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Abstract: In this paper, we are interested in the online prediction of the electricity load, within the Bayesian
framework of dynamic models. We offer a review of sequential Monte Carlo methods, and provide the calculations
needed for the derivation of so-called particles filters. We also discuss the practical issues arising from their use,
and some of the variants proposed in the literature to deal with them, giving detailed algorithms whenever
possible for an easy implementation. We propose an additional step to help make basic particle filters more robust
with regard to outlying observations. Finally we use such a particle filter to estimate a state-space model that
includes exogenous variables in order to forecast the electricity load for the customers of the French electricity
company Électricité de France and discuss the various results obtained.

Résumé : Dans cet article nous proposons un modèle dynamique, non-linéaire, pour prévoir en ligne la consom-
mation d’électricité. Nous présentons une revue des méthodes séquentielles de Monte Carlo utilisées pour le
calcul des filtres particulaires . Nous discutons les principaux problèmes qui surviennent lors de l’utilisation de ces
filtres et nous décrivons les algorithmes associés aux solutions. Nous introduisons une nouvelle étape qui permet
la détection et la suppression automatique des données aberrantes qui conduisent souvent à la dégénerescence de
la distribution des particules. Nous appliquons ensuite un algorithme de filtrage particulaire afin d’estimer notre
modèle de consommation et comparons les prévisions obtenues aux prévisions opérationnelles utilisées au sein
d’EDF.
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1. Introduction

Let {Xn}n≥0 and {Yn}n≥0 be X ⊂Rnx and Y ⊂Rny -valued stochastic processes defined on a
measurable space. The observations {Yn}n≥0 are assumed conditionally independent given
the hidden Markov process {Xn}n≥0 most often referred to as the states of the model, and
are characterised by the conditional density gθ

n(yn|xn). We denote the initial density of the
state as µθ(x0) and the Markov transition density from time n− 1 to time n as f θ

n(xn|xn−1).
The superscript θ on these densities is the parameter of the model, that belongs to an open set
Θ ⊂Rnθ . The model can be summarised (using practical and common if not exactly rigorous
notations) as

X0 ∼ µθ(·), Xn|(Xn−1 = xn−1) ∼ f θ
n(·|xn−1) (1.1)

Yn|(Xn = xn) ∼ gθ
n(·|xn). (1.2)
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2 T. Launay, A. Philippe and S. Lamarche

Within the Bayesian framework, equations (1.1) specify the prior on the states of the model
whose likelihood is defined via (1.2).

Notice here that we restrict ourselves to models with independent observations, but that
the framework can easily be extended to include dependent observations if need be. The class
of dynamic models we consider, known as general state-space models or hidden Markov
models (HMM) in the literature and whose typical representation is given in Figure 1, includes
many non linear and non Gaussian time series models such as

Xn+1 = Fn(Xn, Vn+1) (1.3)
Yn = Gn(Xn,Wn) (1.4)

where {Vn}n≥1 and {Wn}n≥0 are independent sequences of independent random variables
and {Fn}n≥1 and {Gn}n≥1 are sequences of (possibly non linear) functions. Such models find
applications in many fields including time-series forecasting (Dordonnat, 2009), biostatistics
(Rossi, 2004; Vavoulis et al., 2012), econometrics (Liu and West, 2001; Johansen et al., 2008;
Chopin et al., 2012), telecommunications (Lee et al., 2010), object tracking (Rui and Chen,
2001; Gilks and Berzuini, 2001; Gustafsson et al., 2002; Karlsson, 2005), etc.

Xn−2 Xn−1 Xn Xn+1 Xn+2

Yn−2 Yn−1 Yn Yn+1 Yn+2

f θ
n−1 f θ

n f θ
n+1 f θ

n+2

gθ
n−2 gθ

n−1 gθ
n gθ

n+1 gθ
n+2

FIGURE 1. A generic hidden Markov Model (HMM).

When the parameter θ is known, on-line inference about the state process given the obser-
vations is a so-called optimal filtering problem. For simple models such as the linear Gaussian
state-space model the problem can be solved exactly using the standard Kalman filter (see
for example Durbin and Koopman, 2001), and the case of a finite state-space also allows for
explicit calculations. For non linear models, the Extended Kalman filter is often used and
relies on the approximation of the first derivative of Fn, although good performances are not
guaranteed theoretically. Another technique is the so-called Unscented Kalman filter (see Wan
and van der Merwe, 2000, for the comprehensive details) which makes use of the unscented
transformation to deal with the non linearity of the system.

For our application, we are interested in the on-line prediction of the french electricity load
through the estimation (and prediction) of a dynamic model and choose to consider Sequential
Monte Carlo (SMC) methods also known as particle methods instead. SMC methods are a
class of sequential simulation-based algorithms which aim at approximating the posterior
distributions of interest. They represent a popular alternative to Kalman filters (Kantas et al.,
2009) since they are often easy to implement, apply to non linear non Gaussian models, and
have been demonstrated to yield accurate estimates (Doucet et al., 2001; Liu, 2008).

In Section 2 we introduce the key concepts behind sequential Monte Carlo methods. In
Section 3 we first derive the algorithm for a basic particle filter and discuss common practical

Journal de la Société Française de Statistique, Vol. 154 No. 2 1-36
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



On particle filters applied to electricity load forecasting 3

issues. We then review the main techniques appearing in the literature to deal with these
issues and we also propose a new additional step to help make particle filters more robust
with regard to outlying observations. Finally, we propose a new nonlinear dynamic model for
the electricity load in Section 4 and use a particle filter to estimate this model. We compare
the predictions we obtain to operational predictions and show that our model remains
competitive, even though its definition is simpler than that of the model studied in Dordonnat
et al. (2008).

2. Inference in hidden Markov models

Let us first assume that the parameter θ is known: the model with θ unknown will be discussed
later in Section 3.7. Given equations (1.1) and (1.2), the posterior distribution of the states
given the observations is

πθ(x0:n|y0:n) ∝
n

∏
k=1

gθ
k(yk|xk)︸ ︷︷ ︸

n likelihoods

·
n

∏
k=1

f θ
k (xk|xk−1)︸ ︷︷ ︸

n transition densities

· µθ(x0)︸ ︷︷ ︸
initial density

. (2.1)

From equation (2.1), three distinct goals might be pursued (see for example Chen, 2003; Cappé
et al., 2010)

Filtering: the aim of filtering is to estimate the distribution of the state Xn conditionally to
the observations up to time n, i.e. y0:n.

Smoothing: the aim of smoothing is to estimate the distribution of the state Xn conditionally
to the observations up to time n′ (with n′ ≥ n), i.e. y0:n′ . Note that πθ(xn|y0:n) is both a
filtered and a smoothed distribution.

Predicting: the aim of predicting is to estimate the distribution of the state Xn+τ (with an
horizon τ > 0) conditionally to the observations up to time n, i.e. y0:n. From there, using
(1.2), it is easy to forecast the upcoming observation Yn+τ which is usually the real target.
When not explicitly mentioned, the horizon considered for prediction will be τ = 1.

To summarise, given the available observations, filtering focuses on the current state, smooth-
ing focuses on the past states, and predicting focuses on the future states. Our goal being the
online prediction of the electricity load, we chose to focus on predicting and filtering, since
the filtered distribution of the state at time n is needed to produce forecasts for time n + τ:
ultimately, smoothing only refines the estimation of past states over time, without influencing
the quality of the online prediction, and is therefore not needed to achieve our goal.

Markov Chains Monte Carlo

MCMC methods (see for example Robert, 1996; Robert and Casella, 2004; Marin and Robert,
2007) certainly represent a viable estimation procedure: most of the time, nothing really
prevents the exploration via MCMC of the posterior distribution derived in (2.1) from the
prior and the likelihood given in (1.1) and (1.2). From a practical point of view however,
MCMC methods are most likely not the optimal tool: the addition of a new observation yn+1
from the model forces the overall re-estimation of the smoothed distribution of the states
πθ(x0:n+1|y0:n+1) even when we are interested only in the last marginal of this distribution i.e.
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4 T. Launay, A. Philippe and S. Lamarche

the filtered distribution πθ(xn+1|y0:n+1). The MCMC estimation is thus not recursive (with
regard to the time index) in the sense that the filtered distribution πθ(xn+1|y0:n+1) at time
n + 1 cannot be computed from the previous filtered distribution πθ(xn|y0:n) at time n using
MCMC methods, which is a major drawback given the computationally expensive nature of
these methods.

Notice also that even though designing the MCMC algorithm can be simple in some
cases, the dimension of the space explored grows linearly with the time index making the
assessment of the convergence of the produced Markov chains all the more complicated.

Importance sampling

Monte Carlo integration allows the estimation of integrals of the form

I = Eπ[h(X)] =
∫

h(x)π(x)dx, (2.2)

where π is a probability density and where h ∈ L1(π). This method is often used to numeri-
cally approximate the expectation of a random variable whose density is π or a moment of
higher order.

