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Minimum distance estimators of the Pickands
dependence function and related tests of
multivariate extreme-value dependence

Titre: Estimateurs du minimum de distance de la fonction de dépendance de Pickands et tests associés
d’appartenance à la classe des copules de valeurs extrêmes
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Abstract: We consider the problem of estimating the Pickands dependence function corresponding to a multivariate
extreme-value distribution. A minimum distance estimator is proposed which is based on an L2-distance between
the logarithms of the empirical and the unknown extreme-value copula. The minimizer can be expressed explicitly
as a linear functional of the logarithm of the empirical copula and weak convergence of the corresponding process
on the simplex is proved. In contrast to other procedures which have recently been proposed in the literature for the
nonparametric estimation of a multivariate Pickands dependence function (see [Zhang et al., 2008] and [Gudendorf
and Segers, 2011]), the estimators constructed in this paper do not require knowledge of the marginal distributions and
are an alternative to the method which has recently been suggested in [Gudendorf and Segers, 2012]. Moreover, the
minimum distance approach allows the construction of a simple test for the hypothesis of a multivariate extreme-value
copula, which is consistent against a broad class of alternatives. The finite-sample properties of the estimator and a
multiplier bootstrap version of the test are investigated by means of a simulation study.

Résumé : Nous nous intéressons à l’estimation de la fonction de dépendance de Pickands correspondant à une
distribution de valeurs extrêmes multivariée. Un estimateur du minimum de distance fondé sur la distance L2 entre
les logarithmes de la copule empirique et de la copule inconnue est proposé et sa convergence faible est démontrée.
Contrairement à d’autres procédures récemment proposées dans la littérature pour l’estimation de la fonction de
dépendance de Pickands multivariée (voir [Zhang et al., 2008] et [Gudendorf and Segers, 2011]), les estimateurs
étudiés dans ce travail ne requièrent pas la donnée des distributions marginales et sont ainsi une alternative à la méthode
de [Gudendorf and Segers, 2012]. De plus, l’approche du minimum de distance considérée permet naturellement la
construction d’un test d’appartenance à la classe des copules de valeurs extrêmes dont la consistance est démontrée
pour les copules modélisant une association positive. Des simulations sont enfin utilisées pour étudier empiriquement,
sur des échantillons de taille finie, les propriétés de l’estimateur du minimum de distance ainsi que du test associé mis
en oeuvre à l’aide d’un rééchantillonnage fondé sur des multiplicateurs.
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1. Introduction

Consider a d-dimensional random variable XXX = (X1, . . . ,Xd) with continuous marginal distribution
functions F1, . . . ,Fd . It is well known that the dependency between the different components of XXX
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Minimum distance estimators of the Pickands dependence function 117

can be described in a margin-free way by the copula C, which is based on the representation

F(x1, . . . ,xd) =C(F1(x1), . . .F(xd))

of the joint distribution function F of the random vector XXX (see [Sklar, 1959]). A prominent class
of copulas is the class of extreme-value copulas which arise naturally as the possible limits of
copulas of component-wise maxima of independent, identically distributed or strongly mixing
stationary sequences (see [Deheuvels, 1984] and [Hsing, 1989]). For some applications of extreme-
value copulas we refer to [Tawn, 1988, Ghoudi et al., 1998, Coles et al., 1999] or [Cebrian et al.,
2003], among others.

A (d-dimensional) copula C is an extreme-value copula if and only if there exists a copula, say
C̄, such that the relation

lim
n→∞

C̄(u1/n
1 , . . . ,u1/n

d )n =C (u1, . . . ,ud) (1.1)

holds for all uuu = (u1, . . . ,ud) ∈ [0,1]d . Passing to a continuous limit, one can easily see that C is
an extreme-value copula if and only if C is max-stable, i.e., the condition{

C
(

u1/r
1 , . . . ,u1/r

d

)}r
=C (u1, . . . ,ud)

holds for all uuu ∈ [0,1]d and all r > 0. There exists an alternative description of multivariate
extreme-value copulas, which is based on a function on the simplex

∆d−1 :=
{

ttt = (t1, . . . , td−1) ∈ [0,1]d−1
∣∣∣ d−1

∑
j=1

t j ≤ 1
}
.

To be precise, a copula C is an extreme-value copula if and only if there exists a function

A : ∆d−1→ [1/d,1]

such that C has a representation of the form

C(u1, . . . ,ud) = exp
{( d

∑
j=1

logu j

)
A
( logu2

∑
d
j=1 logu j

, . . . ,
logud

∑
d
j=1 logu j

)}
. (1.2)

The function A is called a Pickands dependence function (see [Pickands, 1981]). If relation (1.2)
holds true then the corresponding Pickands dependence function A is necessarily convex and
satisfies the inequalities

max
{

1−
d−1

∑
j=1

t j, t1, . . . , td−1

}
≤ A(ttt)≤ 1 (1.3)

for all ttt = (t1, . . . , td−1) ∈ ∆d−1. In the case d = 2 these conditions are also sufficient for A to
be a Pickands dependence function. By the representation (1.2) of the extreme-value copula C
the problem of estimating C reduces to the estimation of the (d− 1)-dimensional function A
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118 Betina Berghaus, Axel Bücher and Holger Dette

and statistical inference for an extreme-value copula C may now be reduced to inference for its
corresponding Pickands dependence function.

The problem of estimating the Pickands dependence function nonparametrically has a long
history. Early work dates back to Pickands [Pickands, 1981] and Deheuvels [Deheuvels, 1991].
Alternative estimators have been proposed and investigated in [Capéraà et al., 1997, Rojo Jiménez
et al., 2001, Hall and Tajvidi, 2000, Segers, 2007]. The corresponding authors discuss the es-
timation of the Pickands dependence function in the bivariate case and assume knowledge of
the marginal distributions. Recently, Genest and Segers [Genest and Segers, 2009] and Bücher
et al. [Bücher et al., 2011] proposed new estimators in the two-dimensional case which do not
require this knowledge. While [Genest and Segers, 2009] considered rank-based versions of the
estimators of [Pickands, 1981] and [Capéraà et al., 1997], the approach in [Bücher et al., 2011] is
based on the minimum distance principle and yields an infinite class of estimators.

