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Spatial extremes: Max-stable processes at work
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Abstract: Since many developments to the functional extreme value theory have been made during the last decades,
this paper reviews recent results on max-stable processes and covers a large range of themes such as finite dimensional
distributions, parametric models, dependence measure, inferential procedure, model selection and (conditional)
simulations. An application to the spatial modeling of wind gusts in Netherlands is given.

Résumé : De nombreux progrès ont été accomplis ces dernières décennies sur la théorie des valeurs extrêmes
fonctionnelle. Dans ce papier nous regroupons les résultats principaux concernant les processus max-stables. Ainsi
cette revue de littérature couvre une gamme variée de domaines : lois fini-dimensionnelles, modèles paramétriques,
mesures de dépendance, procédure inférentielles, sélection de modèles et simulations (conditionnelles). Une application
à la modélisation spatiale des rafales de vents aux Pays-bas est donnée.
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1. Introduction

During the last decades, extreme value theory has seen many developments on both theoretical
and practical levels. Functional extreme value theory, i.e., extremes of stochastic processes, was
especially active with the spectral characterization of max-stable processes and the construction
of parametric and tractable max-stable models.

This paper gathers several recent results on max-stable processes and try to emphasize their
usefulness for statistical modelling of spatial extremes. Starting with the definition of max-stable
processes in Section 2, Section 3 introduces the general form of the finite dimensional distributions
of max-stable process and lists several widely used parametric max-stable models. Some summary
measures of the spatial dependence are given in Section 4 while Section 5 introduces inferential
procedures. Section 6 is devoted to model selection. Sections 7 and 8 deals with unconditional and
conditional simulation of max-stable processes. The paper ends with the modeling of extreme wind
gusts in the Netherlands with some details on how to do it from the R package SpatialExtremes
Ribatet et al. (2013).

2. Asymptotics and spectral characterization

Let X be a compact subset of Rd , d ≥ 1. Throughout this paper we will work with C(X ),
the space of continuous (random) functions f defined on X , endowed with the uniform norm
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Spatial extremes: Max-stable processes at work 157

‖ f‖ = supx∈X | f (x)|. Recall that with this setting, any stochastic processes living in C(X ) is
completely characterized by its finite dimensional distributions. Throughout this paper we will
use componentwise algebra, e.g., ( f −g)(x) = f (x)−g(x) or {max( f ,g)}(x) = max{ f (x),g(x)}
for some functions f and g and x ∈X .

A stochastic process Z is said to be max-stable if there exist continuous normalizing functions
{an > 0} and {bn ∈ R} such that

Z d
= max

i=1,...,n

Zi−bn

an
,

where Zi are independent copies of Z.
It is often more convenient to work with arbitrarily fixed margins and a common choice is to

have unit Fréchet margins, i.e., Pr{Z(x) ≤ z} = exp(−1/z) for all x ∈X and z > 0. With this
choice the normalizing functions are an ≡ n and bn ≡ 0.

Max-stable processes are widely used processes for modeling spatial extremes since they arise
as the pointwise maxima taken over an infinite number of (appropriately rescaled) stochastic
processes. More precisely, given independent copies {Xi : i ∈N} of a stochastic process X defined
(at least) on X , it can be shown that if there exist normalizing functions {cn > 0} and {dn ∈ R}
such that

max
i=1,...,n

Xi(x)−dn(x)
cn(x)

−→ Z(x), n→ ∞, x ∈X , (1)

then either Z is degenerate or Z is a max-stable process de Haan (1984). If Z is non degenerate,
univariate extreme value theory says that the pointwise distributions of Z have to be generalized
extreme value distributions de Haan and Fereira (2006), i.e,

Pr{Z(x)≤ z}= exp

{
−
(

1+ξ
z−µ

σ

)−1/ξ
}
, 1+ξ

z−µ

σ
> 0, x ∈X , (2)

for some location µ ∈ R, scale σ > 0 and shape ξ ∈ R parameters. For theoretical purposes, it is
often more convenient to fix the pointwise distributions of Z to a suitable (univariate) distribution
and hence restrict our attention to the spatial dependence structure. Throughout this paper we will
assume that the limiting process Z is simple, that is, non degenerate with unit Fréchet margins de
Haan and Fereira (2006), i.e.,

Pr{Z(x)≤ z}= exp
(
−1

z

)
, z > 0, x ∈X .

Similarly to the results for univariate extremes, (1) justifies the use of max-stable processes
for modelling pointwise maxima by assuming that the limiting process is met for finite but large
enough n ∈ N.

Any simple max-stable process Z has a nice representation, known as the spectral character-
ization. The first representation de Haan (1984) says that there exists a family of non negative
continuous functions { f (x,y) : x,y ∈ Rd} such that

∫
Rd f (x,y)dy = 1 for all x ∈ Rd and for any

compact set K ⊂X we have ∫
Rd

sup
x∈K

f (x,y)dy < ∞
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158 M. Ribatet

and for which the max-stable process Z has the same distribution as

max
i≥1

ζi f (x,Ui), x ∈X , (3)

where {(ζi,Ui) : i∈N} are the points of a Poisson process on (0,∞)×Rd with intensity dΛ(ζ ,u)=
ζ−2dζ du. To build parametric max-stable models based on (3), an especially convenient family
of functions is { f (x− y) : x,y ∈ Rd} where f is any valid probability density function on Rd .

A closely related second spectral characterization enables the use of random functions instead
of a family of deterministic functions Schlather (2002); Penrose (1992). Let {ζi : i ∈ N} be the
points of a Poisson process on (0,∞) with intensity dΛ(ζ ) = ζ−2dζ . There exists a non negative
stochastic process Y with continuous sample paths such that E{Y (x)}= 1 for all x ∈ Rd and for
which Z has the same distribution as

max
i≥1

ζiYi(x), x ∈X , (4)

where Yi are independent copies of Y . Clearly representation (3) can be retrieved from (4)
by taking Yi(x) = f (x,Ui). Therefore throughout this paper we will restrict our attention to
characterization (4).

