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Copula parameter estimation
using Blomqvist’s beta

Titre: L’emploi du bêta de Blomqvist pour l’estimation du paramètre d’une copule
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Abstract: The authors consider the inversion of Blomqvist’s beta as a method-of-moments estimator for a real-valued
dependence parameter in a bivariate copula model. This estimator results from solving the equation β = βn for the
copula parameter, where βn is a rank-based estimate of β derived from a random sample of size n. Small- and large-
sample comparisons are made between this estimator and an analogous estimator based on the inversion of Kendall’s
tau. While the results show that the latter is more efficient, the computation of βn requires only O(n) operations, as
opposed to O(n2) for the estimation of Kendall’s tau. Thus for large n, the inversion of β quickly leads to an unbiased
estimator and a good starting value for canonical likelihood maximization.

Résumé : Les auteurs s’intéressent à l’inversion du beta de Blomqvist comme estimateur des moments du paramètre
de dépendance réel d’un modèle de copule bivarié. Cet estimateur est obtenu en isolant le paramètre de la copule dans
l’équation β = βn, où βn est un estimateur de rangs de β déduit d’un échantillon aléatoire de taille n. La performance
asymptotique et à taille finie de cet estimateur est comparée à celle d’un estimateur analogue obtenu en inversant le
tau de Kendall. Bien que les résultats montrent que ce dernier est plus efficace, le calcul de βn ne requiert que O(n)
opérations et non O(n2) comme pour l’estimation du tau de Kendall. Pour n grand, l’inversion de β fournit donc
rapidement un estimateur sans biais et une bonne valeur initiale pour la maximisation de la vraisemblance canonique.
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6 Chr. Genest et al.

1. Introduction

Let X and Y be continuous random variables with joint cumulative distribution function H and
margins F and G, respectively. Sklar’s Theorem [Sklar, 1959] guarantees the existence of a unique
function C such that, for all x,y ∈ R,

H(x,y) =C{F(x),G(y)}. (1)

The function C, called the copula of (X ,Y ), is the joint cumulative distribution function of the
pair (U,V ) = (F(X),G(Y )), whose components are distributed uniformly on the interval [0,1].

Sklar’s representation of H provides a useful way to model the joint behaviour of X and Y by
choosing C, F and G from appropriate parametric families. Typically, it is assumed that C ∈ (Cθ ),
where the parameter θ is real-valued. The construction of a copula model involves several steps.
For a general blueprint of the entire process, the reader is referred to [Genest and Favre, 2007].
This paper is limited to a single aspect: the estimation of θ , the parameter indexing the copula
family.

The dependence between X and Y is characterized entirely by the copula C. Given that copulas
are invariant by monotone increasing transformations of the margins, it is reasonable to focus on
ranked-based estimators of θ . This is because the pairs of ranks in a sample form a maximally
invariant set with respect to strictly increasing transformations of the margins.

Canonical maximum likelihood (CML) estimation is a recognized standard for rank-based
estimation of copula parameters. Originally suggested in [Oakes, 1994], it was formalized in
[Genest et al., 1995] and subsequently expanded upon in [Tsukahara, 2005]. It involves maxi-
mizing a modified version of the log-likelihood in which the unknown marginal distributions are
replaced by their empirical counterparts. Under weak regularity conditions, the resulting estimator
is consistent and asymptotically Gaussian; it is even semiparametrically asymptotically efficient
in special cases; see, e.g., [Genest and Werker, 2002].

In practice, however, the CML method can be computationally intensive. In addition, its
application is limited to cases where the copula Cθ has a density with respect to Lebesgue
measure. For this reason, nonparametric analogues of the method of moments are often used. The
most common choice is the inversion of Kendall’s tau. Given a random sample of size n from
H, this estimation technique involves solving the equation τ(Cθ ) = τn for θ , where τ(Cθ ) and
τn represent the population value and sample estimate of Kendall’s tau, respectively. Inversion
of Spearman’s rho is another option. These two estimators are also known to be consistent and
asymptotically Gaussian under weak regularity conditions; see, e.g., [Borkowf, 2002, Hoeffding,
1947, Hoeffding, 1948].

The purpose of the present paper is to investigate an even simpler rank-based estimator for
the dependence parameter θ based on the method of moments. The idea is to invert the medial
correlation coefficient, also known as Blomqvist’s beta [Blomqvist, 1950]. Broadly speaking, the
empirical version βn of Blomqvist’s beta is a suitably scaled version of the proportion of points
whose components are either both smaller, or both larger, than their respective sample medians.
The computation of βn thus involves only O(n) operations, as opposed to O(n2) for the empirical
versions of Kendall’s tau and Spearman’s rho. In addition, the population version of Blomqvist’s
beta, β (Cθ ) =−1+4Cθ (1/2,1/2), is available in closed form for many popular copula families.
As a result, its inversion often leads to a simple, easily computed, explicit estimator for θ . These
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Inversion of Blomqvist’s beta 7

advantages become significant when dealing with large sample sizes or in situations where
real-valued dependence parameters must be computed for many pairs of variables.

Consider, for instance, the problem of fitting a multivariate meta-elliptical copula to d ≥ 2
financial risks. The copula family then involves d(d−1)/2 parameters which, initially at least, are
often estimated by inverting Kendall’s tau for each pair of variables; see, e.g., [Genest et al., 2011].
When d is large, as is often the case in risk management, inversion of Blomqvist’s beta would
entail substantial savings in computing time. The resulting estimates may also be sufficient as
initial values for implementation of the CML method. To assess the validity of the latter statement,
this paper compares the relative performance of estimators of θ based on the inversion of Kendall’s
tau and Blomqvist’s beta. While both approaches could be implemented in arbitrary dimension
by resorting to d-variate extensions of Kendall’s tau [Genest et al., 2011] and Blomqvist’s beta
[Schmid and Schmidt, 2007], the comparison is limited here to the case d = 2 for simplicity.

