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Extreme value copulas and max-stable processes
Titre: Copules des valeurs extrêmes et processus max-stables

Ribatet Mathieu1 and Sedki Mohammed2

Abstract: During the last decades, copulas have been increasingly used to model the dependence across several
random variables such as the joint modelling of the intensity and the duration of rainfall storms. When the problem
consists in modelling extreme values, i.e., only the tails of the distribution, the extreme value theory tells us that one
should consider max-stable distributions and put some restrictions on the copulas to be used. Although the theory
for multivariate extremes is well established, its foundation is usually introduced outside the copula framework. This
paper tries to unify these two frameworks in a single view. Moreover the latest developments on spatial extremes and
max-stable processes will be introduced. At first glance the use of copulas for spatial problems sounds a bit odd but
since usually stochastic processes are observed at a finite number of locations, the inferential procedure is intrinsically
multivariate. An application on the spatial modelling of extreme temperatures in Switzerland is given. Results show
that the use of non extreme value based models can largely underestimate the spatial dependence and the assumptions
made on the spatial dependence structure should be chosen with care.

Résumé : Les dernières décennies ont vu une utilisation des copules de plus en plus fréquente afin de modéliser la
dépendance présente au sein d’un groupe de plusieurs variables aléatoires ; par exemple afin de modéliser simultanément
l’intensité et la durée d’un événement pluvieux. Lorsque l’intérêt porte sur la modélisation des valeurs extrêmes, i.e.,
seulement les queues de la distribution, la théorie des valeurs extrêmes nous dicte quelles distributions considérer. Ces
dernières doivent être max-stables et imposent donc des contraintes sur les copules adéquates. Bien que la théorie pour
les extrêmes multivariées soit bien établie, elle est généralement introduite en dehors du cadre des copules. Ce papier
essaye de présenter la théorie des valeurs extrêmes par le monde des copules. Les derniers développements sur les
extrêmes spatiaux et les processus max-stables seront également évoqués. Bien qu’il paraisse étrange au premier abord
de parler de copules pour les processus stochastiques, leur utilisation peut être adéquate puisque les processus sont
souvent observés en un nombre fini de positions et la procédure d’estimation est alors intrinsèquement multivariée.
Une application à la modélisation spatiale des températures extrêmes en Suisse est donnée. Les résultats montrent que
l’utilisation de modèles non extrêmes peut largement sous-estimer la dépendance spatiale et que le choix fait sur la
structure de dépendance spatiale est primordial.
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1. Introduction

During the last decades, copulas have been increasingly used as a convenient tool to model
dependence across several random variables. A particular area of interest is finance where the
joint modelling of (large) portfolios is crucial [11, 14]. Clearly for financial applications one is
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Extreme values copulas and max-stable processes 139

mainly interested in modelling the largest expected losses and therefore one might use suitable
models for the tails of the distribution. In the meantime, many advances have been made towards
a statistical modelling of multivariate extremes using an extreme value paradigm. Although these
two frameworks share some connections, only a few authors from the extreme value community
adopt the copula framework for multivariate extremes [2, 9, 16] and the use of copulas has been
criticized [22].

This work is organized as follows. Section 2 introduces the copula framework with a particular
emphasis on extreme value copulas and tail dependence. Section 3 gives a spatial extension of the
copula framework and makes some connections with max-stable processes. An application on the
spatial modelling of extreme temperatures in Switzerland is given in Section 4.

2. Multivariate extremes and copulas

2.1. Generalities

The starting point for using copulas in multivariate problems is Sklar’s theorem [23, pages 17–24]
that states that the cumulative distribution function of a k-variate random vector Z = (Z1, . . . ,Zk)
may be written as

Pr(Z1 ≤ z1, . . . ,Zk ≤ zk) =C(u1, . . . ,uk), (1)

where u j = Pr(Z j ≤ z j), j = 1, . . . ,k. The k-dimensional distribution C defined on [0,1]k is known
as the copula and is unique when Z has continuous margins.

One common choice is the Gaussian copula

C(u1, . . . ,uk) = Φ
{

Φ
−1(u1), . . . ,Φ

−1(uk);Σ
}
,

where Φ is the standard cumulative distribution function of a standard normal random variable
and Φ(·;Σ) is the joint distribution function of a k-variate standard Gaussian random vector with
correlation matrix Σ. Similarly one can consider the Student copula

C(u1, . . . ,uk) = Tν

{
T−1

ν (u1), . . . ,T−1
ν (uk);Σ

}
,

where Tν denotes the cumulative distribution function of a Student random variable with ν degrees
of freedom and Tν(·;Σ) is the joint distribution of a k-variate standard Student random vector with
ν degrees of freedom and dispersion matrix Σ.