3. Finite dimensional distributions

The finite dimensional distributions for a max-stable process Z are easily derived from the spectral
characterization (4) and the counting measure N of the associated Poisson point process. More
precisely for z1, . . . ,zk > 0 and x1, . . . ,xk ∈X , let

A =
{
(ζ , f ) ∈ (0,∞)×C+(X ) : ζ f (x j)> z j for some j ∈ {1, . . . ,k}

}
=

{
(ζ , f ) ∈ (0,∞)×C+(X ) : ζ > min

j=1,...,k

z j

f (x j)

}
,

where C+(X ) denotes the set of non negative continuous functions defined on X . We have

Pr{Z(x1)≤ z1, . . . ,Z(xk)≤ zk}= Pr [no atoms of {(ζi,Yi) : i ∈ N} lie in A]

= exp
[
−
∫ ∫

∞

0
1{(ζ , f )∈A}ζ

−2dζ dP( f )
]

= exp
{
−
∫

max
j=1,...,k

f (x j)

z j
dP( f )

}
= exp

[
−E
{

max
j=1,...,k

Y (x j)

z j

}]
,

(5)

where dP denotes the probability measure of the stochastic process Y .
Based on (3) or (4), several models have been proposed. A first possibility, known as the Smith

model Smith (1990), consists in taking f (x,Ui) = ϕ(x−Ui;Σ) in (3) where ϕ(·;Σ) is the d-variate
probability density function of a centered Gaussian random vector with covariance matrix Σ. Its
bivariate cumulative distribution function is

Pr{Z(x1)≤ z1,Z(x2)≤ z2}= exp
[
− 1

z1
Φ

(
a
2
+

1
a

log
z2

z1

)
− 1

z2
Φ

(
a
2
+

1
a

log
z1

z2

)]
, (6)
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Spatial extremes: Max-stable processes at work 159

where a2 = (x1− x2)
T Σ−1(x1− x2) is the Mahalanobis distance between locations x1 and x2

and Φ denotes the standard normal cumulative distribution function. Although closed forms are
appreciably more complicated, expressions for the k-variate cumulative distribution functions are
given in Nikoloulopoulos et al. (2009).

A second possibility, known as the Schlather model Schlather (2002), takes Yi(x)=
√

2π max{0,εi(x)}
in (4) where εi are independent copies of a standard Gaussian process with correlation function ρ .
The bivariate cumulative distribution function is

Pr{Z(x1)≤ z1,Z(x2)≤ z2}= exp

[
−1

2

(
1
z1

+
1
z2

)(
1+

√
1− 2{1+ρ(x1− x2)}z1z2

(z1 + z2)2

)]
. (7)

A third possibility, known as the Brown–Resnick model Brown and Resnick (1977); Kabluchko
et al. (2009), takes Yi(x) = exp{εi(x)−σ2(x)/2} in (4) where εi are independent copies of a
centered Gaussian process with stationary increments and such that Var{Y (x)}= σ2(x) for all
x ∈X . Its bivariate cumulative distribution function is given by (6) with a2 = Var{Y (x1− x2)}.
Although the process Y is not stationary, the associated max-stable process is stationary Kabluchko
et al. (2009).

Finally a fourth possibility that generalizes the Schlather model and known as the extremal-t
Opitz (2012); Ribatet and Sedki (2013), assumes in (4) that

Yi(x) = cν max{0,εi(x)}ν , cν =
√

π2−(ν−2)/2
Γ

(
ν +1

2

)−1

, ν ≥ 1,

where ε is a standard Gaussian process with correlation function ρ and Γ is the Gamma function.
Its bivariate cumulative distribution is

Pr{Z(x1)≤ z1,Z(x2)≤ z2}= exp

[
− 1

z1
Tν+1

{
−ρ(x1− x2)

b
+

1
b

(
z2

z1

)1/ν
}
−

1
z2

Tν+1

{
−ρ(x1− x2)

b
+

1
b

(
z1

z2

)1/ν
}]

,

(8)

where Tν is the cumulative distribution function of a Student random variable with ν degrees of
freedom and b2 = {1−ρ(x1− x2)

2}/(ν +1).
It is important to mention that several choices for Y in (4) yield to the same max-stable process.

To illustrate, consider the process

Z̃(x) = max
i≥1

ζiSiYi(x), x ∈X ,

where {(ζi,Yi) : i ∈ N} are as in (4) and Si are independent copies of a non negative random
variable S such that E(S) = 1, S independent from the points {(ζi,Yi) : i ∈ N}. From (5) we have

Pr{Z̃(x1)≤ z1, . . . , Z̃(xk)≤ zk}= exp
[
−E
{

max
j=1,...,k

SY (x j)

z j

}]
= exp

[
−E
{

max
j=1,...,k

Y (x j)

z j

}]
= Pr{Z(x1)≤ z1, . . . ,Z(xk)≤ zk},
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FIGURE 1. Extremal coefficient functions. Left: Extremal-t process with ρ(h) = exp(−h) and degrees of freedom
ν = 1,2.5,10. Right: Brown–Resnick process with γ(h) = hα and α = 0.5,1,2. For the extremal-t model the case
ν = 1 corresponds to a Schlather process. For the Brown–Resnick model the case α = 2 corresponds to a Smith
process with a covariance matrix equal to the identity matrix.

i.e., Z̃ and Z are identically distributed. As an example, taking Y (x) =
√

2π max{0,T (x)} in (4)
where T is a standard Student process with ν degrees of freedom yields to the usual Schlather
process (7) since any Student processes with ν degrees of freedom has the representation T (x) =
Sε(x), x ∈X , where ε is a standard Gaussian process and ν/S2 ∼ χ2

ν , ν ≥ 1.

4. Spatial dependence

In Section 3 we introduced several max-stable models with different dependence structures. For
concrete applications, it is essential to be able to assess if a fitted max-stable model is able to
capture the spatial dependence structure of extreme events.

One convenient way to summarize the dependence structure of max-stable process Z is through
its extremal coefficient function Schlather and Tawn (2003)

θ(x1− x2) =−z logPr{Z(x1)≤ z,Z(x2)≤ z}= E [max{Y (x1),Y (x2)}} . (9)

The extremal coefficient function takes values in [1,2]; the lower bounds indicates complete
dependence while the upper bound independence. The function h 7→ 2−θ(h) is semi definite
positive and not differentiable at the origin unless θ(h)≡ 1 Schlather and Tawn (2003); Cooley
et al. (2006). Figure 1 plots the extremal coefficient function for isotropic versions of the max-
stable models introduced in Section 3 and different parameter values. For the extremal-t process,
we can see that the degrees of freedom ν controls the upper bound of the extremal coefficient
since for this model we have

θ(h) = 2Tν+1


√

ν +1
1−ρ(h)2 −

√
1−ρ(h)2

ν +1
ρ(h)

−→ 2Tν+1

(√
ν +1

)
, h→ ∞.
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Spatial extremes: Max-stable processes at work 161

The Brown–Resnick process has extremal coefficient function θ(h) = 2Φ{
√

γ(h)/2} and
its upper bound is related to that of the semi variogram γ . In particular if γ is unbounded, e.g.,
γ(h) ∝ hα , θ(h)→ 2 as h→ ∞.

