ; this yields asymptotically dependent
data, with n = 1.

(b) Normal model: the noise (¢X,€") follows a bivariate positive normal distribution with
correlation coefficient 0.5; this yields asymptotically independent data, with n = 0.75.

From each model, we simulate 300 replicate data sets with sample size n = 6000. From each

data set, we estimate the failure probability defined as
p= P(Xl > xlx7Yl > yly)7

where x;, is the tx-year return level of X; and y;, is the fy-year return level of ¥;. Intensive
simulations lead to a good approximation of the probability p. In any of the simulated samples,
the targeted event is extremely distant from the observations.

3.3.2. Comparison of M estimators

The estimation of 7] is part of the construction of the first three estimators of the failure probability
of Section 3.1.2. In this subsection, we look at the performance of the four estimators of n
introduced in Section 3.1.1. For this, we will consider two different thresholding probabilities .9
and .95, see Figure 15.

Two types of behaviors among the four estimators appear in the boxplots on Figure 15. The
last two (f)ne and 7),,,) behave similarly, showing a small bias, whereas the first two (7). and fjp,,)
show a comparable behavior with a bigger bias and a smaller variance. As a consequence, we
keep T and 1), as the representatives of the two groups. From this simulation study, one can
conclude that 7),,;, outperforms its competitors in terms of bias. We will however keep both for
further study, as 7 is only an input parameter used in the estimation of the failure probability.

Regarding the choice of thresholding probability, the results are not significantly different, so
that we will keep the value .9 in the sequel, leading to a bigger sample size.
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Estimation of ) in the Student model Estimation of 1 in the Student model
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Figure 15: Estimates of 1 from the four methods defined in Section 3.1.1. First row is the Student model,
and second row is the normal model. Each boxplot is based on 300 simulated data sets of size 6000. The
horizontal lines indicate the true value of 7.

3.3.3. Comparison of estimators of the failure probability

We implement the five estimators defined in Section 3.1.2: p,, p,, pr, and p, from bivariate regular
variation method and p, from the conditional probability approach. The first three estimators will
be used with two values of the input parameters 1, respectively given by 7, and fj.. Notation
Pe_Tmp and p._1);. will be used to differenciate the two 7] inputs, and analogously for j, and pr.
To assess the performance of the eight estimators, we calculate the relative error 1 — p/p, where
p denotes each estimator of the failure probability, see Figure 16. All the thresholds used in the
estimation of 1 and the failure probability within the different methods are systematically fixed:
1- and p-thresholding probabilities are .9.

Overall, the eight estimators perform decently given the challenging goal. From the first six
boxplots in both Student and Normal cases, one can conclude that it is sufficient to consider
the two estimators p._fj,, and p._fjn., which are the best representatives among the first six
estimators. The last two estimators also give satisfying results. According to this simulation study,
we will keep the four estimators p._f)mp, Pe_Tlne, Pr and p. in the application on bivariate (X,Y)
data.

3.4. Bivariate extreme analysis on real data

The final goal of this paper is to estimate the failure probability on the real data set of size
approximately 6000, using the different methods proposed previously.
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Relative error in failure pr ility imation in the Student model
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Figure 16: Relative error of the failure probability estimators. Each boxplot is based on 300 simulated
data sets of size 6000.

3.4.1. Point Estimates

As a first step, we consider the estimation of 7] to study the extremal dependence between Variable
X and Variable Y. From the upper plot in Figure 17, we can conclude that the pair (X,Y) has
positive association, as both estimates strictly lie in the interval (0.5,1). The lower plot of Figure
17 gives the estimates of the extremal index of the structure variable defined in (9). From the
conclusion of Section 3.3.2, one would choose .9 as thresholding probability. Besides, standard
visual criteria (stability zone) would lead to the choice of .95 from Figure 17. Thus, we will keep
both choices to proceed.
As discussed in Section 3.1.2, the failure probability can be written as

P(1—-Fx(X:) < p1,1 —=F(Y;) < p2),

where p; = 1— (1—1/1000)"/(08) and p, =1 — (1—1/100)"/(%%) From Section 2.3, we have
P1~9.46x 1076 and p, ~ 1.06 x 1074,

Now we calculate the following list of failure probability estimators:

ﬁe_ﬁhea ﬁe_ﬁmpa ﬁr_é and ﬁc .

As motivated above, the input parameters 7 (in p._f). and p,_fjimp) and 0 (in ﬁr_é) are estimated
at two thresholding probabilities, .9 and .95. The final point estimates of the failure probability
are shown in Figures 18 and 19 (on logarithmic scales). As a comparison, we keep the curve of p,
commonly in both figures.
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Coefficient of tail dependence of (X,Y)
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Figure 17: The upper plot gives the estimates of 71 by the two methods selected in Section 3.3.2. The
lower plot gives the estimates of 6 defined in Section 3.1.2.