Let us assume that a probability density q (the so-called importance density) is available
from which we can simulate, and such that the support of π is included in that of q. We can
then write

I =
∫

h(x)π(x)dx =

∫ h(x)π(x)
q(x)

q(x)dx∫
π(x)
q(x)

q(x)dx
.

Given X1, . . . , XM i.i.d. random variables with probability density q, the self-normalised
importance sampling estimator of I is defined by

ÎM(q) =

M

∑
j=1

h(X j)π(X j)

q(X j)

M

∑
j=1

π(X j)

q(X j)

=
M

∑
j=1

wjh(X j), (2.3)

where we define the self-normalised weights as

wj =
w̃j

∑M
k=1 w̃k

. (2.4)

with

w̃j =
π(X j)

q(X j)
. (2.5)

See Geweke (1989) for the theoretical details (including proof of the consistency of the
estimator).
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On particle filters applied to electricity load forecasting 5

Sequential Monte Carlo

SMC methods provide a viable and popular alternative to MCMC methods for the Bayesian
online estimation of dynamic models. Particle methods are recursive by nature (thus com-
putationally cheaper than MCMC) and similar in some ways to the Kalman filter approach.
Particle methods essentially draw their strength from the immediate calculations that we
show below

πθ(x0:n|y0:n) =
πθ(y0:n|x0:n)πθ(x0:n)

πθ(y0:n)
=

πθ(yn, y0:n−1|x0:n)πθ(x0:n)

πθ(yn, y0:n−1)

=
πθ(yn|y0:n−1, x0:n)πθ(y0:n−1|x0:n)πθ(x0:n)

πθ(yn|y0:n−1)πθ(y0:n−1)

=
πθ(yn|y0:n−1, x0:n)πθ(x0:n|y0:n−1)π

θ(y0:n−1)π
θ(x0:n)

πθ(yn|y0:n−1)πθ(y0:n−1)πθ(x0:n)

=
πθ(yn|x0:n)πθ(xn|x0:n−1, y0:n−1)

πθ(yn|y0:n−1)
· πθ(x0:n−1|y0:n−1)

i.e. with the notations we introduced earlier:

πθ(x0:n|y0:n) =
gθ

n(yn|xn) f θ
n(xn|xn−1)

πθ(yn|y0:n−1)
· πθ(x0:n−1|y0:n−1) (2.6)

∝ gθ
n(yn|xn) f θ

n(xn|xn−1) · πθ(x0:n−1|y0:n−1).

The recursive equation (2.6) plays a central role in the definition of all particle methods. An
integrated version of this equation is most often presented to emphasise the direct connection
between two consecutive filtered distributions:

πθ(xn|y0:n) =
∫

πθ(x0:n|y0:n)dx0:n−1 (2.7)

∝ gθ
n(yn|xn)

∫
f θ
n(xn|xn−1) · πθ(xn−1|y0:n−1)dxn−1.

The main idea behind particle filters is to make extensive use of equation (2.6) to compute
sequential Monte Carlo approximations of the posterior distributions of interest, in our case,
the sequence of filtered distributions. The general procedure is simple enough and mimics
the iterative prediction-correction structure of any Kalman filter. A each time n the filtered
density πθ(xn|y0:n) can be approximated by the empirical distribution of a large sample of M
(M >> 1) weighted random samples termed particles. The weighted particles evolve over
time: they follow the prior dynamic distribution of the model and get re-adjusted as soon as
observations become available. At time n, the two basic steps (a lot of refinements are possible
that we will discuss later on) of particle filters are the following:

Prediction: given particles distributed along density πθ(xn−1|y0:n−1), we simulate new par-
ticles distributed along density πθ(xn|y0:n−1) with the help of the transition density
f θ
n(xn|xn−1).

Correction: we re-weight these particles distributed along density πθ(xn|y0:n−1) depending
on the observation yn with the help of (2.6) to approximate the distribution π(xn|y0:n).
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6 T. Launay, A. Philippe and S. Lamarche

Particle filters essentially combine Monte Carlo integration and importance sampling. We
describe the application of self-normalised importance sampling to estimate a sequence of
integrals that involve the posterior distribution (2.1) and that are of the form

In =
∫

h(xn)π
θ(x0:n|y0:n)dx0:n

=
∫

h(xn)π
θ(xn|y0:n)dxn.

We use the self-normalised importance sampling estimator defined in (2.3), with π(x) =
πθ(x0:n|y0:n) and q(x) = q(x0:n|y0:n). Given M particles X1

0:n, . . . , XM
0:n, i.i.d. with probability

density qθ(x0:n|y0:n), we will approximate In by

ÎPF
n,M =

M

∑
j=1

wj
nh(X j

n),

where mimicking the definitions given (2.5) and (2.4) we define

wj
n =

w̃j
n

∑M
k=1 w̃k

n
, (2.8)

with

w̃j
n =

πθ(X j
0:n|y0:n)

qθ(X j
0:n|y0:n)

. (2.9)

Note that to alleviate the notational burden, we voluntarily omit the dependence of the
importance weights on the parameter θ, and will do so for the remainder of the chapter when
no confusion is possible.

A convenient form of importance density

Let us consider an importance density q that can be factorised as follows:

qθ(x0:n|y0:n) = qθ(xn|y0:n−1, x0:n)qθ(x0:n−1|y0:n−1)

= qθ(x0|y0)
n

∏
k=1

qθ(xk|y0:k−1, y0:k). (2.10)

It is now easy to see, using (2.6), that the weights w̃θ
n(X j

0:n) can be updated recursively via

w̃j
n =

πθ(X j
0:n|y0:n)

qθ(X j
0:n|y0:n)

=
gθ

n(yn|X j
n) f θ

n(X j
n|X

j
n−1)π

θ(X j
0:n−1|y0:n−1)

πθ(yn|y0:n−1)qθ(X j
n|X

j
0:n−1, y0:n)qθ(X j

0:n−1|y0:n−1)

= w̃j
n−1

gθ
n(yn|X j

n) f θ
n(X j

n|X
j
n−1)

πθ(yn|y0:n−1)qθ(X j
n|X

j
0:n−1, y0:n)

. (2.11)

where πθ(yn|y0:n−1) does not depend on the index j, and need not be computed at all since
the weights wj

n featured in the estimator are the self-normalised version of the weights w̃j
n
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On particle filters applied to electricity load forecasting 7

(the constant vanishes after the self-normalisation). Note that wj
n−1 can be substituted to w̃j

n−1
in the recursive update (2.11) for the very same reason.

Equation (2.11) lies at the very core of all the particle filters in general, some variants of
which we describe in the next section. It summarises, by itself, the edge that SMC methods
have over MCMC methods in general in the context of dynamic models: it allows for sequen-
tial recursive estimations and predictions. At each time step, two things only are required
to estimate the quantity of interest: simulations from the importance density qθ (the choice
of which shall be discussed) and the update of the particles’ weights via the computation of
(2.11).

3. Particle filters

From this point on, we adopt the convention that whenever the index j is used, we mean “for
all j = 1, . . . , M“. We present SMC methods designed to approximate the sequence of filtered
distributions πθ(xn|y0:n): at the end of each time step n, the particle filters discussed hereafter
return M particles X j

n with weights wj
n that can be used to approximate for instance

– the filtered distribution πθ(xn|y0:n) by the finite mixture of weighted Dirac masses

π̂(dxn|y0:n) =
M

∑
j=1

wj
nδ(X j

n,dxn),

– integrals such as In =
∫

h(xn)π(xn|y0:n)dxn, with h ∈ L1(π(·|y0:n)), by

În,M =
M

∑
j=1

wj
nh(X j

n).

3.1. Sequential Importance Sampling (SIS)

Conception

The SIS filter (sometimes also called Bayesian Importance Sampling) is a direct application of
the calculations shown in the previous section: it relies solely upon the sequential use of the
self-normalised importance sampling technique. The details are given in Algorithm 3.1.

Algorithm 3.1 (Sequential Importance Sampling (SIS) for filtering).

At time n = 0
1. Sample X j

0 ∼ qθ(x0|y0).

2. Compute w̃j
0 =

gθ
0(y0|X j

0)µ
θ(X j

0)

qθ(X j
0|y0)

and set wj
0←

w̃j
0

∑M
k=1 w̃k

0

.

At time n ≥ 1
1. Sample X j

n ∼ qθ(xn|x0:n−1, y0:n).

2. Compute w̃j
n = wj

n−1
gθ

n(yn|X j
n) f θ

n(X j
n|X

j
n−1)

qθ(X j
n|X

j
0:n−1, y0:n)

and set wj
n←

w̃j
n

∑M
k=1 w̃k

n
.
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8 T. Launay, A. Philippe and S. Lamarche

At each time step, new particles are first simulated conditionally to the old ones to represent
the predictive distribution of the upcoming state and, as the observation becomes available,
their weights then get readjusted to represent the filtered distribution.