In geostatistics it is common to assess the spatial dependence using the semi variogram.
Unfortunately when working with extreme values, it might happen, e.g., with simple max-stable
processes, that the variogram does not exist. As a substitute to the semi variogram, one can use
the F-madogram Cooley et al. (2006)

νF(x1− x2) =
1
2
E [|Fx1{Z(x1)}−Fx2{Z(x2)}|] , x1,x2 ∈X , (10)

where Fx denotes the cumulative distribution function of the random variable Z(x). Using the
relation |x− y|= 2max(x,y)− x− y and the max-stability property of Z, it can be shown that

θ(x1− x2) =
1+2νF(x1− x2)

1−2νF(x1− x2)
, x1,x2 ∈X . (11)

From a practical point of view, to estimate the extremal coefficient function one need to estimate
the above expectation and Fx1 and Fx2 . This can be done non parametrically by using the empirical
version of (10) and plugin it into (11), i.e.,

ν̂F(x1− x2) =
1

2n(n+1)

n

∑
i=1
|Ri(x1)−Ri(x2)|,

where Ri(x j) denotes the rank of Zi(x j), i.e., Ri(x j) = ∑
n
`=1 1{Z`(x j)≤Zi(x j)} with i = 1, . . . ,n and

j = 1,2. Instead of using empirical distribution functions for Fx j , j = 1,2, another possibility is to
use the fitted generalized extreme value distributions for locations x1 and x2.

Similarly to the estimation of the empirical variogram in geostatistics, if the process has
been observed at several location x1, . . . ,xk ∈X , it is often useful to average over all pairs of
stations whose pairwise distances lie in Ch = (h−∆,h+∆) for some suitable ∆ > 0. The binned
F–madogram estimator is

ν̂F,b(h) =
1
|Ch|

k−1

∑
i=1

k

∑
j=i+1

ν̂F(xi− x j)1{‖xi−x j‖∈Ch}, |Ch|=
k−1

∑
i=1

k

∑
j=i+1

1{‖xi−x j‖∈Ch}.

5. Inference

Due to the specific form of the finite dimensional distributions (5), fitting max-stable processes to
spatial data sets is complicated. The aim of a spatial analysis is usually to enable prediction at
unobserved location and, although non parametric approaches are possible Buishand et al. (2008),
parametric inferences seems more appropriate. Likelihood based inferences are widely used either
in a frequentist context Genton et al. (2011); Davison et al. (2012); Padoan et al. (2010) or in a
Bayesian framework Ribatet et al. (2012); Erhardt and Smith (2012).

Unfortunately the likelihood is intractable even when the process has been observed at a
moderate number k ≥ 1 of locations x1, . . . ,xk ∈X . Since the finite dimensional distributions are

Pr{Z(x1)≤ z1, . . . ,Z(xk)≤ zk}= exp{−V (z1, . . . ,zk)}, V (z1, . . . ,zk) = E
{

max
j=1,...,k

Y (x j)

z j

}
,
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162 M. Ribatet

the associated density is

f (z1, . . . ,zk;ψ) = exp{−V (z1, . . . ,zk)} ∑
τ∈Pk

w(τ), (12)

where the functions V and w depend on some unknown parameter ψ , Pk denotes the set of all
possible partition of the set {x1, . . . ,xk}, τ = (τ1, . . . ,τ`), |τ|= ` is the size of the partition τ and

w(τ) = (−1)|τ|
|τ|

∏
j=1

∂ |τ j|

∂ zτ j

V (z1, . . . ,zk),

where ∂ |τ j|/∂ zτ j denotes the mixed partial derivatives with respect to the elements of the j-th
element of the partition τ . For instance when τ = {(x1,x2),(x3)} ∈P3, we have

∂ |τ1|

∂ zτ1

V (z1, . . . ,zk) =
∂ 2

∂ z1∂ z2
V (z1,z2,z3),

∂ |τ2|

∂ zτ2

V (z1, . . . ,zk) =
∂

∂ z3
V (z1,z2,z3).

As a consequence and even if we were able to compute explicitly E{max j=1,...,k Y (x j)/z j},
the number of weights w(τ) in (12) corresponds to the k-th Bell number and the likelihood is
intractable at least numerically. For instance when k = 10 this would require to sum over more
than 115000 terms.

To bypass this computational burden, the use of composite likelihoods has been introduced
Padoan et al. (2010); Genton et al. (2011). In this section we focus on the pairwise likelihood but
composite likelihoods based on triplets are sometimes possible Genton et al. (2011); Huser and
Davison (2013). Given a single observation z = (z1, . . . ,zk), the (weighted) pairwise log-likelihood
is

`p(ψ;z) =
k−1

∑
i=1

k

∑
j=i+1

ωi, j log f (zi,z j;ψ), (13)

where ωi, j are suitable non negative weights and f (·, ·;ψ) is the bivariate density, i.e., f in (12)
with k = 2. One has to remind that composite likelihoods are linear combination of log-likelihoods
but, apart from trivial cases, are not genuine likelihoods. Composite likelihood is a simple strategy
to build unbiased estimating equations.

With the same regularity conditions required for the maximum likelihood estimator and
provided that the parameter ψ is identifiable from the bivariate densities in (13), the maximum
pairwise likelihood estimator

ψ̂p = argmax
ψ∈Ψ

`p(ψ;z),

satisfies √
n(ψ̂p−ψ0)−→ N

{
0,H−1(ψ0)J(ψ0)H−1(ψ0)

}
, n→ ∞, (14)

where
H(ψ0) =−E

{
∇

2`p(ψ0;Z)
}
, J(ψ0) = Var{∇`p(ψ0;Z)} .

Due to the model under specification, (14) shows that there is a loss in efficiency compared
to the maximum likelihood estimator. To mitigate the loss in efficiency, a pragmatic approach

Journal de la Société Française de Statistique, Vol. 154 No. 2 156-177
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Spatial extremes: Max-stable processes at work 163

consists in defining suitable weights to improve efficiency Padoan et al. (2010); Varin et al. (2011)
but unfortunately defining optimal weights remains an open question.