Let us call concordance zone the thresholding probability area where most of the estimators
give consistent answers. From Figure 18, the concordance zone of three estimators p,_fj, ﬁ,_é
and p, is around thresholding probability .9, which can also be identified as the stability zone of
these three estimators. This yields 6.32 x 10~ as the point estimate of the failure probability. The
concordance zone for the four estimators in Figure 19 is around .95, which concludes 2.46 x 107
as the point estimate. There is no convincing criterium to make a choice between these two
values. Indeed, both values are obtained with estimators based on completely different approaches
(bivariate regular variation approach, see Section 3.1 and conditional approach, see Section 3.2).
Note that p,_fjp. is the most stable among the four estimators and can be considered as the
representative of concordance zones in both Figures 18 and 19. Some confidence intervals will be
obtained for p,_f). in Section 3.4.2.

Unlike the great similarity of p._fjp, and p._fj,, presented in Figure 19, there is a big gap
between these two estimators in Figure 18. Recall that they only differ via 1 input, so that one
can measure the sensitivity of the failure probability estimation in terms of 1] estimation from the
upper plot of Figure 17. This points out the importance of getting stable and trustable estimators
for the coefficient of tail dependence 1.
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Failure probability of (X,Y) with both n,6-thresholding probability equal to 0.9
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Figure 18: Estimation of the failure probability using the four estimators with 17-thresholding
probability .9 (in p._fp, and p._H,p) and with B-thresholding probability .9 (in p,_80).

3.4.2. Confidence Intervals

Next we propose bootstrap procedures to construct confidence intervals of the failure probability
using p._Tpe at thresholding probabilities .9 and .95. Let p._f,.(0.9) denote the estimator for
which thresholding probability .9 is used in both estimation of 1 and the failure probability. Define
Pe_N1e(0.95) in the same way. The procedure is briefly introduced as following and the results
are reported in Table 4.

— Extract the estimates of p;, p, and the GPD fits of Variables X and Y from the univariate
study.

— Apply the method in Politis and Romano (1994) to obtain the bootstrap samples. Based on
each sample, compute the estimates of the failure probability.

— Construct confidence intervals with the two methods introduced in Section 2.3, refered as
the Bootstrap normal method (BNM) and the Bootstrap percentile method (BPM).

TABLE 4. Estimation of the failure probability using pe_f. at thresholding probabilities .9 and .95., with confidence
intervals.

Point estimate | one-sided 95% BNM CI 95% BPM CI
Pe_Nne(0.9) | 6.32x1077 [0,1.21 x 1079 [2.45x1077,1.51 x 1079]
Pe_Ane(0.95) | 2.46x 1077 [0,7.60 x 1077 [6.12x 1078,1.13 x 1079]
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Failure probability of (X,Y) with both ,6-thresholding probability equal to 0.95
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Figure 19: Estimation of the failure probability using the four estimators with 17-thresholding
probability .95 (in p._fpe and p_fj,p) and with B-thresholding probability .95 (in p._6).

4. Conclusion

In the presence of short term dependence in the data, there is a tendency for the extremes to occur
into clusters. Extreme Value Theory allows to take into account this short term dependence, via the
estimation of the extremal index 6 or via the identification of independent clusters. Adding these
two methods to the classical GEV method, we have implemented and compared three estimation
procedures in the univariate framework.

From Tables 1, 2 and 3, we can conclude that the extremal index method leads to the narrowest
confidence intervals for the estimation of the return levels of Variables X and Y. These intervals
are still rather wide, which inherits from the fact that the extrapolation asked (large tx and ty
values) is rather ambitious.

The results presented in both univariate and bivariate sections have been obtained under the
hypothesis that the processes are stationary, and belong to a domain of attraction for the maximum.
These hypotheses could be more deeply explored, and this could be an interesting issue for future
research.

The main objective of the present study was to estimate the failure probability defined through
return levels for Variables X and Y. We have implemented several methods that give rather coherent
answers. Variables X and Y present an asymptotic independence with positive association.

One issue is the choice of the thresholding probability that produces fluctuations of the failure
probability estimation. The selection of the different estimators and thresholds have been done
with the help of an intensive simulation study. But this remains a delicate point.

Since the problem is difficult, it is crucial to associate confidence intervals to point estimates.
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Table 4 summarizes the answer to the question designed in a specific context.

In terms of interpretation, one could say that the failure event would occur on average once
among 8 700 years (based on p,_fx.(0.9)) or once among 22 300 years (based on p,_Tn.(0.95)).
These numbers could be compared to 5500 000, which corresponds to the number of years
obtained under assumption of total independence.
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