To start things off, Section 2 gives a brief overview of the CML and standard rank-based
moment estimators of a real-valued copula parameter θ . Inversion of Blomqvist’s beta as a
technique for the estimation of θ is then described in Section 3. Illustrations of this approach
in concrete classes of copulas can be found in Section 4, along with direct comparisons to the
estimator resulting from the inversion of Kendall’s tau. A simulation study intended to shed more
light into the effectiveness of the new estimator was carried out, and its results are reported in
Section 5. Some final thoughts and comments are presented in Section 6.

2. Estimating θ : Canonical maximum likelihood and moments-based procedures

Let (X1,Y1), . . . ,(Xn,Yn) be a random sample from a pair (X ,Y ) of continuous random variables
with joint distribution H, copula C, and margins F and G, respectively. Further let (R1,S1), . . .,
(Rn,Sn) denote the pairs of ranks associated with the sample: that is, Ri represents the rank of Xi

among X1, . . . ,Xn and Si is the rank of Yi among Y1, . . . ,Yn. Since both X and Y are assumed to be
continuous, ties occur with probability zero and therefore the ranks are well-defined.

As stated in the Introduction, this paper is aimed squarely at the estimation of the dependence
parameter in a copula model. In later sections, the effectiveness of the inversion of Blomqvist’s
beta as a method of estimation will be examined by comparing it to that of the most widely-used
procedures over several copula models. For completeness, a brief review seems in order; details
will be left out and references will be given instead.

Assuming that C ∈ (Cθ ), the most popular method for estimating the dependence parameter
θ ∈ R is based on the principle of maximum likelihood. Suppose that the copula Cθ associated
with (X ,Y ) has a density cθ defined, for all u,v ∈ (0,1), by

cθ (u,v) =
∂ 2

∂u∂v
Cθ (u,v).

When the margins F and G are known, the log-likelihood function for θ is given by

`(θ) =
n

∑
i=1

ln [cθ{F(Xi),G(Yi)}] .

However, given that the margins are rarely known in practice, Oakes [Oakes, 1994] suggested
to simply replace them with their empirical versions. Genest et al. [Genest et al., 1995] explored
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8 Chr. Genest et al.

and suitably modified this idea, employing the rescaled versions of the empirical margins defined,
for all x,y ∈ R, by

Fn(x) =
1

n+1

n

∑
i=1

1(Xi ≤ x), Gn(y) =
1

n+1

n

∑
i=1

1(Yi ≤ y),

where 1(A) denotes the indicator function of the event A. It is easy to check that Fn(Xi)=Ri/(n+1)
and Gn(Yi) = Si/(n+1) for all i ∈ {1, . . . ,n}, so the resulting log pseudo-likelihood function is

`∗(θ) =
n

∑
i=1

ln
{

cθ

(
Ri

n+1
,

Si

n+1

)}
.

The canonical maximum likelihood estimator is the value θn that maximizes `∗. It was shown in
[Genest et al., 1995] that under mild regularity conditions, θn is consistent and asymptotically
Gaussian.

As explained in the Introduction, however, there are instances where the copula Cθ does not
have a density, or where the maximization of the log pseudo-likelihood function is computationally
intensive. In those cases, moment-based methods can provide a “quick and dirty” way of estimating
θ , or at least produce an appropriate starting value for pseudo-likelihood estimation. Among them,
the inversion of Kendall’s tau is the most popular, mainly because its form is often explicit.

Any two pairs (Xi,Yi), (X j,Yj) are said to be concordant whenever (Xi−X j)(Yi−Yj) > 0;
conversely, they are discordant if (Xi−X j)(Yi−Yj) < 0. Kendall’s tau, a famous measure of
dependence based on the notion of concordance, is estimated empirically by

τn =
4

n(n−1)
Pn−1,

where Pn stands for the number of concordant pairs in the sample. Its population version can be
expressed entirely in terms of the copula Cθ as

τ(X ,Y ) = τ(Cθ ) =−1+4
∫ 1

0

∫ 1

0
Cθ (u,v)dCθ (u,v). (2)

In analogy to the method of moments in classical statistics, the inversion of Kendall’s tau consists
of solving the equation τ(Cθ ) = τn for θ . The resulting value, θτ,n, provides an estimate of θ .

The asymptotic behaviour of θτ,n can be derived through the properties of Kendall’s tau, many
of which were studied by Hoeffding [Hoeffding, 1947] using the theory of U-statistics. It is noted
in [Genest et al., 2011] that as n→ ∞, n1/2(τn− τ) converges weakly to a centered Gaussian
random variable with variance

σ
2
C,τ = 16var{C(U,V )+C̄(U,V )}, (3)

where (U,V ) is a random vector with distribution C and survival function C̄ defined, for all
u,v ∈ [0,1], by C̄(u,v) = 1−u− v+C(u,v). By considering the transformation gτ : τ → θ , one
can write θτ,n = gτ(τn). An application of the Delta Method shows that as long as g′τ(τ) exists
and is non-zero, θτ,n is asymptotically Gaussian with mean zero and variance

{g′τ(τ)}2
σ

2
C,τ . (4)
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Inversion of Blomqvist’s beta 9

The same principles outlined above can be used with Spearman’s rho in place of Kendall’s tau.
The resulting estimator is also well-behaved asymptotically under mild regularity conditions; it
is, however, far less popular than θτ,n because copulas with a closed form population version of
Spearman’s rho are few and far between. For this reason, details are omitted.

3. Inversion of Blomqvist’s beta

This paper considers an alternative rank-based estimator of the dependence parameter θ inspired
by the method of moments. The idea is to invert the medial correlation coefficient, also known
as Blomqvist’s beta [Blomqvist, 1950]. This dependence measure is computed from a 2× 2
contingency table constructed from the data.

Let X̃n and Ỹn be the medians of the samples X1, . . . ,Xn and Y1, . . . ,Yn, respectively. To gather
information about the dependence between X and Y , Blomqvist suggested dividing the x–y plane
into four regions by drawing the lines x = X̃n and y = Ỹn and comparing the following quantities:

n1: the number of points lying in either the lower left quadrant or the upper right quadrant;
n2: the number of points in either the upper left quadrant or the lower right quadrant.