Prediction

The estimation of the predicted distribution πθ(xn+τ|y0:n) (τ ≥ 1) can also be computed from
the estimation of the filtered distribution up to time n. The principle, described for instance
in Doucet (1998), is identical in essence to that developed in Durbin and Koopman (2001)
for Kalman filters. Since the observations at times n + 1, . . . , n + τ are not yet available, no
correction may take place after the predictions of the state that involve the transition densities
f θ
n+τ , . . . , f θ

n+1 : formally, the terms gθ
n+τ , . . . , gθ

n+1 vanish. The details are given in Algorithm 3.2.
Observe that in this case, the importance density qθ(xn+τ|x0:n+τ−1, y0:n) needs to be chosen so
as not to involve the yet unknown values of the upcoming observations yn+1:n+τ.

Algorithm 3.2 (Sequential Importance Sampling (SIS) for predicting).

At time n ≥ 0, for τ = 1, . . .

1. Sample X j
n+τ ∼ qθ(xn+τ|x0:n+τ−1, y0:n).

2. Compute w̃j
n+τ = wj

n+τ−1
f θ
n+τ(X j

n+τ|X
j
n+τ−1)

qθ(X j
n+τ|X

j
0:n+τ−1, y0:n)

and set wj
n+τ ←

w̃j
n+τ

∑M
k=1 w̃k

n+τ

.

Missing observations

When dealing with a missing observation, the SIS filter requires little modification: when
observation Yn is missing, the corresponding state Xn is predicted using Algorithm 3.2 since
πθ(xn|y0:n−1) is the only accessible density under such circumstances. This leads to Algorithm
3.3.

Algorithm 3.3 (Sequential Importance Sampling (SIS) for filtering with missing observations).

At time n ≥ 0, if observation Yn is missing

1. Sample X j
n ∼ qθ(xn|x0:n−1, y0:n−1).

2. Compute w̃j
n = wj

n−1
f θ
n(X j

n|X
j
n−1)

qθ(X j
n|X

j
0:n−1, y0:n−1)

and set wj
n←

w̃j
n

∑M
k=1 w̃k

n
.

Comments

The major drawback of the SIS filter comes from the fact that the distribution of the weights
degenerates, with the variance of the importance weights increasing over time (see Doucet
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On particle filters applied to electricity load forecasting 9

et al., 2000) meaning that the estimated distributions become less and less unreliable: after
a few iterations, all but one of the normalised importance weights are close to zero. An
important fraction of the calculations involved in the algorithm is thus dedicated to particles
whose contributions to the estimation are almost null, making the SIS particle filter an
impractical estimation procedure at best.

3.2. Monitoring the degeneracy

To alleviate the degeneracy problem that we outlined, additional steps are traditionally
implemented into Algorithm 3.1. Since adding these new steps comes at a non negligible
computational cost, it is important to somehow monitor how badly the weight distribution
degenerates at a given time step, because it is usually interesting to ignore the degeneracy
problem unless it reaches a given threshold.

A popular rule of thumb, first introduced in Kong et al. (1994) and later copiously reprised
in the literature (see for instance Doucet et al., 2000; Chen, 2003; Liu, 2008), is to consider the
so-called effective sample size based on the normalised weights wj

n at time step n and defined
by

M

1 + Varqθ(·|y0:n)[w1
n]

.

This quantity is usually numerically approximated by the following estimate

ESS(n) =
1

∑M
k=1(wk

n)
2

. (3.1)

It ranges from M (reached when all the particles share equal weights of value 1) to 1/M
(reached when a single particle is given the whole probability mass of the sample, with a
weight of 1).

A related degeneracy measure is the coefficient of variation (found in Kong et al., 1994; Liu
and Chen, 1995), ranging from 0 to

√
M− 1, that is given by

CV(n) =

√√√√ 1
M

M

∑
k=1

(Mwk
n − 1)2, (3.2)

and satisfies to

ESS(n) =
M

1 + CV(n)2 . (3.3)

The Shannon entropy of the importance weights, ranging from log M to 0, is sometimes
also mentioned. It is defined by

E(n) = −
M

∑
k=1

wk
n logwk

n. (3.4)

Cornebise (2009) recently proved that the criteria (3.2) and (3.4) are estimators of the χ2-
divergence and the Kullback-Leibler divergence between two distributions which are associ-
ated with the importance and target densities of the particle filter.
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10 T. Launay, A. Philippe and S. Lamarche

The evaluation of one (or more) of these criteria is introduced at each time step, with
the additional procedures that we discuss next taking place if and only if the criterion
reaches a certain fixed threshold so as to reduce the additional computational burden. The
most common threshold found in the literature is ESS(n) < 0.5M. Examples illustrating the
behaviours of these criteria are given later in Figures 3, 4 and 5.

3.3. Resample step

A resampling step is most often introduced into Algorithm 3.2 to help and fight the degeneracy
problem. The aim of this resampling step is to favour the living of the interesting particles (the
ones with more important weights, that are more representative of the targeted distribution)
and encourage the dying of the not so interesting particles so as to focus the computational
effort upon particles that matter most for the estimation. The resampling method has to
be carefully chosen, in particular it should not introduce any bias in the final estimate as
mentioned in Doucet et al. (2000)

During this new step, particles are resampled according to their weights: a particle with
an important weight is more likely to appear (and ”survive”) in the new sample generated,
possibly more than once, whereas a particle the weight of which is close to zero is more likely
not to be drawn at all (and “die“) from a given time step to the next.

Chen (2003) mentions that there are a few resampling schemes available in the literature. It
is important to note that even though resampling might alleviate the degeneracy problem, it
also brings extra random variation to the samples of particles. As a consequence, the filtered
quantities of interest should preferably be computed before resampling and not after. We only
present the details of the multinomial and residual resampling schemes.

Multinomial resampling

Multinomial resampling is the most popular resampling scheme, most likely because it is the
easiest to both understand and implement: at a given time step, it suffices to simulate a discrete
random variable which takes values Xk

n with probability wk
n. The details of multinomial

resampling are given in Algorithm 3.4 where only the new step is described.

Algorithm 3.4 (Multinomial resampling step).

At time n ≥ 0

3. Sample Zj
n ∼

M

∑
k=1

wk
nδ(Xk

n,dx).

Replace X j
n← Zj

n and wj
n← 1/M.

Used as is, it leads to the well-known Sampling Importance Resampling (SIR) filter, some-
times also called Bootstrap filter, that can be found in Gordon et al. (1993). A straightforward
implementation of the multinomial resampling has complexity O(M log M): it is indeed equiv-
alent to simulating M draws from a discrete random variable Zn such that P(Zn = k) = wk

n.
A trivial implementation for such simulations requires first to draw U1

n, . . . ,UM
n i.i.d. with

uniform distribution and then to find the indexes ij
n for which U j

n ∈]∑i−1
k=1 wk

n, ∑i
k=1 wk

n]. Find-
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On particle filters applied to electricity load forecasting 11

ing the indexes ij
n has only complexity O(M) when the random variables are U j

n are ordered,
but ordering these random variables has complexity O(M log M) at least, using for instance
the quicksort algorithm (see Hoare, 1962).

A practical implementation of the multinomial resampling is proposed in Doucet (1998)
which circumvents the naive need of sorting M i.i.d. random variables with uniform distri-
bution and relies upon a direct simulation trick instead. The complexity of the SIR filter can
hence be reduced from O(M log M) (naive implementation using quicksort) to only O(M)
which saves a significant amount of computational resources.

Residual-multinomial resampling

Residual-multinomial resampling is proposed in Liu and Chen (1998) to reduce the extra
variance introduced by the resamping step. It is partially deterministic as opposed to the
multinomial resampling and is formulated below. Let bxc designate the integer part of a real
number x and define for any n ≥ 0:

Rn =
M

∑
k=1
bM · wk

nc, wj
n =

M · wj
n − bM · w

j
nc

M− Rn
.

Algorithm 3.5 (Residual-multinomial resampling step).

At time n ≥ 0

3. Copy bM · ŵj
nc particles X̂ j

n. (Rn particles are thus allocated, say Z1
n, . . . , ZRn

n ).

Sample the remaining particles ZRn+1
n , . . . , ZM

n ∼
M

∑
k=1

wk
nδ(Xk

n,dx).

Replace X j
n← Zj

n and wj
n← 1/M.

The details of residual-multinomial resampling are given in Algorithm 3.5 where only the
new step is described. In essence, particles with weights greater than 1/M are forced into the
new sample, and the rest is allocated at random, depending on the remaining probability
mass available. Note that the last part of a residual resampling step is basically a multinomial
resampling step on the residual probability mass, hence the name.

It is shown to be computationally cheaper than the multinomial resampling, due to the fact
that only a fraction of the M particles are randomly allocated. It does not introduce any bias
for the estimation and has the added advantage of having a lower variance than that of the
multinomial resampling (see Douc and Cappe, 2005, for the proofs).

Other resampling techniques

Stratified and systematic resampling also offer an alternative to the multinomial resampling
scheme (see Kitagawa (1996) and Carpenter et al. (1999) or Chen (2003) for a more general
overviews). Systematic resampling appears to be another popular choice in the literature for
computational reasons even though its variance is not guaranteed to be smaller than that
of the multinomial resampling as stated in Douc and Cappe (2005). A short study of these
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12 T. Launay, A. Philippe and S. Lamarche

techniques and a numerical comparison of their performance on an example are offered in
Cornebise (2009). Note that residual versions of these techniques also exist, where they are
substituted to the multinomial sampling used in the second half of Algorithm 3.5.