The estimation problem of the Pickands dependence function in the case d > 2 was studied
in [Zhang et al., 2008] and [Gudendorf and Segers, 2011] assuming knowledge of the marginal
distributions. Their estimators are based on functionals of the transformed random variables Yi j =
− logFj (Xi j) (i = 1, . . . ,n , j = 1, . . . ,d), which were also the basis for the estimators proposed in
[Pickands, 1981] and [Capéraà et al., 1997] in the bivariate case. Zhang, Wells and Peng [Zhang
et al., 2008] considered the random variables

Zi j (sss) =

∧
k:k 6= j

Yik
sk

Yi j
1−s j

+
∧

k:k 6= j
Yik
sk

where sss = (s1, . . . ,sd) ∈ (0,1)×∆d−1 , s1 = 1−∑
d
j=2 s j and

∧
j∈J a j = min{a j | j ∈J }. They

showed that the corresponding distribution function depends in a simple way on a partial derivative
of the logarithm of the Pickands dependence function and proposed to estimate the Pickands
dependence function by using a functional of the empirical distribution function of the random
variables Zi j(sss). The obtained estimator is uniformly consistent and converges point-wise to a
normally distributed random variable.

Gudendorf and Segers [Gudendorf and Segers, 2011] discussed the random variable ξi (sss) =∧d
j=1

Yi j
s j

which is Gumbel-distributed with location parameter logA(s2, . . . ,sd). They suggested
to estimate the Pickands dependence function by the method-of-moments and also provided an
endpoint correction to impose (some of) the properties of the Pickands dependence function.
They also discussed the asymptotic properties of the estimator and a way to get optimal weight
functions needed in the endpoint corrections. It was shown that the least squares estimator leads
to weight functions which minimize the asymptotic variance. Furthermore, Gudendorf and Segers
[Gudendorf and Segers, 2011] showed that in some cases their estimator coincides with the one
proposed in [Zhang et al., 2008]. An extension of the methodology in [Gudendorf and Segers,
2011] to the case of unknown marginals has recently been considered in [Gudendorf and Segers,
2012].

The present paper is devoted to the construction of an alternative class of estimators of the
Pickands dependence function in the general multivariate case d ≥ 2, which also do not require
knowledge of the marginal distribution. For this purpose we will use the minimum distance
approach proposed in [Bücher et al., 2011], which allows us to construct an infinite dimensional
class of estimators, which depend in a linear way on the logarithm of the d-dimensional empirical
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Minimum distance estimators of the Pickands dependence function 119

copula. Because this statistic does not require knowledge of the marginals the resulting estimator
of the Pickands dependence function does automatically not depend on the marginal distributions
of X . We also briefly discuss the properties of our methods in the case of dependent data.

Moreover, the minimum distance approach also allows us to construct a simple test for the
hypothesis that a given copula is an extreme-value copula. In this case the distance between
the copula and its best approximation by an extreme-value copula is 0, and as a consequence a
consistent estimator of the minimum distance should be small. Therefore the hypothesis of an
extreme-value copula can be rejected for large values of this estimator. A multiplier bootstrap for
the approximation of the critical values is proposed and its consistency is proved. Moreover, we
demonstrate that the new bootstrap is also applicable in the context of dependent data. Alternative
tests for extreme-value dependence in dimension d > 2 in the case of independent data have
recently been proposed in [Kojadinovic et al., 2011] (for tests in dimension d = 2 for independent
data see, e.g., [Ghoudi et al., 1998, Ben Ghorbal et al., 2009, Kojadinovic and Yan, 2010b, Bücher
et al., 2011, Genest et al., 2011, Quessy, 2012, Du and Nešlehová, 2012]).

The remaining part of the paper is organized as follows. In Section 2 we present the necessary
notation and define the class of minimum distance estimators. The main asymptotic properties are
given in Section 3, while the corresponding test for the hypothesis of an extreme value copula
is investigated in Section 4. Here we also establish consistency of the multiplier bootstrap such
that critical values can easily be calculated by numerical simulation. The finite-sample properties
of the new estimators and the test are investigated in Section 5, where we also present a brief
comparison with the estimators proposed in [Gudendorf and Segers, 2012] and an illustration of
the test on the well-known uranium exploration data of Cook and Johnson [Cook and Johnson,
1986]. Finally, some technical details are deferred to an Appendix in Section 6.

2. Measuring deviations from an extreme-value copula

Throughout this paper we define A as the set of all functions A : ∆d−1 → [1/d,1] and Π is
the independence copula, that is Π(u1, . . . ,ud) = ∏

d
j=1 u j. For most statements in this paper we

will assume that the copula C satisfies C ≥ Π (or a slight modification of this statement). This
assumption is equivalent to positive quadrant dependence of the random variables, that is for every
(x1, . . . ,xd) ∈ Rd we have

P(X1 ≤ x1, . . . ,Xd ≤ xd)≥
d

∏
j=1

P(X j ≤ x j) .

Obviously it holds for any extreme-value copula because of the lower bound of the Pickands
dependence function. Following Bücher et al. [Bücher et al., 2011], the construction of minimum
distance estimators for the Pickands dependence function is based on a weighted L2-distance

Mh (C,A) =
∫
(0,1)×∆d−1

{
logC

(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

)
− log(y)A(ttt)

}2
h(y)d (y, ttt) , (2.1)

where h : [0,1]→ R+ is a continuous weight function and ttt = (t1, . . . , td−1) ∈ ∆d−1. The result
below gives an explicit expression of the best L2-approximation of the logarithm of a copula
satisfying this condition.
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120 Betina Berghaus, Axel Bücher and Holger Dette

Theorem 2.1. Assume that the copula C satisfies C ≥ Πκ for some κ ≥ 1 and that the weight
function h satisfies

∫ 1
0 (logy)2 h(y)dy < ∞. Then

A∗ = argmin{Mh (C,A) | A ∈A }

is well-defined and given by

A∗ (ttt) = B−1
h

∫ 1

0

logC
(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

)
logy

h∗ (y)dy, (2.2)

where we use the notations
h∗ (y) = log2 (y)h(y) (2.3)

and Bh =
∫ 1

0 (logy)2 h(y)dy =
∫ 1

0 h∗ (y)dy . Moreover, if C ≥Π, the function A∗ defined in (2.2)
satisfies

max
{

1−
d−1

∑
j=1

t j, t1, . . . , td−1

}
≤ A∗ (ttt)≤ 1.

Proof. Since C ≥Πκ we obtain

1≥C
(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

)
≥Π

(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

)κ
= yκ

and thus

0≥ log
(
C
(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

))
≥ κ logy.

This yields | logC
(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

)
| ≤ κ| logy| and therefore the integral in (2.2) exists.