The definition of βn, which came to be called Blomqvist’s beta, is given by

βn =
n1−n2

n1 +n2
=−1+2

n1

n1 +n2
. (5)

If n is even, then no sample point falls on either of the lines x = X̃n and y = Ỹn, and it follows
that both n1 and n2 are even. If n is odd, however, then either one or two sample points lie on the
lines defined by the sample medians. In the case of a single point lying on a median, Blomqvist
[Blomqvist, 1950] proposed not to count the point altogether. In the second case, one point has to
fall on each line: one of them is assigned to the quadrant touched by the two points, and the other
is not counted. This allows both n1 and n2 to remain even.

As can be deduced from Equation (5), βn is the difference between the proportion of sample
points having both components either smaller or greater than their respective medians, and the
proportion of the other sample points. The population analogue of βn is

β = Pr{(X− x̃)(Y − ỹ)> 0}−Pr{(X− x̃)(Y − ỹ)< 0},

where x̃ and ỹ denote the population medians of X and Y , respectively. Using the simple facts that

Pr{(X− x̃)(Y − ỹ)> 0}= Pr(X− x̃ > 0,Y − ỹ > 0)+Pr(X− x̃ < 0,Y − ỹ < 0)

and
Pr(X > x̃,Y > ỹ) = Pr(X < x̃,Y < ỹ)

together with Equation (1), it is straightforward to show that

β =−1+4C{F(x̃),G(ỹ)}=−1+4C
(

1
2
,
1
2

)
. (6)

As β is only a function of C, it is possible to write it in terms of θ whenever C ∈ (Cθ ).
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10 Chr. Genest et al.

Equation (6) also leads to an alternative definition for βn. It has been known since the work of
Rüschendorf [Rüschendorf, 1976] that C can be estimated consistently by the so-called empirical
copula. The latter is usually defined, for each u,v ∈ [0,1], by

Cn(u,v) =
1
n

n

∑
i=1

1
(

Ri

n+1
≤ u,

Si

n+1
≤ v
)
.

As shown by Segers [Segers, 2012], Cn converges weakly to C as n→ ∞ whenever C is regular
in the sense of [Genest et al., 2012]: namely, the partial derivatives C1(u,v) = ∂C(u,v)/∂u and
C2(u,v) = ∂C(u,v)/∂v must exist everywhere on [0,1]2, with the convention that one-sided
derivatives are used at the boundary points; moreover, C1 and C2 must be continuous on (0,1)×
[0,1] and [0,1]× (0,1), respectively.

Replacing C with Cn in Equation (6) gives

β
∗
n =−1+4Cn

(
1
2
,
1
2

)
. (7)

If n is even, then βn and β ∗n are equivalent. When n is odd, however, (5) and (7) can never
coincide. The reason is that, under this scenario, one or two of the sample points lie on the lines
defined by the sample medians. The original method proposed by Blomqvist then removes a
sample point from the final tally, while the formula based on the empirical copula does not. In any
case, they are asymptotically equivalent, as stated next and proved in Appendix A.

Lemma 1. Let βn and β ∗n be defined as in (5) and (7), respectively. If n is even, then βn = β ∗n . If
n is odd, then

βn−β
∗
n =



4
n−1

Cn

(
1
2
,
1
2

)
, if there exist i, j ∈ {1, . . . ,n} such that

Xi = X̃n, Yi > Ỹn, X j > X̃n, and Yj = Ỹn;

4
n−1

{
Cn

(
1
2
,
1
2

)
−1
}
, otherwise.

The asymptotic behaviour of βn was studied by Schmid & Schmidt [Schmid and Schmidt,
2007] in a multivariate context. In the bivariate case, their findings show that, as n→ ∞,

√
n(βn−β ) N (0,σ2

C,β )

as long as the copula C is regular. The asymptotic variance σ2
C,β can then be written as

σ
2
C,β = 16

[
C
(

1
2
,
1
2

){
1−C

(
1
2
,
1
2

)}
+

1
4

{
C1

(
1
2
,
1
2

)
−C2

(
1
2
,
1
2

)}2

+ C
(

1
2
,
1
2

){
−C1

(
1
2
,
1
2

)
−C2

(
1
2
,
1
2

)
+2C1

(
1
2
,
1
2

)
C2

(
1
2
,
1
2

)}]
. (8)

This expression is derived in Appendix B.
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Inversion of Blomqvist’s beta 11

Now suppose once again that C ∈ (Cθ ) and set β (Cθ ) = βn. The value θβ ,n that solves the
equation yields an estimate for θ . This estimator can be expressed in the form θβ ,n = gβ (βn)
for an appropriate choice of map gβ : β → θ . Assume that g′

β
(β ) exists and is non-zero. Analo-

gously to θτ,n in the previous section, the Delta Method then ensures that θβ ,n is consistent and
asymptotically Gaussian with mean zero and variance

{g′
β
(β )}2

σ
2
C,β . (9)

This result is formally recorded below.

Proposition 1. If Cθ is a regular copula with β (Cθ ) = β , then n1/2(θβ ,n−θ) converges in distri-
bution, as n→ ∞, to a Gaussian random variable with mean zero and variance {g′

β
(β )}2σ2

C,β .

4. Application to different classes of copulas

How does θβ ,n perform as an estimator? A simple way to answer this question is to compare
its behaviour to that of θτ,n, which is already known [Kojadinovic and Yan, 2010a]. For most
classical families of copulas, the asymptotic variance of both estimators can be determined, either
explicitly or by numeric integration. A few examples of such calculations are presented below.

4.1. Farlie–Gumbel–Morgenstern family

The bivariate Farlie–Gumbel–Morgenstern (FGM) family of copulas with parameter θ ∈ [−1,1]
is defined, for all u,v ∈ (0,1), by

Cθ (u,v) = uv+θ(1−u)(1− v)uv.

The density of Cθ is given by cθ (u,v) = 1+θ(1−2u)(1−2v) and so, by Equation (2), a simple
calculation yields τ(Cθ ) = 2θ/9. It is, of course, even easier to use (6) to get β (Cθ ) = θ/4. These
two results show the limited range of dependence that can be modelled with this family, as the
values for τ are restricted to [−2/9,2/9], while β ∈ [−1/4,1/4]. The resulting estimators for θ

obtained by inversion of Kendall’s tau and Blomqvist’s beta are, respectively,

θτ,n = 9τn/2, θβ ,n = 4βn.