Limitations of the resampling procedure

The resampling procedure alleviates the degeneracy problem but also introduces practical
and theoretical issues (as mentioned in Doucet et al., 2000, for example). From a practical
point of view, resampling very obviously limits the opportunity of parallelisation of the
algorithm. From a theoretical point of view, simple convergence results are lost due to the
fact that after one resampling step the particles are not independent anymore. Moreover,
resampling causes the particles with high importance weights to be statistically selected many
times: the algorithm thus suffers from the so-called loss of diversity.

3.4. Move step

The loss of diversity among the particles following the resample step is usually addressed in
the literature with the introduction of yet another additional move step into the algorithm:
the idea behind it is to rejuvenate the diversity after the particles have been resampled.

Using MCMC

Gilks and Berzuini (2001); Doucet et al. (2001) present the so-called Resample-Move algorithm
in which an MCMC step is used after resampling. This new step relies upon the use of Markov
transition kernels with appropriate invariant distributions. Moving the particles according
to such kernels formally guarantees the particles still target the distribution of interest but
also give them an additional chance to move towards an interesting region of the state space
while increasing the diversity of the sample at the cost of an increased computational burden.
Doucet and Johansen (2011) underline the possibility of using even non ergodic MCMC
kernels for this purpose and also propose to go a step further and rejuvenate not only the
current state but also some of the (immediate) past states with the so-called Block Sampling
(the computational cost of which is thus even greater).

Using regularisation

Another approach to deal with the loss of diversity is based upon regularisation techniques.
Let us define for x, x∗ ∈ X ⊂Rnx

Kh(x, x∗) = h−nx · (detΣn)
−1/2 · K

(
Σ−1/2

n · x− x∗

h

)
where K is usually a smooth symmetric unimodal positive kernel of unit mass (hence a
probability measure), h is the bandwidth of the kernel, and Σn designates the empirical
covariance matrix of the sample (see Silverman, 1986, for the idea of whitening the sample
via Σn).
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On particle filters applied to electricity load forecasting 13

Algorithm 3.6 (Regularisation step).

At time n ≥ 0

4. Sample ε
j
n ∼ K(x), and set Zj

n← X j
n + h · Σ1/2

n · εj
n.

Replace X j
n← Zj

n and keep wj
n← wj

n.

Gordon et al. (1993) originally referred to that step as ”jittering“ since it adds a small amount
of noise to each resampled particle. Note that, when used together with the multinomial
resampling scheme described in Algorithm 3.4, the resulting combination of the two steps
can be reformulated as described in Algorithm 3.7: it is then equivalent to resampling new
particles from the smoothed estimated target distribution (using kernel density K).

Algorithm 3.7 (Alternate formulation for the combination of Algorithms 3.4 and 3.6).

At time n ≥ 0

3+4. Sample Zj
n ∼

M

∑
k=1

wk
nKh(Xk

n, x).

Replace X j
n← Zj

n and wj
n← 1/M.

The choice of both the kernel smoothing density K and the bandwidth h obviously has
a big impact on the algorithm. The idea is to resample from a density estimated from the
particles at time step n that best approximates the true target density. Picking K(·) = δ(·, 0)
the Dirac mass at the origin turns the regularised SMC filter back into a simple SMC filter.
From a general point of view, we would like the estimated density to converge as fast as
possible towards the true target density as M goes to +∞, since the number of particles will
necessarily be limited by the computational resources.

For the Gaussian kernel (among others), Silverman (1986) shows it is possible to compute
the optimal bandwidth to use, i.e. the bandwidth that minimises the variance of the density
estimate. Although it could be argued that selecting a proper bandwidth is a difficult task, this
optimal bandwidth yields good results in practise and at least provides a rough idea about
the scaling of h. As is the case with kernel density estimates, the choice of h directly influences
the trade-off made between variance and bias of the estimate: if h is chosen too small, the loss
of diversity will still be severe, and if h is chosen too large, the filtered density will roughly be
estimated as a single kernel, hence introducing a severe bias into the estimation.

The use of the Epanechnikov kernel, proportional to 1− ‖x‖2 on the unit ball of the state
space, is recommended in Silverman (1986) because it is asymptotically the most efficient, and
Doucet (1998) claims it can be difficult to choose a ”good” kernel. However, we advocate the
use of the Gaussian kernel whenever possible for computational reasons: simulations from
the Gaussian kernel are readily available on most machines and come at a computationally
cheaper price than simulations from the Epanechnikov kernel. But the non optimality of
Gaussian kernel does not outbalance its ease of use, since the choice of the kernel neither
affects the order of the bandwidth nor the rate of convergence as stated in DasGupta (2008).

From a general point of view it is also possible to choose a nx-dimensional kernel under the
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form of a product of nx 1-dimensional (possibly distinct) kernels. Such a choice is preferable
when some coordinates of the state are bounded. It allows for easier simulations on these
coordinates using dedicated truncated kernels whereas a straightforward accept-reject algo-
rithm could turn out to be highly inefficient (with a low acceptance rate) depending on the
boundaries of the state space.

Finally, the regularisation can also be done before resampling thus resulting in the so-called
pre-regularised particle filter (pre-PRF) as opposed to the post-regularised particle filter
presented here. Theoretical convergence results about these regularised filters are available in
Oudjane (2000) and Rossi (2004)

3.5. Detection and removal of outliers

In order to deal with the sensitivity of the particle filters to outliers, we propose a new
additional rule at the end of step 2 of Algorithm 3.1. Its role is to make sure that outliers do
not lead to a fully degenerated situation, that the algorithm would not recover from. The
details of it are given in Algorithm 3.8 where only the additional rule is described.

Algorithm 3.8 (Online detection and removal of outliers.).

At time n ≥ 0

If the degeneracy problem is critical, consider the observation yn as missing (see
Algorithm 3.3) and rewind back to step 1.

The rule applies only to situations where the degeneracy of the sample is critical: when the
importance density chosen is the prior density, it triggers only when the current observation
is not predicted efficiently. In that case, we proceed as if the observation was missing. In
practise the degeneracy problem is deemed critical when a criterion such as ESS(n)< ε ·M is
met, with ε > 0 very small.

Observations that do not agree with the model are thus detected online and ignored to
prevent immediate degeneracy. This trick is in a way similar to the one introduced in Hu et al.
(2008, 2011) where a resample step is iterated until the likelihood of the current observation
with regard to the resampled particles is above a given threshold. While both techniques
ensure that the particles do not collapse when an outlier is met, the cost paid is different for
each. The alteration proposed in Hu et al. (2008, 2011) can be computationally expensive
(with an unbounded runtime) but the observation ends up being taken into account, while
our own modification is definitively cheaper (with a guaranteed fixed runtime) but discards
the observation at hand when it strongly disagrees with the current state of the model. A
significant change of state will still be detected in the long run, because considering the
observation yn as missing automatically implies the variance of the state grows larger (which
means that, if it were to be repeated, the outlying observation, would seem more likely at the
next time step, with regard to the new state).
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3.6. Choice of the importance density

As previously stated the particle filters rely on the introduction of an importance density that
was chosen of the form given in (2.10) i.e.

qθ(x0:n|y0:n) = qθ(x0|y0)
n

∏
k=1

qθ(xk|y0:k−1, y0:k).

Choosing carefully the importance density qθ can help reduce the variance of the importance
weights and thus alleviate the degeneracy problem. As the choice is abundantly discussed
in the literature, we only selected three representative alternative among the many that are
available.

Prior density

A default choice consists of taking qθ(x0|y0) = µθ(x0) and qθ(xn|x0:n−1, y0:n) = f θ
n(xn|xn−1),

i.e. taking the prior density (1.1) of the model as the importance function. This choice works
even with missing data (as it does not depend on yn) and leads to much simpler calculations
for the update of the importance weights as can be seen directly in the formulae given in
Algorithm 3.9.

Algorithm 3.9 (Sequential Importance Sampling (SIS) for filtering, using the prior density as
the importance density).

At time n = 0

1. Sample X j
0 ∼ µθ(x0).

2. Compute w̃j
0 = gθ

0(y0|X j
0) and set wj

0←
w̃j

0

∑M
k=1 w̃k

0

.

At time n ≥ 1

1. Sample X j
n ∼ f θ

n(xn|X j
n−1).

2. Compute w̃j
n = wj

n−1gθ
n(yn|X j

n) and set wj
n←

w̃j
n

∑M
k=1 w̃k

n
.

Note that using the prior density as the importance density makes the algorithm propose
new particles in a blind way: the new particles are simulated around the current state, not
around the upcoming targeted state. With such a choice of importance density, the algorithm
becomes especially sensitive to outliers. An annealed version of the prior distribution is
proposed in Chen (2003) to help deal with some situations where prior and likelihood do not
agree.