2.2. Extreme value copulas

Although there exist several copula families such as the Archimedean or the harmonic ones [23],
in this paper we restrict our attention to extreme value copulas, i.e., copulas C∗ such that there
exists a copula C satisfying [13]

C
(

u1/n
1 , . . . ,u1/n

k

)n
−→C∗(u1, . . . ,uk), n→ ∞, (2)

for all (u1, . . . ,uk) ∈ [0,1]k. Equation (2) is an asymptotic justification for using an extreme
value copula to model componentwise maxima. To see this let Ui = (Ui,1, . . . ,Ui,k), i ≥ 1, be
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140 M. Ribatet and M. Sedki

independent copies of a random vector U = (U1, . . . ,Uk) whose joint distribution is C. Hence (2)
may be rewritten as

Pr
(

max
i=1,...,n

Un
i,1 ≤ u1, . . . , max

i=1,...,n
Un

i,k ≤ uk

)
−→C∗(u1, . . . ,uk), n→ ∞,

and justifies the use of C∗ when modelling pointwise maxima over n appropriately rescaled
independent realizations, n large enough.

It can be shown using standard extreme value arguments that the class of extreme value copulas
corresponds to that of max-stable copulas, i.e., copulas such that

C∗ (u1, . . . ,uk)
n =C∗ (un

1, . . . ,u
n
k) , n > 0. (3)

In [7], de Haan and Resnick derive a characterization for the distribution function of any max-
stable random vector which writes in terms of extreme value copulas as

C∗(u1, . . . ,uk) = exp
{
−V
(
− 1

logu1
, . . . ,− 1

loguk

)}
, (4)

where the function V is a homogeneous function of order−1, i.e., V (nu1, . . . ,nuk)= n−1V (u1, . . . ,uk)
for all n > 0, and is known as the exponent function.

Two examples of well known extreme value copulas are the Gumbel–Hougaard copula, also
known as the logistic family [17],

C∗(u1, . . . ,uk) = exp

[
−

{
k

∑
j=1

(− logu j)
1/α

}α]
, 0 < α ≤ 1,

which is the only extreme value copula that belongs to the archimedean family [15] and the
Galambos copula, also known as the negative logistic family [12],

C∗(u1, . . . ,uk) = exp

− ∑
J⊂{1,...,k}
|J|≥2

(−1)|J|
{

∑
j∈J

(− logu j)
−α

}−1/α

 k

∏
j=1

u j, α > 0,

where the outer sum is over all subsets J of {1, . . . ,k} whose cardinality |J| is greater than 2.
The two models above are likely to be too limited for medium to large dimensional problems

since the dependence is driven by a single parameter α . Although some authors derive asymmetric
versions of these copulas [19, 31], these asymmetric versions are still too restrictive or induce a
too large number of parameters.

Two other parametric extreme value copulas that do not suffer from this drawback are the
extremal-t and Hüsler–Reiss copulas [18, 9]. Although closed forms exist for these two latter
copulas in the general k-variate setting [24], we restrict our attention to the bivariate case only to
ease the notations.

It is well known that if in (2) C is the copula related to (appropriately rescaled) bivariate normal
random vectors with correlation ρ < 1, then

C
(

u1/n
1 ,u1/n

2

)n
−→ u1u2, n→ ∞, (5)
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Extreme values copulas and max-stable processes 141

i.e., the extreme value copula is the independence copula. To obtain a non trivial extreme value
copula, it can be shown [18] that if the correlation increases at the right speed as n gets large, i.e.,
{1−ρn} logn→ a2 as n→ ∞ for some a ∈ [0,∞], then the corresponding extreme value copula,
known as the Hüsler–Reiss copula, is

C∗(u1,u2) = exp
[

Φ

{
a
2
+

1
a

log
(

logu2

logu1

)}
logu1 +Φ

{
a
2
+

1
a

log
(

logu1

logu2

)}
logu2

]
, (6)

where Φ denotes the standard normal cumulative distribution function.
More recently [9] consider the case where Z is a standard bivariate Student random vector with

ν degrees of freedom and dispersion matrix whose off–diagonal elements are ρ ∈ (−1,1). It can
be shown that the corresponding extreme value copula, known as the extremal-t copula, is

C∗(u1,u2)= exp

[
Tν+1

{
−ρ

b
+

1
b

(
logu2

logu1

)1/ν
}

logu1 +Tν+1

{
−ρ

b
+

1
b

(
logu1

logu2

)1/ν
}

logu2

]
,

(7)
where Tν is the cumulative distribution function of a Student random variable with ν degrees of
freedom and b2 = (1−ρ2)/(ν +1).