In order to compute their asymptotic variances, one must find σ2
C,τ and σ2

C,β . By Equation (3),

σ
2
C,τ = 16

[∫ 1

0

∫ 1

0
{Cθ (u,v)+C̄θ (u,v)}2 dCθ (u,v)

−
[∫ 1

0

∫ 1

0

{
Cθ (u,v)+C̄θ (u,v)

}
dCθ (u,v)

]2
]
.

A simple calculation shows that Cθ (u,v)+C̄θ (u,v) = 2uv+2θuv(1−u)(1− v)+1−u− v, and
after some integration, one finds

σ
2
C,τ =

4
9
− 184

2025
θ

2.
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12 Chr. Genest et al.

FIGURE 1. Asymptotic variance of θτ,n (dotted
line) and θβ ,n (solid line) for the FGM copula.

FIGURE 2. Ratio between the asymptotic vari-
ances of θβ ,n and θτ,n for the FGM copula.

Furthermore, given that Cθ (1/2,1/2) = 1/4+θ/16 and Cθ ,1(1/2,1/2) =Cθ ,2(1/2,1/2) = 1/2,
Equation (8) yields

σ
2
C,β = 1− θ 2

16
.

Given that gτ(τ) = 9τ/2, the asymptotic variance of θτ,n is found to be

{g′τ(τ)}2
σ

2
C,τ =

(
9
2

)2(4
9
− 184

2025
θ

2
)
= 9− 46

25
θ

2.

Similarly, using the fact that gβ (β ) = 4β , one finds that the asymptotic variance of θβ ,n is

{g′
β
(β )}2

σ
2
C,β = 42

(
1− θ 2

16

)
= 16−θ

2.

Figure 1 shows a plot of these variances. Clearly, the asymptotic variance of θβ ,n is larger
than that of θτ,n for every admissible value of θ . The ratio between θβ ,n and θτ,n is smallest at
independence (i.e., at θ = 0), where it stands at 16/9≈ 1.78. See Figure 2 for an illustration.

4.2. Meta-elliptical copulas

A random pair X is said to have an elliptical distribution with mean zero and positive-definite
dispersion matrix Σ = (σi j) if it can be represented as

X = RAU,

where R is a strictly positive random variable, U is a random pair independent of R that is
uniformly distributed on the unit circle, and A is a 2× 2 constant matrix such that AA> = Σ.
In particular, if R admits a density, then it is proportional to q(X>Σ−1X), where q is a scale
function completely determined by R. The associated copula is then called meta-elliptical with
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Inversion of Blomqvist’s beta 13

FIGURE 3. Asymptotic variance of θτ,n (dot-
ted line) and θβ ,n (solid line) for the Gaussian
copula.

FIGURE 4. Ratio between the asymptotic vari-
ances of θβ ,n and θτ,n for the Gaussian copula.

radial variable R and correlation matrix ϒ = (θi j), where θi j = σi j/(σiiσ j j)
1/2 for i, j ∈ {1,2};

see [Abdous et al., 2005, Fang et al., 2005] for more details.
Hult & Lindskog [Hult and Lindskog, 2002] showed that the value of Kendall’s tau is the same

for all bivariate meta-elliptical copulas with correlation θ ; in other words, it does not depend on q.
As pointed out in [Schmid and Schmidt, 2007], the same is true for Blomqvist’s beta. In fact, the
identity

τ(Cθ ) = β (Cθ ) =
2
π

arcsin(θ)

is valid for any bivariate meta-elliptical copula Cθ with correlation θ . In light of these results, the
inversion of τ and β leads to the estimators

θτ,n = sin
(

π

2
τn

)
, θβ ,n = sin

(
π

2
βn

)
.

Schmid & Schmidt [Schmid and Schmidt, 2007] also report a concise expression for the
asymptotic variance of β that remains invariant in the class of meta-elliptical copulas, namely

σ
2
C,β = 1− 4arcsin2 (θ)

π2 .

Unfortunately, a closed form expression for the asymptotic variance of τ is unavailable, except in
special cases. When Cθ is the bivariate Gaussian copula, the form of the scale function q does
make an explicit computation possible; a direct comparison can then be made.

Example 1. The Gaussian copula with parameter θ ∈ (−1,1) is defined, for all u,v ∈ (0,1), by

Cθ (u,v) = Φθ{Φ−1(u),Φ−1(v)},

where Φθ represents the cumulative distribution function of the bivariate standard Normal
law with correlation θ and Φ stands for its univariate margin. Given that τ(Cθ ) = β (Cθ ) =
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14 Chr. Genest et al.

2arcsin(θ)/π for all meta-elliptical copulas, both τ and β can range over the full interval [−1,1].
Genest et al. [Genest et al., 2011] showed that

σ
2
C,τ =

4
9
− 16

π2 arcsin2
(

θ

2

)
.

Using the fact that g′τ(τ) = g′
β
(β ) = π

√
1−θ 2/2, Equations (4) and (9) yield

{g′τ(τ)}2
σ

2
C,τ =

(
π

2

√
1−θ 2

)2
{

4
9
− 16

π2 arcsin2
(

θ

2

)}
,

{g′
β
(β )}2

σ
2
C,β =

(
π

2

√
1−θ 2

)2
{

1− 4arcsin2 (θ)

π2

}
.

A comparison between these asymptotic variances produces similar results to those already
reported for the FGM family. Here again, θτ,n is more efficient than θβ ,n for all possible values of
θ ; see Figure 3. The ratio between the asymptotic variances of θβ ,n and θτ,n at independence is
9/4 = 2.25, and it only grows larger as θ approaches ±1 as can be seen in Figure 4. Note that if
|θ |= 1, both variances are zero; this is a consequence of the fact that θ =±1 correspond to the
Fréchet–Hoeffding bounds.