Optimal density

Although popular, the choice of the prior density is not optimal: the optimal choice is given by
qθ(x0|y0) = πθ(x1|y1) and qθ(xn|x0:n−1, y0:n) = πθ(xn|yn, xn−1) in the sense that it minimises
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the variance of the importance weights conditional upon the past states and the past obser-
vations as can be seen in Doucet et al. (2000). The idea underlying this choice is to take into
account the upcoming observation so that particles are not blind to the upcoming state any-
more. Most of the time sampling from these optimal distributions is not an option however,
and it is usually recommended to approximate them if possible. For example Pitt and Shep-
hard (1999) propose the so-called Auxiliary Particle Filter (APF) which essentially reverses
the sampling and resampling phase mentioned in the previous algorithms (see Whiteley and
Johansen, 2011). It relies upon the introduction of an augmented state that is used to select the
most representative particles in the sense that their predictive likelihoods are large. Doucet
et al. (2000) use the Extended Kalman filter to derive a Gaussian approximation (relying on a
local linearisation of the state space model) and van der Merwe et al. (2001) discuss the use of
the Unscented Kalman Filter to obtain such approximations (see Wan and van der Merwe,
2000, for the details about implementing the UKF).

Independent density

Let us mention that it is also possible to use an independent importance density (independent
with regard to the states and observations) but it is strongly recommended to avoid such a
choice because it ”ignores” both the current and the upcoming states (see Doucet et al., 2000)

3.7. Parameter estimation

Thus far, state estimation was discussed conditionally to the fact that the parameter θ was
known. However, θ is often unknown and has to be estimated together with the state of
the dynamic model. Kantas et al. (2009) offers a comparative review of the possible choices
available for parameter estimation, presenting maximum likelihood and Bayesian parameter
estimation in the context of an offline or online procedure. We provide here only a brief
overview of the Bayesian parameter estimation and direct the interested reader to the original
paper for the complete discussion.

One of the first approach considered in the literature for parameter estimation is to extend
the state Xn at time n into a new state Zn = (Xn, θn) with initial distribution µθ0(x0)π(θ0)
and transition density f θn(xn|xn−1) · δ(θn, θn−1) and then estimate this new extended model
with a standard SMC filter as in Kitagawa (1996). Even though the approach is theoretically
sound as claimed in Rossi (2004); Kantas et al. (2009), it can lead to a strong loss of diversity
problem on the coordinate θ when no move step is implemented as the parameter space is
only explored at the initialisation of the algorithm, making such an approach often unusable.

The addition of a move step into the algorithm provides a satisfying solution to this
problem as can be seen in Rossi (2004) who successfully applied the kernel regularisation
technique, or in Andrieu et al. (1999) who makes use of MCMC techniques in a move step
to update the parameter value. The regularisation can also be combined with a judicious
choice of importance density such as with the APF (see Pitt and Shephard, 1999) to provide
remarkably accurate parameter estimation (as shown in Casarin and Marin, 2009; Whiteley
and Johansen, 2011, for example). Another option is to force a fictitious small dynamic upon
the parameter as described in Kitagawa (1998); Higuchi (2001) so that it is artificially allowed
to evolve over time, even though Kantas et al. (2009) rightly remarks that modifying the
model in such a way makes it hard to quantify how much bias is introduced in the resulting
estimates.
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A more recent way of estimating the parameter together with the state relies upon the
use of so-called Particle Markov Chain Monte Carlo (PMCMC) methods found in Andrieu
et al. (2010). These methods are computationally expensive both in term of storage and
calculations, because their computational cost typically grows with time as underlined in
Chopin et al. (2012), and thus are less fit for online estimation than some standard SMC
filter: the most basic PMCMC method, known as the Particle Marginal Metropolis-Hastings
(PMMH) sampler and described in Kantas et al. (2009), involves running an SMC filter for
each step of a Metropolis-Hastings algorithm used to propose a new value of the parameter θ.

3.8. Summary

In the end, keeping in mind that the original aim is the online estimation and prediction,
we implemented an algorithm not too computationally expensive. We chose the importance
density to be the prior density of the model and included a residual resample step coupled
with a regularisation move step, that triggered whenever ESS(n) < 0.5M unless ESS(n) <
0.001M, in which case the current observation was instead considered an outlier and thus
treated as missing. For the regularisation step (see Algorithm 3.6) we use a Gaussian kernel K
with a bandwidth h optimally chosen for the mean integrated squared error (see Silverman,
1986, Chapter 4). As for the parameter estimation problem, we opted for the solution of
extending the state-space and introduced no artificial dynamic on the parameter θ (thus
using θn = θn−1). In practise, this results in the disappearance of the θ superscript on densities
µ, fn and gn in the description of Algorithm 3.10. We did however test the introduction of
an artificial dynamic on the parameters but observed no changes in the measured overall
performance. Note that the regularisation step mentioned above applies to the extended state
(i.e. including the parameter).

Algorithm 3.10 (Particle filter used for our application).

At time n = 0

1. Sample X̂ j
0 ∼ µ(x0).

2. Compute w̃j
0 = g0(y0|X j

0) and set ŵj
0←

w̃j
0

∑M
k=1 w̃k

0

.

– if ÊSS(0) < 0.001M, set X j
0← X̂ j

0 and wj
0← 1/M.

– if 0.001M ≤ ÊSS(0) < 0.5M, use residual-multinomial resample (see Algorithm
3.5) and regularisation move (see Algorithm 3.6) steps to set X j

0 and wj
0.

– if 0.5M ≤ ÊSS(0), set X j
0← X̂ j

0 and wj
0← ŵj

0.

At time n ≥ 1

1. Sample X̂ j
n ∼ fn(xn|X j

n−1).

2. Compute w̃j
n = wj

n−1gn(yn|X j
n) and set ŵj

n←
w̃j

n

∑M
k=1 w̃k

n
.

– if ÊSS(n) < 0.001M, set X j
n← X̂ j

n and wj
n← wj

n−1.
– if 0.001M ≤ ÊSS(n) < 0.5M, use residual-multinomial resample (see Algorithm

3.5) and regularisation move (see Algorithm 3.6) steps to set X j
n and wj

n.
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– if 0.5M ≤ ÊSS(n), set X j
n← X̂ j

n and wj
n← ŵj

n.

4. Application

In this Section we describe an application of particle filters for electricity load forecasting. We
quickly describe the data used for our experimentation and the two similar models that were
estimated using Algorithm 3.10, deal with the problem of initialising the particle filter and
discuss the results obtained.

4.1. Data

Time range

The data chosen for the application contain the consolidated half-hourly electricity load at the
”EDF” perimeter over the period ranging from 04/01/2006 to 03/31/2011 which represents
five years worth of measurements, with 48 points per day. Note that only an estimation of the
load is available in real time. The consolidated data correspond to the true (not estimated)
signal that is available only three weeks later.

Daytypes

The calendar used for the application provides nine distinct daytypes, the list of which is
given in Table 1. In essence, this is a very basic calendar that models a single bank-holidays
effect where more detailed calendars would model multiple different ones. Although such a
basic calendar arguably does not reflect the whole variety of daytypes, it is detailed enough
for our purpose and helps keep the dimension of the model we propose as low as possible.

TABLE 1. Daytypes provided by the basic calendar used in the application. BH stands for a bank holiday.

# day
0 mon.
1 tue.-wed.-thu.
2 fri.

# day
3 sat.
4 sun.
5 before BH

# day
6 BH
7 after BH
8 between BH and a weekend

Note that the operational model used by EDF also require the precise specification of
daytypes and so-called offsets, the latter being used to model breakpoints (see Bruhns et al.,
2005, for the details).

From here on, we will call bank-holidays, the instants in the calendar where specific
information is needed for the operational model to be correctly estimated and predicted.
These instants essentially correspond to bank-holidays (daytypes from 5 to 8, hence the name),
or the summer and winter holiday breaks and are signalled on Figure 2.

4.2. Dynamic model

The formulation of the model that we consider was inspired by the works of Bruhns et al.
(2005); Dordonnat (2009); Launay et al. (2012b). It features three parts (seasonality, heating,

Journal de la Société Française de Statistique, Vol. 154 No. 2 1-36
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2013) ISSN: 2102-6238



On particle filters applied to electricity load forecasting 19

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Month

D
ay

A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D J F M
2007 2007 2007 2007 2007 2007 2007 2007 2007 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2009 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2010 2011 2011 2011

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

FIGURE 2. Repartition of the bank holidays amidst the calendar from 04/01/2007 to 03/31/2011. Each column represents a
month.

cooling) similarly to what was done in Launay et al. (2012b) and includes a two layers
dynamic on the two most relevant parts with regard to the French electricity load for each
of the 48 half-hours (or instants) within a day. The 48 corresponding independent model is
estimated and predicted in parallel, using the calendar and temperature information described
above, the results being aggregated back together at the end of the process. The dimensions
of the parameter and state spaces were voluntarily kept small: the goal is ultimately to
provide competitive one-day-ahead predictions for the electricity load based on a model as
parsimonious as possible within a rather general framework.