By Fubini’s theorem the weighted L2-distance can be rewritten as

Mh (C,A) =
∫

∆d−1

∫ 1

0

( logC
(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

)
logy

−A(ttt)
)2

log2 (y)h(y) dydttt,

and now the first part of the assertion is obvious.
For a proof of the second part we make use of the upper Fréchet-Hoeffding-bound and obtain

A∗ (ttt)≥ B−1
h

∫ 1

0

logmin{y1−t1−...−td−1 ,yt1 , . . . ,ytd−1}
logy

h∗ (y)dy

= B−1
h

∫ 1

0
max

{
1−

d−1

∑
j=1

t j, t1, . . . , td−1

}
h∗ (y)dy = max

{
1−

d−1

∑
j=1

t j, t1, . . . , td−1

}
.

With a similar calculation and the assumption C ≥Π we obtain the upper bound.

A possible choice for the weight function is given by h(y) = −yk/ logy, where k ≥ 0, see
Example 2.5 in [Bücher et al., 2011]. In Section 5 we consider this weight function with k = 0.5.

If the copula C is not an extreme-value copula the function A∗ has not necessarily to be convex
for any copula satisfying C ≥Π (see [Bücher et al., 2011]). However, for every copula satisfying
C≥Πκ for some κ ≥ 1 the equality Mh(C,A∗) = 0 holds if and only if the copula C is an extreme-
value copula with the Pickands dependence function A∗. This property will be useful for the
construction of a test for the hypothesis that C is an extreme-value copula, which will be discussed
in Section 4. For this purpose we will need an empirical analogue of the “best approximation” A∗

which is constructed and investigated in the following section.
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Minimum distance estimators of the Pickands dependence function 121

3. Weak convergence of minimal distance estimators

Throughout the remaining part of this paper let XXX1, . . . ,XXXn denote independent identically
distributed Rd-valued random variables. We define the components of each observation by
XXX i = (Xi1, . . . ,Xid) (i = 1, . . . ,n) and assume that all marginal distribution functions of XXX i are
continuous. The copula of XXX i can easily be estimated in a nonparametric way by the empirical
copula (see, e.g., [Rüschendorf, 1976]) which is defined for uuu = (u1, . . . ,ud) by

Cn(uuu) =
1
n

n

∑
i=1

I{Ûi1 ≤ u1, . . .Ûid ≤ ud}, (3.1)

where Ûi j =
1

n+1 ∑
n
k=1 I{Xk j ≤ Xi j} denote the normalized ranks of Xi j amongst X1 j, . . . ,Xn j.

Following Bücher et al. [Bücher et al., 2011], we use Theorem 2.1 to construct an infinite class
of estimators for the Pickands dependence function by replacing the unknown copula with the
empirical copula. To avoid zero in the logarithm we use a modification of the empirical copula.
We set C̃n =Cn∨n−γ where γ > 1

2 and obtain the estimator

Ân,h (ttt) = B−1
h

∫ 1

0

logC̃n
(
y1−t1−...−td−1 ,yt1 , . . . ,ytd−1

)
logy

h∗ (y)dy. (3.2)

Weak convergence, denoted by the arrow  throughout this paper, of the empirical process√
n(Cn−C) was investigated in [Rüschendorf, 1976] and [Fermanian et al., 2004], among others,

under various assumptions on the partial derivatives of the copula C. Recently, Segers [Segers,
2012] proved the weak convergence of the empirical copula process

Cn =
√

n(Cn−C) GC in (`∞ [0,1]d ,‖ · ‖∞) (3.3)

under a rather weak assumption, which is satisfied for many commonly used copulas, that is

∂ jC (uuu) exists and is continuous on {uuu ∈ [0,1]d | u j ∈ (0,1)} (3.4)

for every j = 1, . . . ,d. The limiting process GC in (3.3) depends on the unknown copula and is
given by

GC (uuu) = BC (uuu)−
d

∑
j=1

∂ jC (uuu)BC (1, . . . ,1,u j,1, . . . ,1) , (3.5)

where we set ∂ jC (uuu) = 0, j = 1, . . . ,d for the boundary points {uuu ∈ [0,1]d | u j ∈ {0,1}}. Here,
BC is a centered Gaussian field on [0,1]d with covariance structure

r (uuu,vvv) = Cov(BC (uuu) ,BC (vvv)) =C (uuu∧ vvv)−C (uuu)C (vvv) ,

and the minimum is understood component-wise. Note the condition in (3.4) holds for any
extreme-value copula with a continuously differentiable Pickands dependence function, see
[Segers, 2012]. The following result describes the asymptotic properties of the new estimators
Ân,h for the Pickands dependence function. Weak convergence takes place in the space of all
bounded functions on the unit simplex ∆d−1, equipped with the topology induced by the sup-norm
‖ · ‖∞. The proof is given in the Appendix.
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Theorem 3.1. If the copula C ≥Π satisfies condition (3.4), and the weight function h∗ satisfies∥∥∥∥ h∗

log

∥∥∥∥
∞

< ∞ and
∫ 1

0
h∗ (y)(− logy)−1 y−λ dy < ∞ (3.6)

for some λ > 1, then we have for any γ ∈
(

1
2 ,

λ

2

)
as n→ ∞

√
n(Ân,h−A∗) AC,h (3.7)

in `∞ (∆d−1), where the limiting process is defined by

AC,h = B−1
h

∫ 1

0

GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

h∗ (y)
logy

dy.

Remark 3.2. A careful inspection of the proof of this result shows that weak convergence of
the empirical copula process lies at the heart of its proof. Since the latter converges under fairly
more general conditions on the serial dependence of a stationary time series, the i.i.d. assumption
on the series XXX1, . . . ,XXXn can be easily dropped. Exploiting the results in [Doukhan et al., 2009]
or [Bücher and Volgushev, 2013], the assertion of Theorem 3.1 holds true for every stationary
sequence of random vectors provided Condition 2.1 in the latter reference is met. This condition
is so mild that all usual concepts of weak serial dependence are included, e.g., strong mixing or
absolute regularity of a time series at a mild polynomial decay of the corresponding coefficients.
For details we refer to [Bücher and Volgushev, 2013]. The only difference to the i.i.d. case is
reflected in a differing asymptotic covariance of the process BC which is now given by

Cov(BC(uuu),BC(vvv)) = ∑
j∈Z

Cov(I{UUU0 ≤ uuu},I{UUU j ≤ vvv}),

and which, of course, reduces to C (uuu∧ vvv)−C (uuu)C (vvv) in the i.i.d. setting.

Note that the result of Theorem 3.1 is correct even in the case where C is not an extreme-value
copula because the centering in (3.7) uses the best approximation with respect to the L2-distance.
The discussed estimator Ân,h in general will neither be convex nor will it necessarily satisfy
the boundary conditions of a multivariate Pickands dependence function. To ensure the latter
restriction, one can replace the estimator Ân,h by the statistic

max
{

1−
d−1

∑
j=1

t j, t1, . . . td−1,min{Ân,h (ttt) ,1}
}
.