4.3. Archimedean copulas

A bivariate copula Cθ is said to be Archimedean [Genest and MacKay, 1986] if there exists a
strictly decreasing, convex function φθ : [0,1]→ R+ such that φθ (1) = 0 and, for all u,v ∈ (0,1],

Cθ (u,v) = ψθ{φθ (u)+φθ (v)}. (10)

Here ψθ denotes the generalized inverse of φθ . The map φθ is called the generator of the copula.
For convenience, it is assumed here that φθ (t)→ ∞ as t → 0, in which case ψθ is the standard
inverse and Cθ is absolutely continuous with respect to Lebesgue measure.

For copulas of the form (10), Blomqvist’s beta is given by

β (Cθ ) =−1+4ψθ

{
2φθ

(
1
2

)}
. (11)

Obviously, an expression for σ2
C,β involves ψ , φ and their first derivatives, which exist almost

everywhere. One has

C1

(
1
2
,
1
2

)
=C2

(
1
2
,
1
2

)
= ψ

′
θ

{
2φθ

(
1
2

)}
×φ

′
θ

(
1
2

)
.

In some cases, it is not possible to invert β explicitly, as will be seen later; hence for those
families direct computation of g′

β
is out of the question. However, the exact asymptotic variance

of the estimator could still be found by exploiting (11). Indeed, one might alternatively compute

d
dθ

β = 4
[

d
dθ

ψθ

{
2φθ

(
1
2

)}
+2ψ

′
θ

{
2φθ

(
1
2

)}
× d

dθ
φθ

(
1
2

)]
(12)
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Inversion of Blomqvist’s beta 15

and then g′
β
(β ) = (dβ/dθ)−1.

When Cθ is Archimedean, it is well known [Genest and MacKay, 1986] that

τ(Cθ ) = 1+4
∫ 1

0

φθ (t)
φ ′

θ
(t)

dt.

Unfortunately, the general expression for the asymptotic variance of τn is often unwieldy, so any
direct comparison to the estimator based on β can only be made on a case-by-case basis. To that
effect, the following example will be examined.

Example 2. The Clayton copula with parameter θ > 0 is defined, for all u,v ∈ (0,1), by

Cθ (u,v) = (u−θ + v−θ −1)−1/θ .

The value of τ(Cθ ) for this family is well-known and β (Cθ ) is easy to compute directly. The
expressions are

τ(Cθ ) =
θ

θ +2
, β (Cθ ) =−1+4(2θ+1−1)−1/θ .

Values of θ greater than zero lead to τ,β ∈ (0,1). It is also possible to take θ ∈ (−1,0), leading
to negative dependence and values of τ and β in (−1,0). The resulting estimators are then

θτ,n =
2τn

1− τn
, θβ ,n = gβ (βn) ,

where g is an implicit function. The asymptotic variances of τ and β can be given explicitly,
although the former involves Spearman’s rho. Once again, these expressions have been presented
in [Genest et al., 2011] and [Schmid and Schmidt, 2007], respectively. They are

σ
2
C,τ =

8
3
× −θ 3 +θ 3ρ−7θ 2 +7θ 2ρ−6θ +16θρ +2+12ρ

12+16θ +7θ 2 +θ 3 ,

σ
2
C,β = 16{η(1−η)+η(−4η

θ+12θ +8η
2θ+222θ )},

where η = (2θ+1−1)−1/θ . Note that ρ has to be calculated by numerical integration as it has no
closed form expression for the Clayton copula.

It is easy to see that, for this family, the function g′τ is given by g′τ(τ) = (θ +2)2/2 while (12)
can be used to obtain

d
dθ

β = 4(2θ+1−1)−1/θ

{
ln(2θ+1−1)

θ 2 − 2θ+1 ln(2)
θ(2θ+1−1)

}
and thus g′

β
(β ) = dθ/dβ . Consequently,

{g′τ(τ)}2
σ

2
C,τ =

2(θ +2)4

3
× −θ 3 +θ 3ρ−7θ 2 +7θ 2ρ−6θ +16θρ +2+12ρ

12+16θ +7θ 2 +θ 3 ,

{g′
β
(β )}2

σ
2
C,β = {g′

β
(β )}2×16{η(1−η)+η(−4η

θ+12θ +8η
2θ+222θ )}.

It can be shown that these asymptotic variances tend to infinity as θ →∞, although much more
quickly so for θβ ,n than for θτ,n. This becomes evident by looking at Figure 5.
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16 Chr. Genest et al.

FIGURE 5. Asymptotic variance of θτ,n (dotted line) and θβ ,n (solid line) for the Clayton copula.

4.4. Extreme-value copulas

A bivariate copula is said to be of the extreme-value type if there exists a convex map A : [0,1]→
[1/2,1] such that, for all u,v ∈ (0,1),

CA(u,v) = exp
[

ln(uv)A
{

ln(v)
ln(uv)

}]
. (13)

The map A is called the Pickands dependence function and in order for CA to be a copula, it must
satisfy max(t,1− t)≤ A(t)≤ 1 for all t ∈ [0,1].

Ghoudi et al. [Ghoudi et al., 1998] showed that if Aθ is a parametric Pickands dependence
function with real-valued parameter θ , the population value of Kendall’s tau is given by

τ(CAθ
) =

∫ 1

0

t(1− t)
Aθ

dA′θ (t).

In a similar vein, it is easily found that

β (CAθ
) =−1+

(
1
4

)Aθ (1/2)−1

. (14)

The latter expression may not be overly helpful for computing the value of β for a given extreme-
value copula; many times it is just as easy to apply Equation (6) directly. However, it proves
handy when it comes to simplifying the calculation for σ2

C,β , because it provides a starting point
to express Equation (8) in terms of A. Indeed, for k = 1,2,

Cθ

(
1
2
,
1
2

)
=

(
1
4

)Aθ (1/2)

, Ck

(
1
2
,
1
2

)
=

(
1
4

)Aθ (1/2){
2Aθ

(
1
2

)
+(−1)kA′θ

(
1
2

)}
,
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Inversion of Blomqvist’s beta 17

and so the asymptotic variance can be written in terms of Aθ (t) and A′
θ
(t) = ∂Aθ (t)/∂ t as

σ
2
C,β =

(
1
4

)Aθ (1/2)−2

+

(
1
4

)2Aθ (1/2)−2
[{

A′θ

(
1
2

)}2

−4Aθ

(
1
2

)
−1

]

+

(
1
4

)3Aθ (1/2)−2
[{

8Aθ

(
1
2

)}2

−2
{

A′θ

(
1
2

)}2
]
. (15)

Whenever β cannot be inverted explicitly, one could proceed as previously described for the
Archimedean family by computing

d
dθ

β =

(
1
4

)Aθ( 1
2)−1

ln
(

1
4

)
× d

dθ
Aθ

(
1
2

)
,

because g′
β
(β ) = (dβ/dθ)−1, and so the asymptotic variance of θβ ,n can be found through (9).