Provided we have independent replications z1, . . . ,zn, estimation of H(ψ0) and J(ψ0) is not too
complicated Varin et al. (2011). Since the regularity conditions imply that ∑

n
m=1 ∇`p(ψ̂p;zm) = 0,

the J(ψ0) matrix can be estimated by

Ĵ(ψ0) =
1
n

n

∑
m=1
{∇`p(ψ̂p;zm)}{∇`p(ψ̂p;zm)}T .

Assuming that the bivariate densities in (13) are correctly specified we can use the second
Bartlett identity to have

H(ψ0) =−∑
i< j

ωi, jE
{

∇
2 log f (Zi,Z j;ψ0)

}
= ∑

i< j
ωi, jVar

{
∇ log f (Zi,Z j;ψ0)

}
,

and the matrix H(ψ0) can be estimated by

Ĥ(ψ0) =
1
n

n

∑
k=1

∑
1≤i< j≤k

ωi, j∇ log f (zm,i,zm, j; ψ̂p){∇ log f (zm,i,zm, j; ψ̂p)}T .

6. Model selection

Although the inference procedure introduced in Section 5 is non standard, model selection using
(adapted) information criterion Varin and Vidoni (2005) or (composite) likelihood ratio tests
Chandler and Bate (2007) is possible.

Because we are working with composite likelihood, one can define a composite Kullback–
Leibler divergence based on (13) between two statistical models g and f Varin and Vidoni
(2005)

Dp( fψ ;g) =
k−1

∑
i=1

k

∑
j=i+1

wi, jE
{

log
g(Zi,Z j)

f (Zi,Z j;ψ)

}
, (15)

where Z = (Z1, . . . ,Zk) ∼ g. In (15) composite likelihoods are used for both the true model g
and the one under consideration f . Since the composite Kullback–Leibler divergence consists in
a linear combination of (usual) Kullback–Leibler divergences, it can be shown using standard
computations on likelihoods that one can perform model selection by minimizing the composite
information criterion

TIC( fψ) =−2`p(ψ̂p;z)+2tr
{

Ĵ(ψ0)Ĥ(ψ0)
−1} , (16)

where Ĥ(ψ0) and Ĵ(ψ0) are consistent estimator of the matrices H(ψ0) and J(ψ0). Equation (16)
is a generalization of the Takeuchi’s information criterion to the case of the maximum composite
likelihood estimator. Similarly to the Bayesian information criterion, one can prefer to use the
composite Bayesian information criterion

BIC( fψ) =−2`p(ψ̂p;z)+ tr
{

Ĵ(ψ0)Ĥ(ψ0)
−1} logn. (17)
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164 M. Ribatet

Similarly to the likelihood ratio test, one can use the composite likelihood ratio to test if the data
are consistent with the hypothesis that the parameter ψ = (φ ,γ) takes the particular form (φ ,γ∗).
It can be useful when comparing nested models, for instance whether it is more appropriate to
use an exponential correlation function ρ(h) = exp(−h/λ ) or a powered exponential correlation
function ρ(h) = exp{−(h/λ )κ} in (7), i.e., H0 : κ = 1 against H1 : κ 6= 1.

Because the maximum composite likelihood estimator ψ̂p is asymptotically normal, it can be
shown using standard arguments Kent (1982) that

W (γ∗) = 2
{
`p(ψ̂p;z)− `p(φ̂γ∗ ,γ∗)

}
−→

p

∑
i=1

λiXi, n→ ∞, (18)

where p is the dimension of the parameter ψ , ϕ̂γ∗ is the maximum pairwise likelihood estimator
subject to the constraint γ = γ∗, Xi are independent χ2

1 random variables and λi are the eigenvalues
of

{H−1(ψ0)J(ψ0)H−1(ψ0)}γ [{H−1(ψ0)}γ ]
−1,

where Aγ denotes the submatrix of the matrix A corresponding to the elements of γ . Although the
limiting distribution of W (γ∗) has no closed form, it can be modified so that the usual χ2

p limiting
distribution is (approximately) true Chandler and Bate (2007); Rotnitzky and Jewell (1990).

7. Unconditional simulation

Simulation from max-stable processes seems at first glance impossible since it consists in com-
puting the pointwise maxima over an infinite number of random functions. Fortunately, as we
will see later, the special form of the intensity measure Λ of the Poisson point process {ζi : i ∈ N}
in (4) makes the impossible possible.

A naive approach consists in finding the normalizing functions an and bn associated to the
process X in (1) and in computing the maxima over n normalized random functions from (1) for n
large enough. This approach is not recommended since convergence is usually slow and n has to
be very large to ensure good approximations.

A second approach relies on the spectral characterizations (3) or (4) Schlather (2002) and is
detailed in Algorithm 1. This approach is often much more efficient. Without loss of generality,
we can assume that the points {ζi : i ∈ N} are sorted in decreasing order so that ζi ↓ 0 as i→ ∞.
If the process Y is uniformly bounded by a positive constant B < ∞, then there exists almost
surely a finite number of atoms {(ζi,Yi)} that contribute to the pointwise maxima Z—see line 8 of
Algorithm 1. Usually Y will not be uniformly bounded and one can use a “pseudo uniform bound”
B such that Pr(‖Y‖> B) is small enough.

Figure 2 illustrates the procedure with a one dimensional Smith model on X = [−1,1]. Clearly
for this model the process Y is uniformly bounded by B = (2πσ2)−1/2 where σ2 is the variance
of the univariate normal density. We can see that the simulated max-stable process was obtained
from only 22 random functions.

Algorithm 1 is likely to fail if the process Y in (4) is not stationary but the underlying max-
stable process is. A particularly well known example is the case of Brown–Resnick processes and,
although more sophisticated strategies are possible Oesting et al. (2012), a simple yet efficient
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Algorithm 1: Algorithm for simulating max-stable processes with unit Fréchet margins.
Input :An upper bound B > 0.
Ouput :One realization of a max-stable process.

1 Initialization;
2 i← 1, flag← true, S← 0, Z ≡ 0;
3 while flag is true do
4 S← S+E, E ∼ Exp(1);
5 ζi← 1/S;
6 Yi ∼ Y ;
7 Z←max(Z,ζiYi);
8 if ζiB < inf(Z) then
9 flag← false;

10 else
11 flag← true;
12 end
13 i← i+1;
14 end
15 return Z;

possibility is to use random translations to mitigate the impact of the non stationarity of Y . Instead
of using (4), the idea consists in sampling from

Z̃(x) = max
i≥1

ζiYi(x−Ui), x ∈X , (19)

where {(ζi,Yi) : i∈N} are as in (4) and Ui are independently sampled from an arbitrary distribution
F defined (at least) on X .