Furthermore, to provide convexity, the greatest convex minorant of this statistics can be used.
As a consequence the estimator Ân,h is replaced by a convex estimator with a smaller sup-norm
between the true Pickands dependence function and the corresponding estimator, see [Marshall,
1970, Wang, 1986] and [Robertson et al., 1996]. An alternative way to achieve convexity and
to correct for boundary properties of Ân,h is the calculation of the L2-projection on the space
of partially linear functions satisfying these properties. This proposal was investigated by Fils-
Villetard et al. [Fils-Villetard et al., 2008] and decreases the L2-distance instead of the sup-norm.
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Minimum distance estimators of the Pickands dependence function 123

Finally, we would like to point that none of these procedures guarantee that the modified
estimator is in fact a Pickands dependence function. This is due to the fact that, for d ≥ 3, a convex
function satisfying the boundary conditions in (1.3) is not necessarily a Pickands dependence
function. For an example see, e.g., [Beirlant et al., 2004].

4. A test for extreme-value dependence

Extreme-value copulas are often used as models for annual maximal data (see for instance [Yue,
2000] for the joint modeling of characteristic values of high floods, or [McNeil et al., 2005,
Section 7.5.4] for financial applications) and it is advisable to check this model assumption in
advance. Moreover, in order to reduce the number of candidate copula families that could be
used as models for C in a general context, it is natural to test whether C belongs to the class
of extreme-value copulas. To construct a test for this hypothesis we reconsider the L2-distance
Mh (C,A∗) defined in (2.1). The following result will motivate the choice of the test statistic.

Lemma 4.1. If h is a strictly positive weight function with h∗ ∈ L1 (0,1), then C ≥Πκ for some
κ ≥ 1 is an extreme-value copula if and only if

min{Mh (C,A) | A ∈A }= Mh (C,A∗) = 0.

Proof. If C is an extreme-value copula then A∗ is the Pickands dependence function of the
copula C and the weighted L2-distance is equal to 0.

Now assume Mh (C,A∗) = 0. With the definition of the L2-distance we obtain

logC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1) = log(y)A∗ (ttt)

almost surely with respect to the Lebesgue measure on the set (0,1)×∆d−1. Since the functions
logC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1) and (logy)A∗ (ttt) are continuous functions, the equality holds on
the whole domain. This yields with a transformation for every u1, . . . ,ud ∈ (0,1]

C(u1, . . . ,ud) = exp
{( d

∑
j=1

logu j

)
A∗
( logu2

∑
d
j=1 logu j

, . . .
logud

∑
d
i=1 logu j

)}
.

and it can easily be shown that this identity also holds on the boundary. As a consequence, C is
max-stable and thus an extreme-value copula.

Lemma 4.1 suggests to use Mh(C̃n, Ân,h) as a test statistic for the hypothesis

H0 : C is an extreme-value copula (4.1)

and to reject the null hypothesis for large values of Mh(C̃n, Ân,h). We now will investigate the
asymptotic distribution of the test statistic under the null hypothesis and the alternative.

Theorem 4.2. Let C be an extreme-value copula satisfying condition (3.4) with the Pickands
dependence function A. If the weight function h is strictly positive, satisfies (3.6) and additionally
the conditions

‖h‖∞ < ∞ and
∫ 1

0

h(y)
yλ

dy < ∞ (4.2)
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hold for some λ > 2, then we have for any γ ∈
(

1
2 ,

λ

4

)
as n→ ∞

nMh(C̃n, Ân,h) Z0,

where the non-negative random variable Z0 is defined by

Z0 :=
∫

∆d−1

∫ 1

0

{
GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

}2

h(y)dydttt−Bh

∫
∆d−1

A2
C,h (ttt)dttt,

and the constant Bh and the process AC,h are defined in Theorem 3.1.

A plot of the density of Z0 is given in Figure 1 for the Gumbel and the independence copula.
The following result will give the asymptotic distribution of the test statistic under the alternative.
Note that this is the case if and only if Mh (C,A∗)> 0.

Theorem 4.3. Let C ≥Π be a copula satisfying condition (3.4) such that Mh (C,A∗)> 0 . If the
strictly positive weight function h and the function h∗ defined in (2.3) satisfy the conditions (3.6)
and (4.2) for some λ > 1, then we have for any γ ∈ (1

2 ,
1+λ

4 ∧
λ

2 ) as n→ ∞

√
n(Mh(C̃n, Ân,h)−Mh(C,A∗)) Z1.

Here the random variable Z1 is defined by

Z1 := 2
∫

∆d−1

∫ 1

0

GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
ν (y, ttt) dydttt

with weight function

ν (y, ttt) =
{

logC(y1−∑
d−1
i=1 ti ,yt1 , . . . ,ytd−1)− log(y)A∗(ttt)

}
h(y).

Remark 4.4.
a) Again, the i.i.d. assumption on XXX1, . . . ,XXXn in both preceding Theorems can be relaxed to weak
serial dependence and strong stationarity, see Remark 3.2 in the previous section.
b) From Theorem 4.2 and 4.3 we obtain an asymptotic level α test for the hypothesis (4.1) by
rejecting the null hypothesis H0 if

nMh(C̃n, Ân,h)> z1−α ,

where z1−α denotes the (1−α)-quantile of the distribution of the random variable Z0. By
Lemma 4.1 and Theorem 4.3 the test is (at least) consistent against all alternatives C ≥ Π

satisfying assumption (3.4).
c) Approximating the integral in the definition of Z1 in Theorem 4.3 by a Riemann sum, one can
see that Z1 is normally distributed with mean 0 and finite, positive variance, say σ2. Consequently
the power of the test is approximately given by

P(nMh(C̃n, Ân,h)> z1−α) ≈ 1−Φ

( z1−α√
nσ
−
√

n
Mh(C,A∗)

σ

)
≈Φ

(√
n

Mh(C,A∗)
σ

)
,

where A∗ is defined in (2.2) and Φ denotes the standard normal distribution function. Thus the
power of the test is an increasing function with respect to n depending on the quantity Mh(C,A∗)

σ
,

see [Bücher et al., 2011].
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FIGURE 1. Plot of the density of Z0 for the Gumbel-copula with τ = 0.5 (left) and the independence copula (right).

For the construction of the test we need the (1−α)-quantile of the distribution of the random
variable Z0. Unfortunately, this distribution depends on the unknown copula C and therefore it
cannot be determined explicitly. However, the multiplier bootstrap initially proposed by Rémillard
and Scaillet [Rémillard and Scaillet, 2009] and further investigated in [Bücher and Dette, 2010]
and [Segers, 2012], provides a unified approach to obtain simulated approximate samples of the
process GC. Plugging these into the defining integral of Z0, we get approximate samples of Z0
whose sample quantiles can finally serve as an approximation for the quantiles of Z0.