Example 3. Consider the Gumbel copula of type A with parameter θ ∈ [0,1]. The Pickands
dependence function for this family is given, for all t ∈ [0,1], by Aθ (t) = θ t2− θ t + 1. Upon
substitution in (13), this choice of Aθ yields, for all u,v ∈ (0,1),

Cθ (u,v) = uvexp
{
−θ

ln(u) ln(v)
ln(uv)

}
.

Computation of Blomqvist’s beta for the type A Gumbel is equally straightforward with either
(6) or (14), as it is easy to find that β (θ) = −1+2θ/2. As in the case of the FGM copula, this
model restricts the set of possible values for β , which is [0,

√
2−1]. The inversion of β for this

family leads to

θβ ,n =
2ln(βn +1)

ln2
,

which in turn means that
g′

β
(β ) =

2
2θ/2 ln2

.

The calculation of the asymptotic variance only involves the values of Aθ and A′
θ

at 1/2. Given
that Aθ (1/2) = 1−θ/4 and A′

θ
(1/2) = 0, substitution into (15) yields

σ
2
C,β = 22+θ/2 +(θ −5)×2θ +(θ −4)2×23θ/2−3 ,

and so the asymptotic variance of θβ ,n is given by

{g′
β
(β )}2

σ
2
C,β =

(
2

ln2

)2

{22−θ/2 +(θ −5)+(θ −4)2×2θ/2−3}.

The inversion of τ is more challenging. From [Ghoudi et al., 1998], Kendall’s tau for this family
is given by

τ(θ) =−2+
8√

θ(4−θ)
arctan

(√
θ

4−θ

)
,
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18 Chr. Genest et al.

FIGURE 6. Asymptotic variance of θτ,n (dotted line) and θβ ,n (solid line) for the type A Gumbel copula.

and hence τ ∈ [0,0.418]. Unfortunately, it is clear that solving for θ is not viable, while (3) does
not produce an explicit expression. The first issue can be solved by differentiating τ(θ) directly
with respect to θ as done in earlier sections; after some manipulation, this process results in

g′τ(τ) =
θ 2(4−θ)2

4
{

θ(4−θ)− (4−2θ)
√

θ(4−θ)arctan
(√

θ

4−θ

)} .

Computation of σ2
C,τ has to be done numerically, which ultimately dooms any attempt to

write down a closed form expression for the asymptotic variance of θτ,n. To contrast it with the
asymptotic variance of θβ ,n, a graph is provided in Figure 6. Once again, the difference between
the two estimators is fairly noticeable.

5. Simulation study

As there are few families of copulas for which the asymptotic variances of θτ,n and θβ ,n can be
expressed in closed form, a simulation study was conducted to compare the efficiency of these
estimators. As stated in the Introduction and later confirmed through examples in Section 4, it is
to be expected that θτ,n will outperform θβ ,n.

In order to facilitate comparisons between θβ ,n and methods currently used, the same experi-
mental design was used as in the Monte Carlo study of Kojadinovic & Yan [Kojadinovic and Yan,
2010a], where the estimators based on the inversion of Kendall’s tau and Spearman’s rho were
considered along with the canonical maximum likelihood method. The same six copula families
were also considered, namely the Clayton, Frank, Gaussian, Gumbel–Hougaard, Plackett, and
Student’s t with 4 degrees of freedom. For each family, the dependence was set to 5 different
levels, corresponding to τ = 0.1,0.2,0.4,0.6, and 0.8. Sample sizes were set to n = 50,100,200,
and 400; 1000 repetitions were generated for each combination of copula family, dependence
level and sample size.
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Inversion of Blomqvist’s beta 19

Table 1 presents a basic summary of the results of the simulation corresponding to n = 50.
Listed alongside the level of dependence and copula family is the true value of θ for each
combination, the mean and standard deviation of θτ,n and θβ ,n, as well as the percentage relative
bias (PRB) of each. Table 2 provides the same summary corresponding to n = 200. A direct
comparison to the CML estimator was not included, given that the results in [Kojadinovic and
Yan, 2010a] support the conclusion that it outperforms the estimator based on Kendall’s tau in
overall terms.

It can be seen from Tables 1 and 2 that θτ,n is consistently less biased than θβ ,n. The difference
is especially marked for smaller samples: although θτ,n remains superior as n increases, θβ ,n does
not perform too badly, as can be gathered from Table 2. Neither estimator appears to do well for
the Plackett family, a phenomenon already documented in [Kojadinovic and Yan, 2010a], even
for the CML estimator. However, this problem is far more accute for θβ ,n: in the case of strong
dependence, the estimator loses all semblance of effectiveness in small samples.

Note that there are no results reported for the Clayton, Frank, and Gumbel–Hougaard copulas

TABLE 1. Simulation summary for n = 50: The mean of the estimates, the standard deviation and the percentage
relative bias is reported both for θτ,n and θβ ,n; C stands for Clayton, G for Gumbel–Hougaard, F for Frank, N
for Gaussian, t for Student’s t, and P for Plackett. An asterisk (*) means a figure greater than 10,000.