Although the Hüsler–Reiss copula is not a special case of the extremal-t, the former can be
derived from the latter [24, 5] since by letting ρ = exp{−a2/(2ν)} in (7), we have b∼ a/ν for ν

large enough and

b−1

{(
logu2

logu1

)1/ν

−ρ

}
∼ ν

a

{(
logu2

logu1

)1/ν

−1+
a2

2ν

}
−→ a

2
+ log

logu2

logu1
, ν → ∞.

2.3. Tail dependence and extremal coefficients

When the interest is in modelling extremes, the tail dependence coefficient is a useful statistic that
summarizes how extremes events tend to occur simultaneously. To ease the notations we restrict
our attention throughout this section to the bivariate case but extension to higher dimensions is
straightforward. Provided the limit exists, the upper tail dependence coefficient is

χup = lim
u→1−

Pr(U2 > u |U1 > u) = lim
u→1−

1−2u+C(u,u)
1−u

,

and indicates dependence in the upper tail when positive and independence otherwise. The upper
tail dependence coefficient of a copula and its related extreme value copula, i.e., C∗ and C in (2),
are the same [20]; for instance the Student copula and the extremal-t both satisfy

χup = 2−2Tν+1

[{
(1−ρ)(ν +1)

1+ρ

}1/2
]
.

Due to (5) and provided |ρ|< 1, the Gaussian copula has χup = 0 while as expected the Hüsler–
Reiss copula allows dependence in the upper tail and has χup = 2−2Φ(a/2).

Similarly one can define a lower tail dependence coefficient

χlow = lim
u→0+

Pr(U2 ≤ u |U1 ≤ u) = lim
u→0+

C(u,u)
u

,
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142 M. Ribatet and M. Sedki

TABLE 1. Parametric families of isotropic correlation functions or semi variograms. Here Kκ denotes the modified
Bessel function of order κ , Γ(u) denotes the gamma function and Jκ denotes the Bessel function of order κ . In each
case λ > 0.

Family Correlation function Range of validity
Whittle–Matérn ρ(h) = {2κ−1Γ(κ)}−1(‖h‖/λ )κ Kκ (‖h‖/λ ) κ > 0
Cauchy ρ(h) =

{
1+(‖h‖/λ )2}−κ

κ > 0
Powered exponential ρ(h) = exp{−(‖h‖/λ )κ} 0 < κ ≤ 2
Spherical ρ(h) = max{0,1−1.5‖h‖/λ +0.5(‖h‖/λ )3} ——

Family Semi variogram Range of validity
Fractional γ(h) = (‖h‖/λ )κ 0 < κ ≤ 2
Brownian γ(h) = ‖h‖/λ ——

that indicates dependence in the lower tail when positive and independence otherwise. By symme-
try of the Gaussian and Student densities, it is clear that the Gaussian and Student copulas have
χlow = χup. Further the lower tail dependence coefficient for any extreme value copula is χlow = 0
since the homogeneity property of V in (4) implies

lim
u→0+

C∗(u,u)
u

= lim
u→0+

uV (1,1)−1 = 0,

provided V (1,1) 6= 1.
When focusing on extreme value copulas, a convenient statistic to summarize the dependence

is the extremal coefficient[28, 3]. Let C∗ be an extreme value copula, then due to the homogeneity
property of V in (4) we have

C∗(u,u) = uV (1,1), (8)

and the quantity θ =V (1,1) is the (pairwise) extremal coefficient. It takes values in the interval
[1,2]; the lower bound indicates complete dependence, and the upper one independence. The
extremal coefficient θ is strongly connected to χup since by using (8) and l’Hôspital’s rule we
have

χup = lim
u→1−

1−2u+C∗(u,u)
1−u

= lim
u→1−

1−2u+uθ

1−u
= lim

u→1−

2−θuθ−1

u
= 2−θ .