More precisely, let ∂̂ jCn (uuu) be an estimator for ∂ jC (uuu) which is uniformly bounded in n and uuu
and which, for any δ ∈ (0,1/2), satisfies the condition

sup
uuu∈[0,1]d :u j∈[δ ,1−δ ]

|∂̂ jCn (uuu)−∂ jC (uuu) | P−→ 0,

as n→ ∞, where P−→ denotes convergence in probability. It is easily seen, that for instance the
following estimator based on finite differencing of the empirical copula satisfies these conditions:

∂̂ jCn (uuu) =


Cn(uuu+hneee j)−Cn(uuu−hneee j)

2hn
if u j ∈ [hn,1−hn]

∂̂ jCn (u1, . . . ,u j−1,hn,u j+1, . . . ,ud) if u j ∈ [0,hn)

∂̂ jCn (u1, . . . ,u j−1,1−hn,u j+1, . . . ,ud) if u j ∈ (1−hn,1] ,

where hn→ 0 is a bandwidth such that infn hn
√

n > 0 and where eee j denotes the jth unit vector in
Rd .

Now, let ξ1,ξ2, ... denote independent identically distributed random variables with mean 0
and variance 1 independent from XXX1,XXX2, ... satisfying

∫
∞

0

√
P(|ξ1|> x)dx < ∞. Define

α
ξ
n (uuu) =

1√
n

n

∑
i=1

ξi
{
I{Ûi,1 ≤ u1, . . . ,Ûi,d ≤ ud}−Cn (uuu)

}
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and set

Cξ
n (uuu) = α

ξ
n (uuu)−

d

∑
j=1

∂̂ jCn (uuu)α
ξ
n (1, . . . ,1,u j,1, . . . ,1).

It follows from the results in [Segers, 2012] that if C satisfies condition (3.4), then

(Cn,Cξ
n ) (GC,G

′
C)

in (` [0,1]d ,‖ · ‖∞)
2, where GC denotes the process defined in (3.5) and G′C is an independent

copy of this process. By a similar reasoning as in [Bücher and Ruppert, 2013] we also obtain
conditional weak convergence of Cξ

n given the data in probability, which we denote by

Cξ
n

P
 
ξ

GC.

For details on that type of convergence we refer to [Kosorok, 2008, Chapter 2.2.3]. Our final result
now shows that the multiplier bootstrap procedure can be used to obtain a valid approximation for
the distribution of the random variable Z0.

Theorem 4.5. Assume the copula C≥Π satisfies condition (3.4). If the weight function h satisfies
the conditions in Theorem 4.2 and the function y 7→ h∗ (y)(y logy)−2 is uniformly bounded, then
we get for the random variable

Ẑn =
∫

∆d−1

∫ 1

0

{
Cξ

n (y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

}2

h(y)dydttt

−B−1
h

∫
∆d−1

{∫ 1

0

Cξ
n (y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

h∗(y)
logy

dy

}2

dttt

the weak conditional convergence Ẑn
P
 
ξ

Z0.

Proof. Due to the assumptions on the weight function all integrals in the definition of Z0 are
proper and therefore the mapping (GC,C) 7→ Z0(GC,C) is continuous. Hence, the result follows

from Cξ
n

P
 
ξ

GC and the continuous mapping theorem for the bootstrap, see, e.g., Theorem 10.8

in [Kosorok, 2008].

The bootstrap test is now obtained as follows. Repeating the procedure B times yields a sample
Ẑn (1) , . . . , Ẑn (B) that is approximately distributed according to Z0. This suggests to reject the
null hypothesis if

nMh(C̃n, Ân,h)> ẑ1−α ,

where ẑ1−α denotes the empirical (1−α)-quantile of this sample. It follows from Theorem 4.5
that the test holds its level α asymptotically and that it is consistent. The finite-sample performance
of the test is investigated in the following section.
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Remark 4.6. By the results in [Bücher and Ruppert, 2013] a block multiplier bootstrap can be
used to obtain a valid bootstrap approximation of Z0 in the case of strongly mixing stationary time
series. We omit the details for the sake of brevity.

5. Finite-sample properties and illustration

This section is devoted to a simulation study regarding the finite-sample properties of the proposed
estimators and tests for extreme-value copulas. We begin our discussion with the performance of
the estimators. For that purpose we consider the trivariate extreme-value copula of logistic type as
presented in [Tawn, 1990] with Pickands dependence function defined for ttt = (t1, t2) ∈ ∆2 by

A(ttt) =(θ 1/αs1/α

1 +φ
1/αs1/α

2 )α +(θ 1/αs1/α

2 +φ
1/αs1/α

3 )α +(θ 1/αs1/α

3 +φ
1/αs1/α

1 )α

+ψ(s1/α

1 + s1/α

2 + s1/α

3 )α +1−θ −φ −ψ, (5.1)

where sss = (s1,s2,s3) := (1− t1− t2, t1, t2) and (α,θ ,φ ,ψ) ∈ (0,1]× [0,1]3. For the sake of com-
parison with existing simulation studies in the literature (see [Gudendorf and Segers, 2012]) we
consider the parameters (θ ,φ ,ψ) = (0,0,1) corresponding to a symmetric copula model (also
widely known as the Gumbel–Hougaard copula) and (θ ,φ ,ψ) = (0.6,0.3,0) corresponding to an
asymmetric logistic copula. Furthermore, we also investigate the corresponding symmetric model
in dimension 4. In this case the Pickands dependence function is defined by

A(ttt) = (t1/α

1 + t1/α

2 + t1/α

3 +(1− t1− t2− t3)1/α)α

for ttt = (t1, t2, t3) ∈ ∆3. The parameter α was chosen from the set {0.3,0.5,0.7,0.9} which
corresponds to bivariate marginal Kendall’s tau in {0.7,0.5,0.3,0.1} and {0.21,0.17,0.11,0.04}
for the symmetric and the asymmetric case, respectively. Note that in the model (5.1) all bivariate
marginals have the same value of bivariate Kendall’s τ .

We report Monte Carlo approximations for the mean integrated squared error (MISE)

E[
∫

∆d−1

(Â(ttt)−A(ttt))2dttt],

where Â represents successively the multivariate CFG-estimator, Pickands estimator (see [Guden-
dorf and Segers, 2012]) and the estimator introduced in the present paper which we abbreviate by
BDV according to [Bücher et al., 2011]. The former two estimators are defined by the relationships

1
AP

n(ttt)
=

1
n

n

∑
i=1

ξ̂i(ttt), and logACFG
n (ttt) =−1

n

n

∑
i=1

log ξ̂i(ttt)− γ,

where

ξ̂i =
d∧

j=1

− logÛi, j

s j
with s1 = 1−

d−1

∑
j=1

t j and s j = t j−1 for j ≥ 2.
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FIGURE 2. Simulated MISE as a function of k for the symmetric (left) and the asymmetric (right) model for three
different values of α .