We denote N (µ, Σ) the Gaussian distribution with mean µ and variance Σ, and N (µ, Σ,S)
the corresponding truncated Gaussian distribution the support of which is S . For each half-
hour, and removing the now superfluous i subscript, the model that we consider is defined
by

yn = xn + νn, (4.1)

where νn ∼N (0, σ2) and where the state xn is made of three parts

xn = xseason
n + xheat

n + xcool
n ,

that are defined by

xseason
n = sn · κdaytypen

xheat
n = gheat

n (Theat
n − uheat)1]Theat

n ,+∞[(u
heat)

xcool
n = gcool∆cool

n .
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20 T. Launay, A. Philippe and S. Lamarche

The various components obey the following prior dynamic

sn = sn−1 + εs
n, εs

n ∼N
(
0, σ2

s,n, ]− sn−1, +∞[
)

gheat
n = gheat

n−1 + ε
g
n, ε

g
n ∼N

(
0, σ2

g,n, ]−∞, −gheat
n−1[

)
σs,n = σs,n−1 + ηs

n, ηs
n ∼N

(
0, σ2

s , ]− σs,n−1, +∞[
)

σg,n = σg,n−1 + η
g
n , η

g
n ∼N

(
0, σ2

g , ]− σg,n−1, +∞[
)

where daytypen, Theat
n and ∆cool

n correspond to the exogenous variables that we already
discussed:

– denoting Ndaytype the number of different daytypes featured in the calendar provided,
daytypen ∈N takes a finite number of values between 0 and Ndaytype − 1 and represents
the class to which the day n belongs with regard to the calendar ;

– Theat
n ∈ R is the temperature used to compute the heating part of the model, which is

precomputed at EDF as a mixture of exponentially smoothed signals ;
– ∆cool

n ∈ R+ provides the cooling degrees needed to compute the cooling part of the
model.

Using the definitions and notations introduced in Section 1, the parameter of the model is
given by θ = (σs, σg, gcool, uheat, κ, σ), these quantities are assumed constant over time in the
model. At time n, the state of the model is given by xn whose components (sn, gn, σs,n, σg,n) ∈
R4 are the quantities that vary over time according to the dynamic specified. All these
quantities are unknown and are to be estimated.

The model (4.1) includes a seasonal part xseason
n that is essentially made of a signal sn, the

dynamic prior of which is a random-walk process whose standard deviation σs,n itself evolves
as a random-walk. sn is multiplied by a coefficient κdaytypen

that depends on the daytype of
the current observation to model the difference in behaviour between the electricity load on
weekdays and weekends or holidays. For identifiability reason, the sum of the coefficients κj
is fixed so that

1
Ndaytype

Ndaytype

∑
j=1

κj = 1.

Note that sn essentially replaces the truncated Fourier series featured in Launay et al. (2012b).
The model (4.1) also includes two weather-related parts to account for the influence of low

(heating part) and high temperatures (cooling part) upon the electricity load : the heating
part xheat

n is based upon a truncated difference between the temperature Theat
n and a heating

threshold uheat, as studied in Launay et al. (2012a). This difference is multiplied by a gradient
gheat

n whose dynamic is similar to that of sn: the prior is a random-walk whose standard
deviation σg,n itself evolves as a random-walk. Because the cooling effect in France is of a
lesser magnitude than the heating effect, the corresponding model for the cooling part xcool

n is
simpler: the precomputed truncated difference ∆cool

n is given to the model and multiplied by
a cooling gradient gcool.

Notice that to ensure the different quantities involved kept consistent signs throughout
time, we specifically used truncated Gaussian distributions. In particular, this means that
the random-walks featured in the dynamic are not symmetric and hence that the mean of
the state is a priori expected to slightly evolve over time. The constraint on εs

n and ε
g
n can of

course easily be lifted if need be, and does not affect the overall predictive performance of the
model in any way.
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On particle filters applied to electricity load forecasting 21

4.3. Initialisation of the particle filter

As was already discussed, the degeneracy of the particles sample over time is a serious matter.
The choice of the initial distribution of the state is thus of the utmost importance because a
strong disagreement between this distribution and the first filtered distribution could lead
to sample degeneracy after only a single time step. Two solutions are theoretically viable
to choose the initial prior distribution: one may choose either a vague or an informative
distribution.

1. on one hand, a vague prior has the advantage of not biasing the dynamic model before
the first observations. However, the variance of the initial distribution of the state being
very large, the sequence of posterior variances of the filtered distributions of the state
tend to decrease very quickly at first. From an SMC filter point of view, one has to
use a very large sample of particles to cover at the same time the regions of the state
space with prior highest probability and with posterior highest probability: a vague
initialisation thus requires the use of a massive number of particles.

2. on the other hand, designing an informative distribution is a totally different task, but
still not a trivial one: one has to keep in mind that a “bad“ choice of initial distribution
may lead to immediate degeneracy. Intuitively, the ideal solution would be to dispose
at time n = −1 of a filtered distribution πθ(x−1|y−1, . . . , y−m) to use it as a the initial
distribution at time n = 0. Such a choice is of course not possible because observations
are only available for time n = 0, . . . , N.

Note that the trick of ignoring outliers introduced into the particle filter (see Algorithm 3.8)
does not alleviate the problem of initialisation, since it can only increase the variance if it is
used.

We thus opted for a more general procedure that allows for an automated initialisation of
the particles sample to a fitting state space region from time n = n0, and that combines the
two approaches mentioned above to retrieve the benefits of both:

1. we use a vague distribution to estimate the smoothed distribution up to time n =
n0 − 1 using open-source MCMC generic software such as BUGS (Lunn et al., 2000) or
JAGS (Plummer, 2003): we typically chose n0 = 365 so that the variance of the filtered
distribution at time n = n0 − 1 is already small enough not to require the use of a
massive amount of particles ;

2. after this first MCMC initialisation phase, we retrieve particles (approximately) dis-
tributed along the filtered distribution of the state at time n = n0 − 1: this distribution is
the one used (through these particles) to initialise the SMC filter at time n0.

There is however a price to pay for solving the initialisation problem in such a way. First
we have to use MCMC to initialise the particle filter and second it makes it hard to use the
particle filter on a time series with few observations. Note that the first issue raised is but
rhetorical: MCMC, even if expensive, has to be run only once, and not at each time step.
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22 T. Launay, A. Philippe and S. Lamarche

Initial distribution for the MCMC estimation

The initial distribution envisioned for the dynamic model (4.1) is vague and specified by:

s0, gcool ∼N (0,108,R+)

gheat
0 ∼N (0,108,R−)

uheat ∼N (14,1)
κ/Ndaytype ∼ DNdaytype(1, . . . , 1)

σ2, σ2
s,0, σ2

g,0, σ2
s , σ2

g ∼ IG(10−2, 10−2)

where Dd(α1, . . . , αd) is the Dirichlet distribution in Rd
+ with parameter α (in particular

Dd(1, . . . , 1) is the uniform distribution over the simplex of Rd
+ defined by ∑d

i=1 xi = 1).

Practical issue

We faced some technical issues running the MCMC estimation up until time n0 = 365 since
the Markov Chain outputs were not usable: even with a large burn-in period, the sample
returned would not pass the diagnostic tests for the convergence of the empirical distribution
towards the true target (see Gelman and Rubin, 1992, for example). For the initialisation via
MCMC we thus separated the initial distribution into two parts, essentially isolating the
dynamic on the variance of the random-walks, and proceeded as follows.

First we estimated the model as defined in (4.1) up until time n0 = 365, using MCMC
generic software such as described in Lunn et al. (2000); Plummer (2003), with the following
modification

σs,n = σs,n−1 = σs,∗

σg,n = σg,n−1 = σg,∗

with initialisation

σ2
s,∗, σ2

g,∗ ∼ IG(10−2, 10−2),

in essence removing the second layer in the dynamic from the model (since σs,n and σs,n are
not allowed to vary with time anymore). This led to a posterior distribution on a diminished
state, that we denote π̃1(x̃n0−1|y0:n0−1). From there we completed this posterior distribution
with an additional prior π̃2 on σs and σg to serve as an initialisation at for the full model at
time n0.