3. Spatial extension

At first glance the use of copulas for spatial problems seems odd since spatial problems are often
related to stochastic processes while copulas are essentially multivariate models. However most
often stochastic processes are observed at a finite number of locations and the inferential procedure
is therefore intrinsically multivariate. Further having resort to the Kolmogorov’s extension theorem,
one can extend any suitable copula to stochastic processes.

Throughout this section we will consider a stochastic process Z defined on a spatial domain
X ⊂ Rd and suppose that Z has been observed at a finite number of locations x1, . . . ,xk ∈X .

3.1. Two simple models

Not every copula would extend naturally to the infinite dimensional setting, e.g., the logistic and
negative logistic families, and even if they do, the copulas should be flexible enough to capture
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Extreme values copulas and max-stable processes 143

the observed spatial dependence. Clearly the Gaussian and Student copulas are appealing since
the generalization to the infinite dimensional setting is just matter of taste by using in place of
Gaussian or Student random vectors, Gaussian or Student processes with prescribed correlation
functions such as the Whittle-Matèrn, powered exponential or Cauchy families—see Table 1.

For instance extending the Gaussian copula amounts to considering the process

Z(x) = F←x [Φ{ε(x)}] , x ∈X , (9)

where ε is a standard Gaussian process and F←x is the generalized inverse function of the marginal
distribution of Z at location x while the Student copula extension considers the process

Z(x) = F←x
[
Tν

{
ε(x)

√
ν/X

}]
, x ∈X ,

where X is a χ2 random variable with ν degrees of freedom.
Typically the data one want to model will drive the choice for F←. For instance if our interest is

in pointwise maxima, the univariate extreme value theory tells us that the margins should behave
as a generalized extreme value distribution [8], i.e., for all x ∈X we have

Fx(z) =

exp
[
−
{

1+ξ (x) z−µ(x)
σ(x)

}−1/ξ (x)

+

]
, ξ (x) 6= 0,

exp
[
−exp

{
− z−µ(x)

σ(x)

}]
, ξ (x) = 0,

where u+ denotes max(u,0) and µ(x),σ(x),ξ (x) are respectively a real location parameter, a
positive scale parameter and a real shape parameter. Typically to allow for prediction at some
unobserved locations and to have parsimonious models, one may define trend surfaces for the
marginal parameters {µ(x),σ(x),ξ (x)}. For instance one could consider the following trend
surface for the location parameter

µ(x) = β0,µ +β1,µ lon(x)+β2,µ lat(x), x ∈X ,

where lon(x) and lat(x) are the longitude and latitude at location x.
Given data z1, . . . ,zk assumed to be a realization from the Gaussian copula process (9) observed

at locations x1, . . . ,xk ∈X , the contribution to the likelihood is easily seen to be

ϕ [Φ← {Fx1(z1)} , . . . ,Φ← {Fxk(zk)} ;Σ]
k

∏
j=1

ϕ
[
Φ←

{
Fx j(z j)

}]
fx j(z j)

, (10)

where ϕ(·;Σ) is the k-variate density of a standard multivariate normal distribution with correlation
matrix Σ = {ρ(xi− x j)}i, j, ϕ and Φ← are the probability density and quantile functions of a
standard normal random variable and fx j is the density related to the distribution Fx j . Similar
expressions to (9) and (10) hold for the Student copula. As a consequence of (10), the maximum
likelihood estimator for the Gaussian or the Student copula processes is easily obtained.
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144 M. Ribatet and M. Sedki

3.2. Extreme value copula based models

As stated in Section 3.1, the logistic and negative logistic families are likely to be too restrictive
in practice since the dependence is driven by a single parameter. The Hüsler–Reiss and extremal-t
copulas seems more appropriate since they are based on Gaussian or Student random vectors and
both generalize easily to stochastic processes. Since these copulas are extreme value copulas, their
extension to the infinite dimensional setting corresponds to max-stable processes [8].

Although another characterization exists [6], [27, 29] show that a max-stable process Z with
unit Fréchet margins, i.e., Pr{Z(x)≤ z}= exp(−1/z), z > 0, x ∈X , can be represented as

Z(x) = max
i≥1

ζiYi(x), x ∈X , (11)

where {ζi}i≥1 are the points of a Poisson process on (0,∞) with intensity dΛ(ζ ) = ζ−2dζ and Yi

are independent copies of a nonnegative stochastic process such that E{Y (x)}= 1 for all x ∈X .
It is not difficult to show [29, 5] that, for all z1, . . . ,zk > 0, k ∈N, the finite dimensional cumulative
distribution functions of (11) are

Pr[Z(x1)≤ z1, . . . ,Z(xk)≤ zk] = exp
[
−E
{

max
j=1,...,k

Y (x j)

z j

}]
. (12)

with exponent function

V (z1, . . . ,zk) = E
{

max
j=1,...,k

Y (x j)

z j

}
.