Regarding the choice of the weight function for the BDV-estimator we followed the proposal
in [Bücher et al., 2011] and considered the function h(y) =−yk/ log(y) with k = 0.5. This choice
seems to be a good compromise between a possibly difficult data-adaptive way of choosing a
weight function and anaytical tractability; see Section 3.7 in [Bücher et al., 2011]. To confirm this
choice, we simulated the mean integrated error for several choices of k. Exemplarily results for
the symmetric and asymmetric model for dimension 3 are presented in Figure 2. Near k = 0.5
the MISE is minimized for the asymmetric model, whereas it stays relatively small for all values
of k in the symmetric case. Furthermore, we see that the MISE increases for larger values of α ,
i.e. for smaller values of Kendall’s τ . We also refer to Section 3.4 in [Bücher et al., 2011] for a
discussion of “optimal” weight functions from an asymptotic point of view.
All estimators are corrected for the boundary conditions on the Pickands dependence function.
Regarding the BDV-estimator we replace the initial estimate by the function

max
{

1−
d−1

∑
j=1

t j, t1, . . . td−1,min{Ân,h (ttt) ,1}
}
.

For the Pickands- and CFG-estimator we used the endpoint-corrections proposed in [Gudendorf
and Segers, 2012], who proposed a linear endpoint correction for logA(ttt). However, we did
not correct the estimators with respect to their convexity. For each scenario we simulated 1.000
samples of size n ∈ {50,100,200} using the simulation algorithms in [Stephenson, 2003] which
are implemented in the R-package evd, [Stephenson, 2002]. To approximate the MISE, the
estimators were evaluated on a grid of size 228 and 282 in dimension 3 and 4, respectively. The
results are stated in Tables 1 - 3 and the main findings can be summarized as follows.

– The Pickands estimator is outperformed by the CFG and the BDV estimator. These findings
are in accordance with the results of the simulation study in [Gudendorf and Segers, 2012].

– The CFG and the BDV estimator yield comparable results with slight advantages for the
CFG estimator for strong dependence, whereas weak dependence results in more efficiency
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for the BDV estimator. Since the BDV estimator is computationally more expensive, the
CFG estimator might still be regarded as the “best” choice in practical applications.

TABLE 1. Symmetric logistic dependence function in dimension 3, (θ ,φ ,ψ) = (0,0,1): Simulated MISE for the
Pickands, CFG- and BDV-estimator. The numbers in the brackts show the corresponding standard deviation.

Sample size Estimator α = 0.3 α = 0.5 α = 0.7 α = 0.9
n = 50 P 2.37×10−4 6.91×10−4 1.70×10−3 2.91×10−3

(9.9×10−6) (1.1×10−4) (5.2×10−5) (6.6×10−5)

CFG 9.94×10−5 4.09×10−4 1.16×10−3 2.26×10−3

(4.6×10−6) (1.4×10−5) (3.5×10−5) (6.6×10−5)

BDV 1.24×10−4 5.07×10−4 1.27×10−3 2.04×10−3

(4.9×10−6) (1.7×10−5) (3.8×10−5) (5.5×10−5)

n = 100 P 1.01×10−4 3.31×10−4 7.59×10−4 1.43×10−3

(3.7×10−6) (1.3×10−5) (2.2×10−5) (3.1×10−5)

CFG 4.12×10−5 2.28×10−4 6.04×10−4 1.17×10−3

(1.4×10−6) (8.2×10−6) (2.0×10−5) (3.7×10−5)

BDV 5.46×10−5 2.69×10−4 6.23×10−4 1.01×10−3

(1.7×10−6) (9.1×10−6) (2.0×10−5) (2.9×10−5)

n = 200 P 4.69×10−5 1.59×10−4 3.92×10−4 7.15×10−4

(1.6×10−6) (4.9×10−6) (1.1×10−5) (1.6×10−5)

CFG 2.34×10−5 1.07×10−4 3.02×10−4 5.21×10−4

(7.7×10−7) (3.9×10−6) (9.8×10−6) (1.7×10−5)

BDV 2.84×10−5 1.20×10−4 2.93×10−4 4.77×10−4

(8.7×10−7) (4.1×10−6) (9.0×10−6) (1.3×10−5)

TABLE 2. Asymmetric logistic dependence function in dimension 3, (θ ,φ ,ψ) = (0.6,0.3,0): Simulated MISE for the
Pickands, CFG- and BDV-estimator. The numbers in the brackts show the corresponding standard deviation.

Sample size Estimator α = 0.3 α = 0.5 α = 0.7 α = 0.9
n = 50 P 1.65×10−3 1.98×10−3 2.49×10−3 3.13×10−3

(4.4×10−5) (4.9×10−5) (5.5×10−5) (6.2×10−5)

CFG 1.10×10−3 1.32×10−3 1.77×10−3 2.51×10−3

(2.4×10−5) (3.0×10−54) (4.6×10−5) (6.4×10−5)
BDV 1.19×10−3 1.34×10−3 1.67×10−3 2.16×10−3

(2.6×10−5) (3.0×10−5) (4.2×10−5) (5.9×10−5)

n = 100 P 8.55×10−4 9.48×10−4 1.23×10−3 1.53×10−3

(2.1×10−5) (2.2×10−5) (2.7×10−5) (3.3×10−5)

CFG 5.42×10−4 6.56×10−4 8.32×10−4 1.19×10−3

(1.2×10−5) (1.6×10−5) (2.2×10−5) (3.4×10−5)

BDV 5.69×10−4 6.61×10−4 8.04×10−4 9.86×10−4

(1.3×10−5) (1.6×10−5) (2.0×10−5) (2.9×10−5)

n = 200 P 4.05×10−4 4.59×10−4 5.99×10−4 7.45×10−4

(9.0×10−6) (1.1×10−5) (1.2×10−5) (1.6×10−5)

CFG 2.85×10−4 3.20×10−4 4.13×10−4 5.28×10−4

(6.3×10−6) (7.9×10−6) (1.1×10−5) (1.6×10−5)

BDV 2.91×10−4 3.34×10−4 3.90×10−4 4.67×10−4

(6.5×10−6) (8.3×10−6) (9.9×10−6) (1.2×10−5)

Finally, we conducted Monte Carlo experiments to investigate the level and the power of the
test for extreme-value dependence introduced in Section 4. We fixed the dimension to d = 3 and
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TABLE 3. Symmetric logistic dependence function in dimension 4: Simulated MISE for the Pickands, CFG- and
BDV-estimator. The numbers in the brackts show the corresponding standard deviation.