τ Copula θ µτ sτ PRBτ µβ sβ PRBβ

C 0.222 0.240 0.251 7.78 0.262 0.374 18.04
G 1.111 1.131 0.116 1.81 1.162 0.174 4.54

0.1 F 0.907 0.963 0.916 6.13 0.931 1.183 2.56
N 0.156 0.148 0.150 −5.65 0.148 0.217 −5.53
t 0.156 0.159 0.160 1.46 0.148 0.219 −5.24
P 1.564 1.699 0.776 8.65 1.868 1.302 19.49
C 0.500 0.525 0.306 4.96 0.544 0.453 8.86
G 1.250 1.270 0.165 1.61 1.293 0.240 3.46

0.2 F 1.861 1.887 0.902 1.40 1.854 1.257 −0.35
N 0.309 0.311 0.138 0.80 0.306 0.201 −1.13
t 0.309 0.302 0.153 −2.33 0.294 0.208 −5.02
P 2.479 2.680 1.288 8.09 2.916 2.007 17.61
C 1.333 1.372 0.493 2.89 1.442 0.783 8.13
G 1.667 1.709 0.256 2.52 1.736 0.415 4.18

0.4 F 4.161 4.219 1.132 1.38 4.249 1.839 2.12
N 0.588 0.589 0.105 0.27 0.577 0.167 −1.84
t 0.588 0.580 0.114 −1.26 0.565 0.168 −3.94
P 6.580 7.353 3.363 11.75 8.132 6.643 23.59
C 3.000 3.081 0.903 2.71 3.314 1.923 10.48
G 2.500 2.546 0.436 1.84 2.671 0.940 6.83

0.6 F 7.930 8.044 1.513 1.44 8.487 3.758 7.03
N 0.809 0.803 0.058 −0.74 0.786 0.111 −2.79
t 0.809 0.804 0.064 −0.59 0.790 0.114 −2.36
P 21.132 24.635 11.738 16.58 * * *
C 8.000 —— —— —— —— —— ——
G 5.000 —— —— —— —— —— ——

0.8 F 18.192 —— —— —— —— —— ——
N 0.951 0.950 0.017 −0.13 0.939 0.048 −1.32
t 0.951 0.949 0.020 −0.21 0.937 0.050 −1.52
P 114.963 131.747 72.702 14.60 * * *
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TABLE 2. Simulation summary for n = 200: The mean of the estimates, the standard deviation and the percentage
relative bias is reported both for θτ,n and θβ ,n; C stands for Clayton, G for Gumbel–Hougaard, F for Frank, N
for Gaussian, t for Student’s t, and P for Plackett.

τ Copula θ µτ sτ PRBτ µβ sβ PRBβ

C 0.222 0.224 0.120 0.62 0.233 0.184 4.89
G 1.111 1.117 0.058 0.53 1.123 0.083 1.07

0.1 F 0.907 0.917 0.451 1.01 0.924 0.600 1.80
N 0.156 0.154 0.073 −1.60 0.153 0.111 −2.31
t 0.156 0.155 0.082 −0.95 0.153 0.110 −1.96
P 1.564 1.572 0.339 0.56 1.611 0.482 3.05
C 0.500 0.511 0.147 2.24 0.521 0.219 4.22
G 1.250 1.255 0.079 0.43 1.257 0.114 0.55

0.2 F 1.861 1.881 0.435 1.10 1.894 0.605 1.76
N 0.309 0.309 0.070 0.06 0.308 0.105 −0.35
t 0.309 0.305 0.073 −1.22 0.302 0.102 −2.29
P 2.479 2.528 0.553 1.96 2.581 0.724 4.10
C 1.333 1.336 0.238 0.19 1.332 0.355 −0.10
G 1.667 1.672 0.115 0.30 1.681 0.184 0.85

0.4 F 4.161 4.196 0.527 0.85 4.218 0.806 1.36
N 0.588 0.587 0.050 −0.18 0.582 0.084 −0.93
t 0.588 0.587 0.056 −0.17 0.584 0.084 −0.63
P 6.580 6.782 1.477 3.07 6.951 2.326 5.64
C 3.000 3.019 0.422 0.61 3.054 0.719 1.78
G 2.500 2.504 0.196 0.15 2.519 0.356 0.78

0.6 F 7.930 7.977 0.729 0.59 8.091 1.518 2.04
N 0.809 0.809 0.027 −0.05 0.803 0.055 −0.78
t 0.809 0.807 0.031 −0.29 0.803 0.053 −0.76
P 21.132 21.715 4.836 2.76 22.358 9.234 5.80
C 8.000 8.074 0.943 0.92 8.343 2.530 4.29
G 5.000 5.043 0.450 0.85 5.201 1.245 4.01

0.8 F 18.192 18.307 1.324 0.64 19.170 5.391 5.38
N 0.951 0.951 0.008 −0.01 0.948 0.021 −0.31
t 0.951 0.950 0.009 −0.14 0.946 0.022 −0.52
P 114.963 118.266 28.426 2.87 134.740 89.240 17.20

for τ = 0.8 and n = 50. This is because when β ≈ 1, its inversion often led to dependence
parameter values that exceeded the numerical accuracy of the R copula package [Kojadinovic
and Yan, 2010b]. Consequently, the results for the inversion of Kendall’s tau were omitted since
no comparison could be drawn. The same also happened for the Frank family with τ = 0.8 and
n = 100.

Table 3 displays the percentage relative efficiency (PREτ/β ) of θβ ,n with respect to θτ,n for
each dependence level, copula family, and sample size considered. The interpretation of PREτ/β

is analogous to [Kojadinovic and Yan, 2010a]: the ratio of the estimated mean square error of
θτ,n over that of θβ ,n. Here, the superiority of θτ,n is displayed in full force: at best, θβ ,n is only
between 50–60% as effective. In worst-case scenarios, such as when the dependence is high,
the sample size is small and the wrong copula family is being considered, the relative efficiency
attained is alarmingly low.
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TABLE 3. Percentage relative efficiency (PRE) of θβ ,n with respect to θτ,n.