The corresponding extreme value copula, derived by letting u j = exp(−1/z j), j = 1, . . . ,k, is

C∗(u1, . . . ,uk) = exp
[
E
{

max
j=1,...,k

Y (x j) logu j

}]
, u1, . . . ,uk > 0,

and is as expected an extreme value copula since

C∗(un
1, . . . ,u

n
k) = exp

{
nE
(

max
j=1,...,k

Y (x j) logu j

)}
=C∗(u1, . . . ,uk)

n.

Based on (11), many parametric max-stable models have been proposed by making different
choices for the process Y [1, 30, 29, 21]. For instance the Brown–Resnick model [21, 1] takes

Y (x) = exp{ε(x)− γ(x)} ,

where ε is an intrinsically stationary Gaussian process with semi variogram γ and extends
the Hüsler–Reiss copula with a2 = 2γ(xi− x j), xi,x j ∈X . The extremal-t process extends the
extremal-t copula by taking

Y (x) = cν max{0,ε(x)}ν , cν = π
1/22−(ν−2)/2

Γ

(
ν +1

2

)−1

, ν ≥ 1,

where ε is a stationary Gaussian process and Γ is the Gamma function [25].
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Extreme values copulas and max-stable processes 145

Another possibility, known as the Schlather model [29], takes

Y (x) =
√

2π max{0,ε(x)}, x ∈X ,

where ε is a standard Gaussian process with correlation function ρ . Its bivariate distribution
function is

Pr{Z(x1)≤ z1,Z(x2)≤ z2}= exp

[
−1

2

(
1
z1

+
1
z2

)(
1+

√
1− 2{1+ρ(x1− x2)}z1z2

(z1 + z2)2

)]
,

where x1,x2 ∈X , and the associated extreme value copula is

C∗(u1,u2) = exp

[
logu1 + logu2

2

{
1+

√
1− 2(1+ρ) logu1 logu2

(logu1 + logu2)
2

}]
, −1≤ ρ ≤ 1.

As for non extreme value models, trend surfaces can be used to allow prediction at unobserved
locations. However as stated by [5, 26], making inferences from max-stable processes is not as
simple as for the Gaussian or Student copulas since (12) or equivalently (4) yields a combinatorial
explosion for the likelihood. Indeed since any max-stable distribution has a joint cumulative
distribution function

F(z1, . . . ,zk) = exp{−V (z1, . . . ,zk)},

and the associated may be written as

f (z1, . . . ,zk) = {sum of Bell(k) terms}F(z1, . . . ,zk),

where Bell(k) is the k-th Bell number. Unfortunately, the sequence of Bell numbers increases
extremely fast. For example when k = 10 one would need to sum up around 116000 terms to
compute the contribution of a single observation to the likelihood.

To bypass this computational burden, a strategy consists in maximizing the pairwise likelihood
in place of the full likelihood which gives an estimator that shares the same properties as the
maximum likelihood estimator, i.e., consistency and asymptotic normality, but yields to a loss in
efficiency [26].

For spatial problems, the (pairwise) extremal coefficient θ is extended to the spatial setting as
a function θ : Rd 7→ [1,2]

θ(x1− x2) =−z logPr{Z(x1)≤ z,Z(x2)≤ z}, x1,x2 ∈ Rd ,

and quantifies how the spatial dependence of extremes evolves as the distance between two
locations x1,x2 ∈ Rd increases.

4. Application

In this section we fit various extreme value and non extreme value models to extreme temperatures.
The data considered here were previously analyzed by [4] and consist in annual maximum
temperatures recorded at 15 sites in Switzerland during the period 1961–2005, see Figure 1.
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FIGURE 1. Topographical map of Switzerland showing the sites and altitudes in metres above sea level of 15 weather
stations for which annual maxima temperature data are available.