Sample size Estimator α = 0.3 α = 0.5 α = 0.7 α = 0.9
n = 50 P 1.34×10−4 2.52×10−4 5.37×10−4 9.19×10−4

(3.1×10−6) (8.8×10−6) (1.6×10−5) (2.2×10−5)

CFG 3.16×10−5 1.60×10−4 4.72×10−4 9.29×10−4

(1.1×10−6) (5.6×10−6) (1.3×10−5) (2.5×10−5)

BDV 4.49×10−5 2.05×10−4 5.15×10−4 7.78×10−4

(1.2×10−6) (7.1×10−6) (1.5×10−5) (2.0×10−5)

n = 100 P 4.88×10−5 1.19×10−4 2.61×10−4 4.76×10−4

(1.2×10−6) (4.1×10−6) (6.9×10−6) (1.1×10−5)

CFG 1.67×10−5 8.65×10−5 2.36×10−4 4.52×10−4

(6.3×10−7) (3.0×10−6) (7.4×10−6) (1.4×10−5)

BDV 2.35×10−5 1.05×10−4 2.41×10−4 3.85×10−4

(8.0×10−7) (3.6×10−6) (7.4×10−6) (1.0×10−5)

n = 200 P 2.01×10−6 5.27×10−5 1.35×10−4 2.41×10−4

(5.4×10−7) (1.3×10−6) (3.6×10−6) (5.5×10−6)

CFG 7.88×10−6 4.40×10−5 1.26×10−4 2.22×10−4

(3.1×10−7) (1.4×10−6) (4.1×10−6) (7.1×10−6)

BDV 1.04×10−5 5.10×10−5 1.25×10−4 1.98×10−4

(3.6×10−7) (1.5×10−6) (4.0×10−6) (5.4×10−6)

considered samples of size n = 200 and n = 400 where the level of the test is 5%. Under the
null hypothesis, we simulated data from the symmetric and asymmetric logistic type model as
defined in (5.1) with parameters (θ ,φ ,ψ) = (0,0,1) (i.e., the Gumbel–Hougaard copula) and
(θ ,φ ,ψ)= (0.6,0.3,0), respectively. For the sake of an easy comparison with the two-dimensional
version of the test in [Bücher et al., 2011] and with the extensive simulation study in [Kojadinovic
et al., 2011] we chose the remaining parameter α in the Gumbel–Hougaard model in such a way
that Kendall’s τ of all bivariate marginal varies in the set {0.25,0.5,0.75}. In the asymmetric case,
the supremum of all achievable values of τ is 0.25, whence we consider τ ∈ {0.05,0.15,0.249} in
this case. Under the alternative we considered the Clayton, Frank, Normal and t-copula with four
degrees of freedom and Kendall’s τ ∈ {0.25,0.5,0.75}. In order to get an impression of how “far”
these models are in the alternative, we provide the minimal distance Mh(C,A∗) from the model
under investigation to its best approximation in the class of extreme-value copulas in Table 4. The
estimator in the test statistic nMh(C̃n, Ân,h) has not been corrected for the boundary conditions as
described in the previous paragraph, since this could have an unknown influence on its asymptotic
distribution. For the multiplier method we chose B = 250 Bootstrap-replicates and we used the
bandwidth hn = 1/

√
n for the estimators of the partial derivatives. The test was carried out at the

5% significance level and empirical rejection rates were computed from 1.000 random samples in
each scenario. The results are stated in Table 4 and the main findings are as follows.

– The test seems to be globally conservative, although the observed level improves with
increasing sample size. This effect is observed to be stronger for increasing level of depen-
dence (measured by Kendall’s τ) and is in accordance with other simulation studies on the
multiplier method for copulas with strong dependence.

– In terms of power the test detects all alternatives with reasonable rejection rates. As expected,
the power increases with a larger distance Mh(C,A∗). Similar observations have been made
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TABLE 4. Simulated rejection probabilities of the test for the null hypothesis of an extreme-value copula where the
level is 5%.

Copula τ Mh(C,A∗) n = 200 n = 400
Gumbel 0.25 0 0.022 0.047

0.5 0 0.005 0.014
0.75 0 0 0

Asym. log. 0.05 0 0.029 0.034
0.15 0 0.017 0.023

0.249 0 0.009 0.012
Clayton 0.25 1.99 ·10−3 0.934 1

0.5 3.06 ·10−3 1 1
0.75 1.83 ·10−3 0.997 1

Frank 0.25 8.19 ·10−4 0.426 0.949
0.5 1.32 ·10−3 0.853 1
0.75 7.46 ·10−4 0.686 1

Normal 0.25 4.89 ·10−4 0.192 0.677
0.50 3.72 ·10−4 0.184 0.721
0.75 6.78 ·10−5 0.006 0.068

t-Copula 0.25 1.51 ·10−4 0.037 0.162
0.5 1.64 ·10−4 0.047 0.297
0.75 3.62 ·10−5 0.001 0.012

in the two-dimensional case in [Bücher et al., 2011].
Finally, note that the test is computationally quite extensive which makes it hard to be implemented
in higher dimensions. This fact hints at a possible future research project since a more feasible
test for higher dimensions is clearly needed.

As an illustration, we applied the proposed test on the uranium exploration data of Cook and
Johnson [Cook and Johnson, 1986], which consists of log concentrations of seven chemical
elements (Uranium (U), Lithium (Li), Cobalt (Co), Potassium (K), Cesium (Cs), Scandium (Sc),
Titanium (Ti) ) in 655 water samples collected near Grand Junction, Colorado. For the sake of
comparison with the results in [Kojadinovic et al., 2011], we tested for three-dimensional extreme-
value dependence of the triples {U,Co,Li}, {U,Li,Ti} and {Ti,Li,Cs}. To deal with the problem
of a non-negligible number of ties in this data set, we followed the proposal in [Kojadinovic
and Yan, 2010a] and assigned the ranks at random using the R function rank with its argument
ties.method=random. We repeated this randomized procedure 100 times with 250 bootstrap
replications and state the minimum, median and maximum of the obtained p-values in Table 5.
Furthermore, we carried out the test using mid-ranks with 2000 bootstrap replications. The results
in Table 5 show strong evidence against extreme-value dependence for two of the triples. For the
tripel {Ti,Li,Cs}, there is only minor evidence against extreme value dependence. Overall, this is
in accordance with the findings in [Kojadinovic et al., 2011].
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TABLE 5. Approximate p-values for the test for three-dimensional extreme-value dependence obtained for the triples
{U,Co,Li}, {U,Li,Ti} and {Ti,Li,C} of the uranium data set in [Cook and Johnson, 1986]