The process Z̃ has the same distribution as Z since

Pr{Z̃(x1)≤ z1, . . . , Z̃(xk)≤ zk}= exp
[
−
∫

E
{

max
j=1,...,k

Y (x j−u)
z j

}
dF(u)

]
= exp

[∫
logPr{Z(x1−u)≤ z1, . . . ,Z(xk−u)≤ zk}dF(u)

]
= Pr{Z(x1)≤ z1, . . . ,Z(xk)≤ zk},

since the process Z is stationary.
Figure 3 shows two realizations of a Brown–Resnick process on X = [−1,1] with semivari-

ogram γ(h) = (5h)1.9. It is clear that Algorithm 1 yields to a non stationary sample path while the
use of independent random translations Ui ∼U(−1.5,1.5) gives a much more plausible sample
path.

8. Conditional simulation

Recently conditional simulation from max-stable processes has gained some interests with the
pioneering work of Wang and Stoev (2011) followed by that of Dombry and Éyi-Minko (2013);
Dombry et al. (2013). In Wang and Stoev (2011), a first solution was proposed for max-linear
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FIGURE 2. Illustration of the sampling procedure for max-stable processes based on the spectral characterizations (3)
or (4). The illustration uses a one dimensional Smith model with X = [−1,1], σ = 0.2 and B = 5/

√
2π . The left panel

plots the ordered sequence {ζi : i ∈ N}. The middle panel shows the simulated random functions {ζiYi : i ∈ N}. The
right panel shows the simulated max-stable process.

processes but in this paper we will restrict our attention to max-stable processes with spectral
representation (4).

Given some fixed locations x1, . . . ,xk ∈X and fixed values z1, . . . ,zk > 0, our goal is to sample
from

Z(x) | {Z(x1) = z1, . . . ,Z(xk) = zk}, x ∈X , (20)

where Z is a simple max-stable process on X .
Let x=(x1, . . . ,xk), z=(z1, . . .zk) and, to ease the notations, we write f (x)= { f (x1), . . . , f (xk)}

for any function f . Let Φ = {ϕi : i ∈ N} be a Poisson point process on C+(X ) with ϕi = ζiYi,
(ζi,Yi) as in (4). Provided Φ is regular, i.e., its intensity measure is absolutely continuous with
respect to the Lebesgue measure (at least) on (0,∞), it is straightforward to show that the intensity
measure of the Poisson point process {ζiYi(x) : i ∈ N} defined on (0,∞)k is

Λx(A) =
∫

∞

0
Pr{ζY (x) ∈ A}ζ

−2dζ =
∫

A
λx(u)du,

for all Borel set A⊂ Rk.
Given Z(x) = z, it can be shown Dombry et al. (2013) that Φ can be decomposed into two

independent point processes

Φ
− = {ϕ ∈Φ : ϕ(xi)< zi, i = 1, . . . ,k} , Φ

+ =
k⋃

i=1

{ϕ ∈Φ : ϕ(xi) = zi} .

The atoms of Φ+, called the extremal functions, correspond to random functions contributing
to the conditioning event Z(x) = z while the atoms of Φ−, called the sub-extremal functions, are
random functions that do not contribute to the process Z at the locations x but possibly at other
locations as illustrated by Figure 4.

Clearly the conditional event Z(x) = z is realized by ` extremal functions with ` ∈ {1, . . . ,k}
and these extremal functions form a partition τ = (τ1, . . . ,τ`) ∈Pk such that there exists a unique

Journal de la Société Française de Statistique, Vol. 154 No. 2 156-177
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



Spatial extremes: Max-stable processes at work 167

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1

0
−

8
−

6
−

4
−

2
0

x

lo
g

 Z
(x

)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−
1

0
−

8
−

6
−

4
−

2
0

x

lo
g

 Z
(x

)

FIGURE 3. Illustration of the problem for simulating Brown–Resnick processes on X = [−1,1]. The plot shows two
realizations of a Brown–Resnick process with semivariogram γ(h) = (5h)1.9 using Algorithm 1 (left) and random
translations. The black lines correspond to the simulated Brown–Resnick processes and the grey lines to the random
function ζiYi. The red tick marks corresponds to the translated origins Ui ∼U(−1.5,1.5) in (19).

extremal function ϕ+ ∈Φ+ satisfying ϕ+(xτ j) = zτ j and ϕ+(xτc
j
)< zτc

j
where xτ j = {xi : i ∈ τ j}

and xτc
j
= {xi : i /∈ τ j}.

Therefore conditional simulation of max-stable processes consists in a three-step procedure:
Step 1 Sample a random partition ϑ ∈Pk from Dombry and Éyi-Minko (2013); Dombry et al.

(2013)

Pr{ϑ = τ | Z(x) = z}= 1
C(x,z)

|τ|

∏
j=1

∫
{u j<zτc

j
}

λ(xτ j ,xτc
j
)(zτ j ,u j)du j, (21)

where τ ∈Pk and the normalizing constant is

C(x,z) = ∑
τ∈Pk

|τ|

∏
j=1

∫
{u j<zτc

j
}

λ(xτ j ,xτc
j
)(zτ j ,u j)du j.

Step 2 Given ϑ = τ of size `, sample independently the extremal functions ϕ
+
1 , . . . ,ϕ+

` from the
distributions

Pr
{

ϕ
+
j (s) ∈ dv | Z(x) = z,ϑ = τ

}
=

1
C j

{∫
1{u<zτc

j
}λ(s,xτc

j
)|xτ j ,zτ j

(v,u)du
}

dv,

where the normalizing constant is

C j =
∫

1{u<zτc
j
}λ(s,xτc

j
)|xτ j ,zτ j

(v,u)dudv,

and the conditional intensity function

λ(s,xτc
j
)|xτ j ,zτ j

(v,u) =
λ(s,xτc

j
,xτ j )

(v,u,zτ j)

λxτ j
(zτ j)

, s ∈X m, (v,u) ∈ Rm+|τc
j |
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FIGURE 4. Illustration of the decomposition of the Poisson point process Φ = {ζiYi : i∈N} into the two point Processes
Φ+ and Φ−. From left to right are shown the pointwise maxima of the extremal functions, the subextremal functions
and of all atoms of Φ. The squares denotes the conditioning events Z(x) = z. The decomposition was obtained from a
realization of a Schlather process with a Gaussian correlation function, i.e., ρ(h) = exp(−h2).

is the distribution of an atom ϕ ∈Φ such that ϕ(xτ j) = zτ j . Let

Z+ = max(ϕ+
1 , . . . ,ϕ+

` ).