τ Copula θ PREτ/β for
n = 50 n = 100 n = 200 n = 400

C 0.222 0.447 0.395 0.425 0.433
G 1.111 0.427 0.400 0.480 0.468

0.1 F 0.907 0.602 0.583 0.565 0.531
N 0.156 0.474 0.483 0.437 0.414
t 0.156 0.531 0.575 0.558 0.553
P 1.564 0.347 0.520 0.491 0.554
C 0.500 0.453 0.419 0.449 0.454
G 1.250 0.465 0.452 0.480 0.412

0.2 F 1.861 0.516 0.500 0.517 0.502
N 0.309 0.469 0.479 0.446 0.430
t 0.309 0.538 0.567 0.509 0.542
P 2.479 0.402 0.421 0.577 0.558
C 1.333 0.390 0.448 0.449 0.440
G 1.667 0.380 0.373 0.388 0.425

0.4 F 4.161 0.379 0.391 0.428 0.442
N 0.588 0.396 0.385 0.347 0.398
t 0.588 0.454 0.486 0.443 0.458
P 6.580 0.256 0.325 0.401 0.460
C 3.000 0.217 0.337 0.343 0.348
G 2.500 0.211 0.277 0.304 0.317

0.6 F 7.930 0.160 0.202 0.229 0.258
N 0.809 0.267 0.278 0.238 0.241
t 0.809 0.303 0.355 0.330 0.359
P 21.132 0.000 0.197 0.273 0.341
C 8.000 —— 0.084 0.137 0.177
G 5.000 —— 0.126 0.129 0.140

0.8 F 18.192 —— —— 0.059 0.077
N 0.951 0.121 0.127 0.137 0.130
t 0.951 0.150 0.173 0.173 0.160
P 114.963 0.000 0.035 0.098 0.164

For low dependence levels (τ ≤ 0.2), θβ ,n seems to reach a plateau of efficiency relative to θτ,n

at sample sizes of around n = 200; for τ ≥ 0.4, larger sample sizes appear to continue helping in
that regard. In any case, it is abundantly clear that θτ,n is a better estimator of θ than θβ ,n.

6. Conclusions

The findings described in Sections 4 and 5 make it evident that the estimator resulting from the
inversion of Kendall’s tau outperforms θβ ,n by a wide margin. Given that Kojadinovic & Yan
[Kojadinovic and Yan, 2010a] have already shown the advantages that CML estimation enjoys in
comparison to the inversion of Kendall’s tau and Spearman’s rho, little room is left for Blomqvist’s
beta.

However, all is not lost. Though not nearly as precise as θτ,n, θβ ,n does provide a quick and
easily computed approximation to the dependence parameter that is readily available for any
explicit family of copulas. Whenever a formal expression for Kendall’s tau cannot be found
for a given family of copulas, or canonical maximum likelihood becomes too cumbersome, the
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inversion of Blomqvist’s beta presents a decent alternative. It could also find an application in
tandem with more refined methods: for instance, it could be used in the selection of a starting
value for CML estimation.

Appendix A: Proof of Lemma 1

There are two cases, depending on whether n is even or odd. If n is even, then the sample medians
do not touch any sample points, which means that every point is counted and so n = n1 + n2.
Moreover, by the definition of sample median, the number of points lying in the lower left quadrant
is always equal to that in the upper right quadrant, and so n1 can be written as

n1 = 2
n

∑
i=1

1
(

Ri

n+1
≤ 1

2
,

Si

n+1
≤ 1

2

)
= 2nCn

(
1
2
,
1
2

)
.

When n is odd, one of the sample points is not counted for βn and therefore n1 +n2 = n−1.
Let k be the number of sample points whose ranks in both X and Y are less than or equal to their
respective mid-rank. Then

k = nCn

(
1
2
,
1
2

)
=

n

∑
i=1

1
(

Ri ≤
n+1

2
,Si ≤

n+1
2

)
.

This quantity can also be viewed as the number of sample points in the lower left quadrant defined
by the lines x = X̃n and y = Ỹn. However, k includes the points on the boundaries of the quadrant,
while n1 eliminates one of those points if they exist. Therefore, n1 and 2k are only equal if there is
a sample point on each of the lines x = X̃n and y = Ỹn and if both of these points touch the upper
right quadrant; otherwise, 2k−n1 = 2. Now

βn−β
∗
n =

(
−1+

2n1

n1 +n2

)
−
(
−1+

2×2k
n

)
=

2n1n−2×2k×n+2×2k
n(n−1)

. (16)

Thus if 2k = n1, this expression reduces to

k
n
× 4

n−1
=

4
n−1

Cn

(
1
2
,
1
2

)
,

while if 2k−n1 = 2, (16) becomes

4k
n(n−1)

− 4
n−1

=
4

n−1
Cn

(
1
2
,
1
2

)
− 4

n−1
.

Appendix B: Proof of Equation (8)

Let σ2
C,β be the asymptotic variance of Blomqvist’s beta with underlying copula C. Under the

conditions set by [Segers, 2012], the value of σ2
C,β is given by

σ2
C,β

16
= var{C(1/2,1/2)−C1(1/2,1/2)C(1/2,1)−C2(1/2,1/2)C(1,1/2)} , (17)
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where C1(u,v)= ∂C(u,v)/∂u and C2(u,v)= ∂C(u,v)/∂v. Note that in (17), C(1/2,1/2), C(1/2,1)
and C(1,1/2) are random variables, while a =C1(1/2,1/2) and b =C2(1/2,1/2) are constants.

In order to arrive at (8), it is necessary to expand the right-hand side of (17) as follows:

σ2
C,β

16
= var{C(1/2,1/2)}+a2var{C(1/2,1)}+b2var{C(1,1/2)}

−2acov{C(1/2,1/2),C(1/2,1)}−2bcov{C(1/2,1/2),C(1,1/2)}
+2abcov{C(1/2,1),C(1,1/2)} . (18)

It only remains to calculate each of the variance and covariance terms in the expression above.
This can be accomplished by noting that the limiting process C has covariance function

cov{C(u,v),C(s, t)}=C(u∧ s,v∧ t)−C(u,v)C(s, t)

for all u,v,s, t ∈ [0,1], where a∧b = min(a,b). Let C(1/2,1/2) = c. Direct calculations yield

var{C(1/2,1/2)}= c(1− c) , var{C(1/2,1)}= var{C(1,1/2)}= 1/4 ,

cov{C(1/2,1/2),C(1/2,1)}= cov{C(1/2,1/2),C(1,1/2)}= c/2

and
cov{C(1/2,1),C(1,1/2)}= c−1/4 .

Substituting these terms into (18) yields

σ2
C,β

16
= c(1− c)+ c(−a−b+2ab)+(a−b)2/4 .
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