The initial distribution of the particle filter for the full model at time n0 was thus of the
form

π(xn0−1|y0:n0−1) ∝ π̃1(x̃n0−1|y0:n0−1)× π̃2(σs,n0−1, σg,n0−1)

with

σ2
s ∼N (ms, s2

s ,R∗+)

σ2
g ∼N (mg, s2

g,R∗+)

where ms, mg, s2
s , s2

g were values chosen empirically based on π̃1.
For example, we chose ms and mg to be the standard deviations of the posterior MCMC
estimated samples (E[εs

1|y0:n0 ], . . . ,E[εs
n0
|y0:n0 ]) and (E[ε

g
1 |y0:n0 ], . . . ,E[ε

g
n0 |y0:n0 ]) respectively.
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4.4. Predictions

Quality criterion

To assess the quality of the models we propose, we will mainly look at their respective
predictive performances measured by Mean Absolute Percentage Error (MAPE). As a matter
of fact, we are working with half-hourly data and we will model each half-hour independently
from one another, a common choice given the type of data, thus leading to 48 separate daily
model (see Section 4.2). Indexing the respective MAPE criteria of these models by the instant
i = 0, . . . , 47 to which they are associated, and given their respective observations y1,i, . . . , yn,i,
these models return 48 τ-day-ahead predictions defined as the expectations of the predictive
distributions i.e. for i = 0, . . . , 47

ŷn+τ,i = E[xn+τ|y0:n,i]. (4.2)

The corresponding predictive (with prediction horizon τ) MAPE criterion that we consider
for these 48 models is defined, for i = 0, . . . , 47, by

MAPEi(τ) =
1

n− τ

n−τ

∑
k=1

∣∣∣∣ ŷk+τ,i − yk+τ,i

yk+τ,i

∣∣∣∣
and we will most often aggregate the results as

MAPE(τ) =
1
48

47

∑
i=0

MAPEi(τ)

=
1

48(n− τ)

47

∑
i=0

n−τ

∑
k=1

∣∣∣∣ ŷk+τ,i − yk+τ,i

yk+τ,i

∣∣∣∣ .
Operational predictions

We will also compare these models to the so-called operational prediction (available from
01/01/09 only, i.e. for the second half of our dataset only) i.e. the final prediction that was
actually used by EDF. Note that the operational prediction PredOP cannot be written as a
prediction coming from a statistical model (even though we will sometimes abusively refer
to it as the prediction from the operational model) : it combines manual adjustments and
statistical models. PredOP is computed as a 50%–50% mixture between the two predictions
PredDOAAT and PredDCo that we briefly describe below.

The prediction PredDOAAT is obtained as follows. A model similar to the one described
in Bruhns et al. (2005), with an ARIMA part, is first used on a real-time estimated signal
corresponding to the ”France” perimeter. An estimated loss is then substracted from it,
accounting for the customers within this perimeter that are not affiliated with EDF. A manual
adjustment is finally applied in real-time. It is a “top-down” prediction in the sense that
the “EDF“ perimeter is approximated as a difference between the “France“ perimeter and a
”France but not EDF” perimeter.

The prediction PredDCo is obtained as follows. Multiple models from Bruhns et al. (2005)
are used upon consolidated signals (not available in real-time, only three weeks later) for
sub-perimeters, the reunion of which is the “EDF“ perimeter. The corresponding predictions
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24 T. Launay, A. Philippe and S. Lamarche

are then added together before a manual adjustment is finally applied in real-time. It is a
”bottom-up“ prediction in the sense that the ”EDF“ perimeter is approximated as the sum of
all its parts.

There are a number of differences between the dynamic predictions and the operational pre-
dictions. First of all, the operational predictions are computed using predicted temperatures
(since the sequence of observed temperatures at the time of prediction is clearly not available)
whereas the models that we consider (see Section 4.2) are based on the realised temperatures.
The operational predictions make use of a calendar that includes more daytypes and also
benefit from high level expertise through the manual adjustments mentioned. But the biggest
difference in nature between these predictions lies somewhere else: the dynamic predictions
are made from one day to the next (with no intraday correction whatsoever, since we are
basically considering 48 independent models), while the operational predictions are made
from one half-hour to the next. Essentially the horizon of prediction for the dynamic models
is τ = 1 day = 48 half-hours whereas it is much smaller for PredDOAAT, since the new data
get incorporated approximately every 8 half-hours (the computation of PredDOAAT is based
upon a real-time signal though, not consolidated data).

4.5. Results

Running the filter

For the estimation and prediction of the model, we used the Algorithm 3.10 with a total
number of M = 105 particles. One time step (filtering and predicting the state with horizon
τ = 1, including 90% credible intervals) took approximately 1 second on a single core Intel(R)
Xeon(R) E5410 (2.33GHz) for one of the 48 independent models, which is compatible with the
goal of being able to predict the electricity load in an online manner. The execution time grew
a bit larger and reached 3 seconds per iteration when the predictive horizon was set to τ = 5.
Note that providing credible intervals requires the use of a sorting algorithm, for example
quicksort (see Hoare, 1962) with complexity O(M log M) whereas Algorithm 3.10 has only
complexity O(M). Quicker runtimes are thus obviously achievable if the computation of
credible intervals is not needed.

Degeneracy

Before looking at the filtered or predicted distributions that we are most interested in, we
actually have to assess whether the numerical results obtained are actually usable or not. If
the degeneracy problem proved too strong along the estimation process, the estimated values
indeed become questionable.

Figures 3, 4 and 5 show the evolution of the various criteria discussed in Section 3.2
throughout time for the model (4.1) at the instant 12:00. These criteria exhibit a seasonal
behaviour (with a 1 year period), as the time series itself, showing that the particle filter is
subject to a little more degeneracy during winter than during summer (the electricity load is
indeed harder to predict, due to the influence of the temperature). Although the coefficient of
variation CV(n) is only a rescaling of the effective sample size ESS(n) (see (3.3)), the outliers
detected by the Algorithm 3.10 used are much easier to spot on Figure 5 than on Figure
3. Also observe that even if the entropy and the coefficient of variation approximate two
different divergences (see Cornebise, 2009, for the details), the outliers are as easily spotted
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on Figures 4 and 5 and the behaviours of the two criteria are very similar : hence, using the
entropy instead of the effective sample size (or the coefficient of variation, since they are
interchangeable) to detect outliers in Algorithm 3.10 could be doable (after having developed
a basic intuition of its scaling, in order to decide of a threshold) but would not change the
results obtained in any major way.
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FIGURE 3. Relative effective sample size ESS(n)
M for the dynamic model (4.1) at 12:00 as a function of the day in the calendar.

The saturation of the colour used increases with each year. Data detected as outliers are marked with a circle.

Outliers

We show in Figure 6 the number of data that were automatically detected as outliers by the
model for each instant (half-hour) of the day. Recall that, according to Algorithm 3.10, an
outlier is detected whenever the effective sample size would have dropped below 0.1% of
the actual sample size. The amount of outliers varies from one half-hour to the next because
an observation flagged as an outlier at a given instant does not necessarily imply that the
observation at the next instant will also be flagged. In particular, we observe that more
outliers are detected during the day than during the night, which suggests that nighttime is
slightly easier to predict than daytime (recall that outliers are essentially data that are badly
predicted).

Figure 7 shows the number of outliers depending on the calendar. It allows us to pinpoint
the times of the year at which these outliers are actually detected. The summer and winter
holiday breaks, and the daylight saving time adjustments are easily spotted. Note that for
these events, no prior information was available to the dynamic models. Some days before
or after bank holidays are also flagged as outliers (05/02, 05/02, 11/10), even though the
dynamic model benefits from some calendar information. This should not come as a surprise
however: the daytype specification that we chose is rather poor compared to the calendar
used for the operational predictions. A more refined calendar, involving specific daytypes, is
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FIGURE 6. Number of outliers detected for each instant of the day by the dynamic model (4.1).
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likely to help turning these few outliers back into regular data, provided the initialisation of
the particle filter is correctly done.

Table 2 summarises what is already guessable from Figures 2 and 7, i.e. that most of the
(few) instants detected as outliers by the dynamic model are indeed bank-holidays.

TABLE 2. Classification of the instants for the dynamic model (4.1). The number given between square brackets is an
equivalent of the number of instants in days (i.e. divided by 48).

instant outlier not outlier
bank-holiday 269 [5.60] 16627 [346.40]

not bank-holiday 38 [0.79] 53194 [1108.21]

Performance and instants

We show the overall predictive (horizon τ = 1) performance of the dynamic model (4.1)
against the operational model (OP) in Table 3, depending on whether bank-holidays were
included in the calculations or not. The results shown in both cases aggregate the 48 models
that were estimated independently from one another. Over the whole period of study, the
operational predictions are better than the predictions provided by the dynamic models, but
they also do benefit from more specific calendar information being used to compute them.
When bank-holidays are removed from the calculations, the overall predictive quality of the
dynamic models improves considerably as demonstrated by the results in Table 3.

TABLE 3. Overall predictive (horizon τ = 1) and MAPE (in %) for the dynamic model (4.1) and the operational model. The
top row results include bank-holidays in the calculations, while the bottom row results do not.

dynamic model operational model
with bank-holidays 1.4342 1.2344

without bank-holidays 1.1712 1.2185

In fact, looking at Figure 8 that represents the predictive MAPE of the dynamic model (dyn)
and operational model (OP) averaged by instant, we are able to see that the dynamic model
predicts the electricity load quite well when bank-holidays are not considered, challenging
the operational model throughout the day, except during the morning ascent. The good
predictive performance of the dynamic model on these days is somewhat surprising because
the dynamic predictions, coming from 48 independent models, are made from one day to
the next whereas the operational predictions include an ARIMA adjustment phase to take
advantage of the most recent observations, and also benefit from manual adjustments.