For each model and following the work of [4, 10], we consider the following trend surfaces

µ(x, t) = β0,µ +β1,µalt(x)+β2,µ
t−1983

100
, (13)

σ(x, t) = β0,σ , (14)

ξ (x, t) = β0,ξ , (15)

where alt(x) denotes the altitude above mean sea level in kilometres and {µ(x, t),σ(x, t),ξ (x, t)}
are the location, scale and shape parameters of the generalized extreme value distribution at
location x and year t.

To assess the impact on the assumption of max-stability for modelling extremes, we consider
the Gaussian copula, the Student copula, the extremal-t and the Brown–Resnick processes. The
Brown–Resnick models take as semi variogram γ(h) = (h/λ )κ , 0 < κ ≤ 2. Each model is fitted
by maximizing the likelihood or the pairwise likelihood when the former was not tractable.

As one might expect, the marginal parameter estimates are consistent across all considered
models yielding to the estimated trend surfaces

µ̂(x, t) = 34.9(0.2)−7.35(0.06)alt(x)+2.48(1.07)
t−1983

100
,

σ̂(x, t) = 1.87(0.07),

ξ̂ (x, t) =−0.20(0.02),
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Extreme values copulas and max-stable processes 147

TABLE 2. Summary of the models fitted to the Swiss temperature data. Standard errors are in parentheses and (∗)
denotes that the parameter was held fixed. h− and h+ are, respectively, the distances for which θ(h) is equal to 1.3 and
1.7. DoF denotes the degrees of freedom when appropriate, ` is the maximized log-likelihood and `p the maximized
pairwise log-likelihood. TIC is an analogue of the Akaïke information criterion designed for misspecified models.

Gaussian copula
Correlation λ (km) κ h− (km) h+ (km) ` AIC
Whittle–Matèrn 57 (17) 0.49 (0.13) — — -1295.6 2605
Stable 61 ( 9) 0.81 (0.14) — — -1294.9 2604
Stable 56 ( 6) 1.00 ( * ) — — -1295.7 2603

Student copula
Correlation DoF λ (km) κ h− (km) h+ (km) ` AIC
Whittle–Matèrn 36 (34) 49 (15) 0.54 (0.15) 0.55 3.54 -1294.8 2606
Powered Exponential 54 (72) 58 ( 9) 0.86 (0.17) 0.14 1.36 -1294.5 2605
Powered Exponential 38 (35) 53 ( 6) 1.00 ( * ) 0.41 3.02 -1294.8 2604

Extremal-t
Correlation DoF λ (km) κ h− (km) h+ (km) `p TIC
Whittle–Matèrn 8.5 (3.7) 3793 (7507) 0.18 (0.04) 0.36 70 -19482.7 39338
Powered Exponential 7.7 (2.9) 1296 (2366) 0.44 (0.11) 0.66 71 -19482.1 39337
Powered Exponential 6.9 (1.7) 734 ( 618) 0.50 ( * ) 1.21 73 -19482.4 39333

Brown–Resnick
Variogram λ (km) κ h− (km) h+ (km) `p TIC
Fractional 6.7 (5.5) 0.34 (0.08) 0.19 62 -19486.8 39357
Brownian 33.6 (7.4) 1.00 ( * ) 9.9 72 -19539.8 39447

where the standard errors are displayed as subscripts. The effect of elevation is physically plausible
since it is known that temperature decreases by an amount of around 7◦C for each kilometer
of climb. The estimated temporal trend leads to an increase of about 2.5◦C per century and is
consistent with the values given by the Intergovernmental Panel on Climate Change in their 2007
Fourth Assessment Report (http://www.ipcc.ch).

The estimates of the spatial dependence parameters for various models is presented in Table 2.
The Gaussian copula model gives a practical range, i.e., the distance at which the correlation
function equals 0.05, around 170 km but the extremal practical range h+, i.e., the distance at
which the extremal coefficient function equals 1.7 [4], does not exists since its corresponding
extreme value copula is the independence copula—see (5). Although the Student copula is in the
domain of attraction of the extremal-t copula, the Student copula model gives similar results to
the Gaussian one since the estimated degrees of freedom is large and gives an extremal practical
range h+ of around 3km which seems to be largely underestimated as typically heat waves impact
much larger areas. The max-stable models, i.e., the Hüsler–Reiss and the extremal-t models, give
consistent and much more plausible estimates for the extremal practical range h+. Possibly due to
the strong non orthogonality of its dependence parameters, the extremal-t model has unreasonably
large standard errors; the Brown–Resnick model seems to be less impacted since it has a fewer
number of parameters.