Step 3 Independently draw a “thinned” max-stable process, i.e.,

Z− = max
i≥1

ζiYi1{ζiYi(x)<z},

with {(ζi,Yi) : i ∈ N} as in (4).

Finally the random vector max{Z−(s),Z+(s)} follows the conditional distribution of Z(s) |
{Z(x) = z}, s ∈X m.

In the above three–step procedure, the most difficult stage is Step 1 as it amounts to sample
from a discrete distribution whose state space Pk is huge. One possibility is to use a Gibbs
sampler as proposed in Dombry et al. (2013). Recall that a Gibbs sampler requires to sample from
the full conditional distributions. For our purpose because the full conditional distribution satisfies

Pr
{

ϑ = τ
∗ | Z(x) = z,ϑ− j = τ− j

}
∝

Pr{ϑ = τ∗ | Z(x) = z}
Pr{ϑ = τ | Z(x) = z}

1{τ∗− j=τ− j},

where τ− j denotes the restriction of the partition τ to the set {x1, . . . ,xk}\{x j}, many terms will
cancel out due to the product form of (21). It makes the Gibbs sampler especially convenient.

For practical purposes and given a parametric max-stable model, one need to get closed forms
for λx and λs|x,z. If the derivation of the former is usually not too complicated, the derivation of
the latter is more interesting since it says from which stochastic processes the extremal functions
are drawn.

It can be shown that the extremal functions for the Brown–Resnick model are log-normal
processes, i.e.,

λs|x,z(u) = (2π)−m/2|Σs|x|−1/2 exp
{
−1

2
(
logu−µs|x,z

)T
Σ
−1
s|x
(
logu−µs|x,z

)} m

∏
i=1

u−1
i ,
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where s ∈X m, u ∈Rm and closed forms for the mean vector µs|x,z and the covariance matrix Σs|x
are given inDombry et al. (2013).

For the Schlather model, the extremal functions are Student processes Dombry et al. (2013),
i.e.,

λs|x,z(u) = π
−m/2(k+1)−m/2|Σ̃|−1/2

{
1+

(u−µ)T Σ̃−1(u−µ)

k+1

}−(m+k+1)/2
Γ
( k+m+1

2

)
Γ
( k+1

2

) ,

where the mean vector is µ = Σs:xΣ−1
x z and the dispersion matrix is

Σ̃ =
ax(z)
k+1

(
Σs−Σs:xΣ

−1
x Σx:s

)
, Σ(s,x) =

(
Σs Σs:x

Σx:s Σx

)
, (22)

and Σ(s,x) = Var[ε{(s,x)}] where ε is the standard Gaussian process appearing in the spectral
representation of the Schlather model.

Using the same lines as in Dombry et al. (2013), it is not difficult to show (see Appendix A)
that the conditional intensity function for the extremal–t model is the density of T (s)ν where T is
a Student process with k+ν degrees of freedom and respective mean vector and scale matrix

µ = Σs:xΣ
−1
x z1/ν , Σ̃ = (k+ν)−1ax(z,ν)

(
Σs−Σs:xΣ

−1
x Σx:s

)
,

where ax(z,ν) = (z1/ν)T Σxz1/ν and the matrices Σs,Σx,Σx:s and Σs:x are as in (22)—see Ap-
pendix A for more details.

9. Application

In this section we will see how we can apply the theory introduced in the previous sections
to model extreme wind gusts in Netherland using the R package SpatialExtremes Ribatet
et al. (2013). This package collects various function to model spatial extremes using max-stable
processes, Bayesian hierarchical models or copula. Simulation routines from various statistical
models are available. If one aim at simulating max-stable processes, an excellent alternative
package is RandomFields Schlather et al. (2013).

The data consist in wind speed series (km/h) observed at 35 weather stations located in the
Netherlands and provided by the Royal Netherland Meteorological Institute (http://www.knmi.
nl/index_en.html). Annual maxima were extracted from the raw data for the time period
1971–2012. Figure 5 shows the locations of these 35 weather stations as well as time frames
where annual maxima were available for each station. We can see that most of the time series start
around 1990 and ends in 2012. The right panel of Figure 5 plots the deviation of the sample mean
(of annual maxima) at each station from the overall sample mean, i.e., the sample mean computed
over all weather stations. It seems that there is a North–West to South–East gradient where, as
expected, the largest wind gusts are observed along the coastline.

Although for theoretical purposes there is no loss of generality focusing only on simple max-
stable models, i.e., with unit Fréchet margins, for concrete applications one has to allow for
(pointwise) marginal distributions varying in space. This can be done by defining trend surfaces
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FIGURE 5. The wind gust data. The left panel shows the locations of the 35 Dutch weather stations. The middle panel
shows the time period where annual maxima are available at each station. The right panel plots circles at each weather
stations whose radii are proportional to the deviation from the overall mean annual maxima computed over all weather
stations. A red (resp. blue) circle indicates that the deviation of the corresponding weather station is positive (resp.
negative).

for the generalized extreme value parameters µ,σ and ξ in (2). For our application, the right
panel of Figure 5 suggests the use of

µ(x) = βµ,0 +βµ,1lon(x)+βµ,2lat(x), (23)

with similar expressions for σ(x) and ξ (x) and where µ(x),σ(x),ξ (x), lon(x) and lat(x) are
respectively the location, scale and shape parameters of the generalized extreme value distribution
and the longitude and latitude for location x ∈X . With the SpatialExtremes package, this is
done by invoking in R

loc.form <- scale.form <- shape.form <- y ~ lon + lat

With such trend surfaces, the pairwise log-likelihood (13) has to be modified to take into account
for the (pointwise) switch of generalized extreme value margins to unit Fréchet ones.

The trend surface (23) was just a guess based on Figure 5 and we need to perform model
selection to define the most accurate and parsimonious trend surfaces using the theory introduced
in Section 6. At this stage and because we aim at defining sensible trend surfaces for the generalized
extreme value parameters, it is more convenient to omit for a moment the spatial dependence,
i.e., assuming that the weather stations are mutually independent. It amounts to use a special
composite likelihood known as the independence likelihood Varin et al. (2011). This is done by
invoking

M0 <- fitspatgev(data, coord, loc.form, scale.form, shape.form)

where data is a matrix containing the annual maxima at each location and coord is a matrix
formed by some suitable covariates used in the trend surfaces. It is often a good idea to center the
covariates to avoid numerical instabilities when maximizing the log-likelihood and to check that
the optimum found by the numerical optimizer is suitable.