Performance and horizon

Since the operational predictions are sometimes required up to τ = 3 days, we now investigate
the predictive quality of our dynamic model as the horizon for prediction grows larger. Figure
9, given hereafter, displays the predictive MAPE for horizon τ = 1, . . . , 5, whether including
bank-holidays in the calculations or not. It is clear that the predictive errors of the dynamic
model increase with the horizon τ considered for the prediction, confirming that it is primarily
meant for short-term forecasts and not long-term forecasts.
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FIGURE 8. Predictive (horizon τ = 1) and MAPE (in %) for the dynamic model (dyn) and the operational model (OP) for
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dynamic model is better than the operational model and red when not.
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Another consequence of increasing the prediction’s horizon is that the credible intervals
obtained around the predictions also tend to grow larger on average as can be observed in
Table 4. An illustration of the credible intervals returned by the dynamic models is given in
Figure 10 where the electricity load is predicted over 48 consecutive instants via the dynamic
model (4.1). The predictions clearly improve over time as the model takes more and more
recent information into account: the one-day-ahead predictions about 12/30/2010 provided
on 12/29/2010 are much more accurate than the five-days-ahead predictions (of the same
day) that were computed on 12/25/2010. Figure 10 also makes it clear that the credible
intervals obtained for a predictive horizon τ = 1 are narrower compared to those obtained for
a predictive horizon τ = 5 (but note that their lengths vary over time).

TABLE 4. Mean length (in MW) of the symmetric 90% credible intervals (CI) around the predicted states x̂n+τ and around
the predicted observations ŷn+τ of the dynamic model (4.1), for τ = 1, . . . , 5.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
λ̂90%(xn+τ) 2746.3 3721.1 4505.6 5191.6 5815.3
λ̂90%(yn+τ) 3036.1 3947.7 4696.5 5358.6 5964.9

TABLE 5. Empirical coverage (in %) of the symmetric 90% credible intervals (CI) around the predicted states x̂n+τ and
around the predicted observations ŷn+τ of the dynamic model (4.1), for τ = 1, . . . , 5.

τ = 1 τ = 2 τ = 3 τ = 4 τ = 5
χ̂90%(x̂n+τ) 89.569 90.442 92.385 93.479 94.168
χ̂90%(ŷn+τ) 92.531 92.501 93.773 94.472 94.882

The empirical coverages of the symmetric 90% credible intervals around the predicted
states and observations are given in Table 5. These values were computed as the ratio between
the number of instants for which the observations fell inside the interval, and the total
number of instants. Note that if the observations were mutually independent outcomes of
the same random variable (which they are not in our situation because of the exogenous
variables temperature and calendar), this ratio would theoretically approximate the true rate
of coverage i.e. 90%. Even so, the empirical coverage computed seems, somewhat reassuringly,
to agree with the expected rate.

Filtered weather parts

The Figure 11 shows the filtered heating and cooling parts of the dynamic model (4.1). It
seems to be piecewise linear with regard to the temperature variables upon which it depends,
with a threshold that depends on the instant considered. The heating part however is not
modelled as such since the heating gradient is chosen non constant in the dynamic model. It
is thus a bit of a surprise to find this familiar piecewise linear shape for the heating part, even
though it is quite common for non dynamic models (see Bruhns et al., 2005, for example).

As in Dordonnat et al. (2008), the heating gradient of the dynamic model appeared to
be stronger in winter and slightly weaker over mid-seasons (note that the behaviour of the
heating gradient over summer is of little practical importance: while it is true that it cannot be
observed accurately at that time, it also has no direct impact on the quality of the model since
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this is precisely the period over which the heating part of the model vanishes). Note that, on
the contrary, the variance of the heating gradient appeared to be larger during summer (with
no information available) than during winter.

Filtered seasonal part

Even though we do not display it here, let us mention that the filtered seasonal part xseason
n of

the dynamic model exhibits a 1-year period with weekly cycles. Around the main periodic
pattern, variations occur : more so over the winter period, for which the seasonal part is
obviously not so well defined, than over the summer period. Indeed, during summer the
seasonal part is the only active dynamic part of the model, while during winter the heating
part also plays an important role : the estimated values of both parts over winter are thus to be
interpreted with caution. Still, the filtered seasonal part seems to react correctly to the summer
and winter holiday breaks (as we will outline in the next Section), although no particular
information was used to flag these time windows for the model.

Because EDF customers now represents a fraction only of the French customers population
(instead of the whole), the perimeter of the data varies over time due to customers departures
or arrivals (but taking into account that EDF and France perimeters were actually identical
until a few years ago, departures are a bit more likely). As a matter of fact, the filtered seasonal
part also shows successive yearly drops from 2008 and onwards, which correspond to the
financial crisis that arose in late 2008 (and that impacted the French electricity load), or
planned customers’ departures.

Summer break

Since holiday breaks are among the most toughest times of the year for predictions, we
investigate the behaviour of the dynamic models over the summer break to show how the
models cope with the difficulty.

Evolution of the dynamics The Figure 12 shows the filtered mean of both sn and σs,n, that
rules the dynamic of sn within the dynamic model (4.1). As can be seen on the Figure 12, the
model is able to filter out the summer break effectively : to allow for the sharp drop of sn
during August, the standard deviation of its dynamic σs,n suddenly grows (becoming twice as
large as usual), reflecting the brusque increase of variability of the signal over a short period
of time. The model also deals with the winter break in a similar manner.

We have already discussed the behaviour of the heating gradient over summer : during
summer the model logically loses track of anything related to the heating part, which leads to
artificially increased values of σg,n.

The reasons behind the increased values of σs,n and σg,n during the summer break are hence
entirely different. Whereas σs,n grows to allow the model to fit data that do not match the
current state, the growth of σg,n merely reflects the lack of cold temperatures that would help
estimate any of the coefficients related to the heating part of the dynamic model.

Predictive errors Though no information is provided about the summer break (a succession
of breaks mostly occurring on Mondays), we already saw that the dynamic model is able to
estimate the electricity load rather correctly given the peculiar circumstances.
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A possible way to improve the quality of the forecasts for the days where breaks occur
would be to taylor the transition density of one state to the next specifically for them. This
requires much expertise in practise because the way the load is affected by the summer break
also depends on the calendar configuration: one could for instance introduce adequately
modified specifications (interventions) such as

sn∗ = sn∗−1 − µn∗ + εs
n∗

into the model where µn∗ ∈R+ is the drop in load expected to happen at time n∗.

Comparison with a linear Gaussian state space model

A dynamic model was proposed and studied by Dordonnat et al. (2008) to model a similar
electricity load series (at the French national perimeter). Their model fit in the multivariate
linear Gaussian state space models framework which allowed for the use of Kalman filtering
and associated techniques (see Durbin and Koopman, 2001). It is actually quite a complex
and rich model, compared to our own, and includes multiple regressions, some coefficients
of which are allowed to vary over time : a truncated Fourier series is used to model the
seasonality of the signal as in Bruhns et al. (2005) in conjunction with a stochastic trend.
Local trends are also included to model the holiday breaks, and a calendar with various
specific daytypes is used. Heating and cooling parts are defined as well, using fixed threshold
values (15◦C and 18◦C) as well as fixed smoothing parameters (fixed to ϑ = 0.98), and are
thus very similar to the ones we use, although the heating part relied upon the use of two
heating gradients (the first corresponding to the raw temperature, the other to the difference
between smoothed and raw temperatures). The model was estimated using national data
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from 09/01/1995 to 08/30/2004, and its predictive quality was assessed from 09/01/2003 to
08/30/2004 only.

Let us first mention that the performances reported by Dordonnat et al. (2008) for their
model are in accord with ours, with a one-day-ahead predictive MAPE varying around 1.30%
across the 24 hours considered, and larger errors during the weekends or holiday breaks.
They also found the quality of the forecasts obtained to be degrading with the predictive
horizon, just as we did, and at a similar rate. Finally, the behaviour of the heating gradient
that we reported corroborates the behaviour of the heating gradients found in Dordonnat et al.
(2008) (with this difference that they used a smoothing approach for the signal extraction,
whereas we used a filtering approach).

Still, the dynamic model (4.1) that we propose is much simpler, most notably where the
seasonality part is concerned: our model only includes 9 daytypes and at most 2 temperatures,
i.e. 10 random effects whereas the model described in Dordonnat et al. (2008) made use
of more than 30 random effects. Arguably, the estimation time of our model via a particle
filter takes more time than running a Kalman filter, but particle filters naturally allows for
more flexibility in the definition of the model (including non-linear non-Gaussian model).
Most importantly, the Algorithm 3.10 that we implemented for the estimation of our models
automatically treats bank-holidays instants as missing data when Dordonnat et al. (2008)
explicitly and manually had to declare which data had to be considered as missing data, so
as not to throw the model off. Also note that even though the model studied in Dordonnat
et al. (2008) was more complex, the predictive MAPE they obtained for non regular daytypes
exceeded 5% at 09:00AM and 12:00PM the two instants they focused on while the dynamic
model (4.1) had an averaged predictive MAPE of 3.34% for non regular daytypes (but once
again keep in mind that the datasets used for their experiments and ours were different which
may possibly explain part of the observed difference).
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