Following the lines of [5], Table 3 shows estimates of the probabilities that the temperatures
observed in year 2003, i.e., during the 2003 European heat wave, would be exceeded in the
years 2003, 2010, 2020 and 2050—under the model of linear trend in time. These estimates
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TABLE 3. Frequencies (%) of the simulated annual maxima exceeding those observed for the year 2003 at k stations,
k = 0, . . . ,14, for the Gaussian copula, the Student copula and the extremal-t models, for the years 2003, 2010, 2020
and 2050. Frequencies smaller than 0.01% are omitted for clarity.

Gaussian copula
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2003 44.3 31.2 14.6 5.9 2.6 1.0 0.3 0.1
2010 39.1 32.1 16.2 7.3 3.3 1.3 0.5 0.2
2020 32.7 31.7 18.3 9.5 4.7 1.9 0.8 0.3 0.1 0.1
2050 16.2 25.4 22.0 15.7 9.9 5.5 3.2 1.4 0.5 0.3 0.1

Student copula
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2003 56.8 24.0 9.5 3.7 2.0 1.3 0.8 0.5 0.5 0.3 0.3 0.1 0.1 0.1
2010 52.5 25.8 10.4 4.4 2.2 1.6 1.0 0.6 0.6 0.3 0.3 0.2 0.1 0.1
2020 45.8 28.0 12.1 5.7 2.5 1.9 1.3 0.8 0.7 0.4 0.5 0.2 0.1 0.1
2050 26.0 30.8 18.2 9.2 5.1 3.1 2.4 1.6 1.1 0.8 0.7 0.4 0.3 0.2 0.1

Extremal-t
Year 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2003 42.3 28.3 13.9 6.7 3.3 2.2 1.1 0.7 0.4 0.5 0.2 0.1 0.2 0.1 0.1 0.1
2010 37.1 28.6 15.6 7.8 4.0 2.7 1.4 0.9 0.6 0.4 0.3 0.2 0.2 0.1 0.1 0.1
2020 30.7 27.9 17.4 9.6 5.2 3.1 2.1 1.5 0.7 0.6 0.4 0.3 0.3 0.2 0.1 0.1
2050 13.1 21.3 20.7 14.7 9.2 6.8 4.3 3.1 2.1 1.5 0.9 0.8 0.7 0.5 0.2 0.2

were obtained from 10000 independent realizations from each model. Results corroborate the
ones displayed in Table 2 since the Gaussian copula model shows the weaker spatial dependence
structure, followed by the Student copula. The only max-stable model, the extremal-t model, has
the strongest spatial dependence structure and is the only one that gives a positive probability that
the 2003 temperatures were exceeded for all available weather stations.

Figure 2 shows one realization from each fitted model using the trend surfaces (13)–(15) and
extrapolated to the year 2020. These realizations were obtained by taking the 0.99 sample quantile
of the temperature average over Switzerland from 10000 independent realizations from each
model. Although the estimated trend surfaces are similar for each model, the distribution of the
overall overage temperature differs appreciably from one model to another—see the top panel
of Figure 2. Due to a stronger spatial dependence structure, the extremal-t model shows the
largest variability. The 0.99 sample quantiles for the temperature average over Switzerland are
respectively 29.1◦C, 29.2◦C and 30.6◦C for the Gaussian copula, Student copula and extremal-t
models. Although the differences across the different models appear to be limited, an increase of
around 1.5◦C might have a considerable impact on the survival of species and the model driving
the spatial dependence should be considered with care.

5. Discussion

In this paper we tried to make connections between copulas and the extreme value theory. The
modelling of multivariate extremes was known to be a difficult task due to the unavailability
of flexible yet parsimonious parametric extreme value copulas. The last decade has seen many
advances towards a geostatistic of extremes using max-stable processes. Although the connection
between stochastic processes and copulas seems odd at first glance, it is straightforward to extend
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FIGURE 2. One realization from the fitted Gaussian copula, Student copula and extremal-t models. Each simulation
corresponds to a situation where the mean temperature over Switzerland for the simulated field is expected to be
exceeded once every 100 year—for the year 2020. The top row shows histograms of the mean temperature values
obtained from 10000 simulations from each model. The vertical lines denotes the mean temperature corresponding to
the simulated field.

suitable copulas to stochastic processes and we make the connection between some well-known
extreme value copulas and their spectral characterization. An application to the modelling of
extreme temperature was given and we show that the choice of a non extreme value model might
underestimate the spatial dependence.
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