The trend surface for the shape parameter is likely to be too complex because this parameter
has usually large uncertainties, and apart from specific situations, it is not too restrictive to assume
a constant shape parameter, i.e.,
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shape.form <- y ~ 1
M1 <- fitspatgev(data, coord, loc.form, scale.form, shape.form)

To decide whether one should prefer model M1 over M0 one could use the Takeuchi information
criterion by invoking TIC(M0,M1) who suggests the use of M1. Because these two models are
nested, one can use a composite likelihood ratio test to confirm this model selection. This is done
by invoking anova(M0,M1) whose output is

Eigenvalue(s): 1.07 0.66

Analysis of Variance Table
MDf Deviance Df Chisq Pr(> sum lambda Chisq)

M1 7 8541.3
M0 9 8539.1 2 2.2225 0.2748
---
Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

The composite likelihood ratio test clearly states in favor of M1 with a p–value around 0.30. After
comparing various trend surfaces, we found that the following trend surfaces was the most suitable

µ(x)= βµ,0+βµ,1lon(x)+βµ,2lat(x), σ(x)= βσ ,0+βσ ,1lon(x), ξ (x)= βξ ,0, x∈X .

Although at this stage it is possible to get quantile predictions at any new location x∗ ∈X , the
spatial dependence has not been taken into account yet and we need to choose the most appropriate
max-stable model for our data. We will consider the ones introduced in Section 3, namely
the Schlather, Brown–Resnick and extremal–t families. Maximizing the associated pairwise
likelihoods is challenging and it is often a good idea to help the numerical optimizer in doing so.
For example using the built in nlm optimizer of R, one can invoke

start.trend <- as.list(M2$fitted)
start <- c(list(range = 150, smooth = 0.2), start.trend)
schlat <- fitmaxstab(data, coord, "powexp", loc.form, scale.form,

shape.form, nugget = 0, method = "nlm",
start = start, typsize = unlist(start))

start <- c(list(range = 13, smooth = 0.24), start.trend)
brown <- fitmaxstab(data, coord, "brown", loc.form, scale.form,

shape.form, start = start, method = "nlm",
typsize = unlist(start))

start <- c(list(range = 150, smooth = 0.2, DoF = 1), start.trend)
extt <- fitmaxstab(data, coord, "tpowexp", loc.form, scale.form,

shape.form, nugget = 0, method = "nlm",
start = start, typsize = unlist(start))

where M2 is the best fitted model obtained using the fitspatgev function.
Table 1 summarizes the fitted max-stable models. Since the models under consideration are

not nested, we have resort to the Takeuchi information criterion to select the best model, i.e., by
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TABLE 1. Fits of several max-stable models to Dutch wind speed data. The Schlather and extremal–t models used the
powered exponential correlation function family ρ(h) = exp{(h/λ )κ} and the Brown–Resnick model has semi
variogram γ(h) = (h/λ )κ . ( ∗ ) denotes that the parameter is held fixed. h+ is the estimated distance at which
θ(h) = 1.7. NoP is the number of parameters.

ν λ κ h+(km) NoP `p(ψ̂p) TIC
Schlather —— 51 ( 16 ) 0.58 (0.15) 531 8 −114340 229376
Brown–Resnick —— 13 ( 9 ) 0.24 (0.02) 318 8 −114453 229638
Extremal–t 2.56 (0.49) 531 (556) 0.39 (0.06) 381 9 −114206 229150
Extremal–t 2.53 (0.24) 500 ( ∗ ) 0.40 (0.07) 372 8 −114206 229100
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FIGURE 6. Inference for the wind gust data set from the fitted extremal–t model. The left panel plots the predicted
pointwise 25 years return levels (km/h) obtained from the fitted extremal–t model. The two rightmost panels compare
the empirical F-madogram cloud to the fitted extremal coefficient function. Grey points are pairwise estimates; black
ones are binned estimates (with 100 bins). The middle panel uses the empirical distribution function. The right panel
uses the generalized extreme value distributions defined from the fitted trend surfaces.

invoking TIC(schlat, brown, extt). According to this information criterion, the extremal–t
model appears to be the most competitive model. The estimation of the range parameter λ is
associated to large uncertainties as it appear to be difficult to jointly estimate ν ,λ and κ . Similarly
to the case study given in Davison et al. (2012), it might indicate difficulties in estimating the
upper bound of the extremal coefficient function. To bypass this hurdle, one possibility consists in
fixing one of this three parameters, preferably λ as in Table 1 since it does not put any restriction
on the upper bound of θ(h) nor on the sample path regularity of the max-stable process.

The fitted trend surfaces of the extremal–t model are

µ̂(x) = 95.7(0.9) −0.050(0.003)lon(x)+0.070(0.004)lat(x),

σ̂(x) = 11.7(0.4) −0.010(0.001)lon(x),

ξ̂ (x) =−0.06(0.02),

where the subscripts give the associated standard errors. In accordance with the North–West to
South–East gradient detected in Figure 5, the trend surface parameter estimates β̂µ,1 and β̂µ,2 are
negative and positive respectively.

The left panel of Figure 6 plots the pointwise 25 year return level based on the fitted extremal–t
model. As expected we can see that the largest wind speeds occur along the coastline. The two
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TABLE 2. Frequencies (in %) of the partition size for the wind gust data.

Partition size 1 2 3 4 5 6 7–35
Frequencies (%) 0 43.5 43.2 12.0 1.1 0.2 0
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FIGURE 7. Summary plots obtained from 1000 conditional simulations for the wind gust data based on the observed
annual maxima for year 2002. The left panel shows the 25 year wind speed pointwise anomalies, i.e., the difference
between the pointwise conditional 25 year return levels and the unconditional ones. The right panel plots the ratio of
the conditional pointwise standard deviations and the unconditional ones.

rightmost panels of Figure 6 compare the fitted extremal coefficient function to the empirical F-
madogram cloud. The difference between these two plots is that the former makes the comparison
using the raw annual maxima while the latter uses transformed data using the trend surfaces.
We can see that the use of trend surfaces induces a bias in the estimation of the dependence
structure probably owing to the use of too simple trend surfaces. However apart from this slight
underestimation, overall the fitted spatial dependence structure seems reasonable. This fact is well
known in the copula framework where most researchers advocate the use of a two–step fitting
procedure: first fit the margins, then the dependence parameters. Although the bias occurring in
the dependence structure will be removed, the price to pay with this two–step procedure is that it
is likely that standard errors for parameter estimates are likely to be underestimated and hence
could potentially impact model selection.

To push the analysis forward we perform 1000 conditional simulations based on the fitted
extremal–t model. We set as conditioning values the annual maxima observed in 2002 since this
year was found to be especially severe.

Table 2 shows the distribution of the size of the random partition ϑ in (21) conditionally on
the annual maxima observed in 2002. We can see that the size of ϑ , i.e., the number of extremal
functions, is between 2 and 3 with a probability around 0.85. By having a closer look at the daily
data, we can see that the annual maxima of 2002 occurred either on February, 26th or October,
27th.

Figure 7 illustrates the differences between the annual maxima for year 2002 and a common
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year based on 1000 conditional simulations from the fitted extremal–t model. The left panel plots
the difference between the conditional pointwise 25 year return levels and the unconditional ones.
Apart from the South–West part of Netherlands, we can see that the year 2002 seems to be most
severe than a typical year. The largest differences are located around Lelystad—see Figure 5 for a
precise location.

The right panel of Figure 7 plots the ratio of the pointwise standard deviation calculated from
the 1000 conditional simulations and the standard deviation derived from the fitted extremal–t
model. As expected the conditional standard deviation is smaller than the unconditional ones. The
largest differences are located around Deelen—see Figure 5 for a precise location.

10. Discussion

Many progresses have been made since the derivation by Laurens de Haan of the spectral
representation of max-stable processes de Haan (1984). Although max-stable processes are
increasingly more considered in the statistical modelling of spatial extremes, there are still some
open questions and difficulties.

One difficulty is related to the fitting of max-stable processes. The maximum composite
likelihood estimator was introduced by Padoan et al. (2010) but implies a loss in efficiency and
shows typically numerical instabilities. Some efforts should be made to propose better inferential
procedures.

Simulation of max-stable process is feasible but some specific processes are more difficult
to simulate from, e.g., Brown–Resnick processes. Although a theoretical framework exists for
conditional simulation of max-stable processes, it is usually very CPU demanding and some
efforts should be made to develop more efficient algorithm.

Paralleling the generalized Pareto distribution in the univariate case, little is known about
generalized Pareto processes. Although some simple representations have been found Buishand
et al. (2008); Aulbach et al. (2012); de Haan and Ferreira (2012); Dombry and Ribatet (2013), we
are far from being able to use generalized Pareto processes for concrete applications.
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Appendix A: Conditional distribution of the extremal–t process

For our purposes it is more convenient to use the following equivalent represention of the extremal–
t process

Z(x) = cν max
i≥1

ζiεi(x)ν , x ∈X ,

where cν =
√

π2−(ν−2)/2Γ{(ν + 1)/2}−1, ε is a standard Gaussian process with correlation
function ρ and with the convention that yν =−∞ when y < 0.

For all x ∈X k and Borel set A⊂ Rk,

Λx(A) =
∫

∞

0
Pr{cνζ ε(x)ν ∈ A}ζ

−2dζ =
∫

∞

0

∫
Rk

1{cν ζ yν∈A} fx(y)dyζ
−2dζ ,
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where fx is the density of the random vector ε(x), i.e., a centered Gaussian random vector with
covariance matrix Σx. The change of variable z = cνζ yν gives

Λx(A) =
∫

∞

0

∫
A

fx

{(
z

cνζ

)1/ν
}

ν
−kc−k/ν

ν

k

∏
j=1

z1/ν−1
j dzζ

−k/ν−2dζ

= (2π)−k/2
ν
−k|Σx|−1/2c−k/ν

ν

∫
A

∫
∞

0
exp

{
−(z1/ν)T Σ−1

x z1/ν

2c2/ν

ν

ζ
2/ν

}
ζ

k/νdζ

k

∏
j=1

z1/ν−1
j dz

= 2−k/2
π
−k/2

ν
−k+1|Σx|−1/2c−(k−2)/ν

ν

∫
A

ax(z,ν)−1E
{

X (k+ν−2)/ν

} k

∏
j=1

z1/ν−1
j dz

=
∫

A
λx(z)dz,

where

λx(z) = cνν
−k+12(ν−2)/2

π
−k/2|Σx|−1/2ax(z,ν)−(k+ν)/2

Γ

(
k+ν

2

) k

∏
j=1

z(1−ν)/ν

j ,

with ax(z,ν) =
(
z1/ν

)T
Σ−1

x z1/ν and where the third equality is obtained from the (k+ν−2)/ν

raw moment of a Weibull random variable with shape 2/ν and scale 2ν/2cνax(z,ν)−ν/2.
For all u ∈ Rm and s ∈X m, the conditional intensity function is

λs|x,z(u) = ν
−m

π
−m/2 |Σ(s,x)|−1/2

|Σx|−1/2

a(s,x){(u,z),ν}−(m+k+ν)/2

ax(z,ν)−(m+k+ν)/2 ax(z,ν)−m/2 Γ
(m+k+ν

2

)
Γ
( k+ν

2

) m

∏
j=1

u(1−ν)/ν

j ,

and, since following the lines of Dombry et al. (2013), we can show that

|Σ(s,x)|
|Σx|

= |Σs−Σs:xΣ
−1
x Σx:s|=

{
k+ν

ax(z,ν)

}m

|Σ̃|,
a(s,x){(u,z),ν}

ax(z,ν)
= 1+

(u1/ν −µ)T Σ̃−1(u1/ν −µ)

k+ν
,

where µ = Σs:xΣ−1
x z1/ν and Σ̃ = (k+ν)−1ax(z,ν)

(
Σs−Σs:xΣ−1

x Σx:s
)
, we finally get

λs|x,z(u) = π
−m/2(k+ν)−m/2|Σ̃|−1/2

{
1+

(u1/ν −µ)T Σ̃−1(u1/ν −µ)

k+ν

}−(m+k+ν)/2
Γ
(m+k+ν

2

)
Γ
( k+ν

2

) ×{
ν
−m

m

∏
j=1

u−(ν−1)/ν

j

}
.

The last term in bracket in the previous equation corresponds to the Jacobian of the mapping
u 7→ u1/ν . Hence we recognize that the conditional intensity function is the density of the random
vector T ν where T is a Student random vector with mean µ and dispersion matrix Σ̃.
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