Random ranks for ties
minimum median maximum Mid-ranks

{ U,Co,Li } 0 0.005 0.02 0.0015
{ U,Li,Ti } 0 0.005 0.02 0.0005
{ Ti,Li,Cs } 0.02 0.055 0.11 0.02

6. Proofs

6.1. Proof of Theorem 3.1

The proof follows from a slightly more general result, which establishes weak convergence for
the weighted process

Wn,ω (ttt) =
∫ 1

0
log

C̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
ω (y, ttt)dy,

where the weight function ω : [0,1]×∆d−1 may depend on y and ttt. Theorem 3.1 is a simple
consequence of the following result using the weight function ω (y, ttt) = B−1

h
h∗(y)
logy .

Theorem 6.1. Assume that for the weight function ω : [0,1]×∆d−1→ R there exists a bounded
function ω : [0,1]→ R+

0 such that |ω (y, ttt) | ≤ ω (y) for all y ∈ [0,1] and all ttt ∈ ∆d−1 and such
that ∫ 1

0
ω (y)y−λ dy < ∞ for some λ > 1. (6.1)

If the copula C ≥Π satisfies (3.4) then we have for every γ ∈
(

1
2 ,

λ

2

)
as n→ ∞

√
nWn,ω (ttt) WC,ω (ttt) in `∞ (∆d−1) ,

where the limiting process is given by

WC,ω (ttt) =
∫ 1

0

GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
ω (y, ttt)dy.

Proof of Theorem 6.1. Fix λ > 1 and γ ∈
(

1
2 ,

λ

2

)
. Due to Lemma 1.10.2 in [van der Vaart

and Wellner, 1996], the processes
√

n(C̃n−C) and
√

n(Cn−C) will have the same weak limit.
For i = 1,2, ... we consider the following random functions in `∞ (∆d−1) :

Wn (ttt) :=
∫ 1

0

√
n
{

logC̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

− logC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
}

ω (y, ttt)dy

Wi,n (ttt) :=
∫ 1

1/i

√
n
{

logC̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
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− logC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
}

ω (y, ttt)dy

W (ttt) :=
∫ 1

0

GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
ω (y, ttt)dy

Wi (ttt) :=
∫ 1

1/i

GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
ω (y, ttt)dy

With this notation we have to show the following three assertions :

(i) Wi,n  Wi in `∞(∆d−1) for n→ ∞,

(ii) Wi  W in `∞(∆d−1) for i→ ∞,

(iii) for every ε > 0: limi→∞ limn→∞P∗
(

supt∈∆d−1
|Wi,n(t)−Wn(t)|> ε

)
= 0,

then Lemma B.1 in [Bücher et al., 2011] yields the convergence Wn  W in `∞ (∆d−1).
We begin with the proof of assertion (i). For this purpose we set Ti = [1/i,1]d for i ∈ N and

consider the mapping

Φ1 :

{
DΦ1 → `∞ (Ti)

f 7→ log◦ f ,

where the domain is defined by DΦ1 := { f ∈ `∞ (Ti) | infxxx∈Ti | f (xxx) |> 0}. Due to Lemma 12.2 in
[Kosorok, 2008], it follows that Φ1 is Hadamard-differentiable at C tangentially to `∞ (Ti) with
derivative Φ

′
1,C ( f ) = f

C . Since C̃n ≥ n−γ and C≥Π, we have C̃n, C ∈DΦ1 and with the functional
delta method we obtain

√
n(logC̃n− logC)  

GC

C

for n→ ∞ in `∞ (Ti). Now we consider the mapping

Φ2 :

{
`∞ (Ti)→ `∞ ([1/i,1]×∆d−1)

f 7→ f ◦φ
,

where the mapping φ : [1/i,1]×∆d−1→ Ti is defined by

φ (y, ttt) = (y1−t1−...−td−1 ,yt1 , . . . ,ytd−1).

For Φ2 the following inequality holds:

‖Φ2 ( f )−Φ2 (g)‖∞ = sup
y∈[1/i,1],ttt∈∆d−1

| f ◦φ (y, ttt)−g◦φ (y, ttt) |

≤ sup
xxx∈Ti

| f (xxx)−g(xxx) |= ‖ f −g‖∞.

This implies that Φ2 is Lipschitz-continuous. By the continuous mapping theorem and the
boundedness of the weight function ω we obtain

√
n
{

logC̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)− logC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
}

ω(y, ttt)
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GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)
ω(y, ttt)

in `∞
(
[1

i ,1]×∆d−1
)
. By integration with respect to y ∈ [1/i,1] assertion (i) follows.

Assertion (ii) follows directly from the observation, that the process GC is bounded on [0,1]d

and from the fact, that the function

ttt 7→ ω (y, ttt)
C (y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

can be bounded by the integrable function ω (y)y−1. The proof of (iii) is obtained by the same
arguments as given in [Bücher et al., 2011] in the case d = 2 and is therefore omitted.

6.2. Proof of Theorem 4.2

Since integration is continuous, it suffices to show the weak convergence W̄n (t)  W̄ (t) in
`∞ (∆d−1), where we define

W̄n (ttt) =
∫ 1

0
n

(
log

C̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

)2

h(y)dy−nBh(Ân,h (ttt)−A(ttt))2

W̄ (ttt) =
∫ 1

0

(
GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

)2

h(y)dy−BhA2
C,h (ttt) .

Now we will proceed similar to the proof of Theorem 6.1 and consider

W̄i,n(ttt) =
∫ 1

1/i
n

(
log

C̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

)2

h(y)dy

−B−1
h

(∫ 1

1/i

√
n log

C̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

h∗ (y)
logy

dy

)2

W̄i (ttt) =
∫ 1

1/i

(
GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

)2

h(y)dy

−B−1
h

(∫ 1

1/i

GC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

C(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1)

h∗ (y)
logy

dy

)2

.

Due to Lemma B.1 in [Bücher et al., 2011] it suffices to show

(i) W̄i,n W̄i in `∞(∆d−1) for n→ ∞,

(ii) W̄i W̄ in `∞(∆d−1) for i→ ∞,

(iii) for every ε > 0: limi→∞ limn→∞P∗
(

supt∈∆d−1
|W̄i,n(t)−W̄n(t)|> ε

)
= 0.

The proof of these assertions follows by similar arguments as in [Bücher et al., 2011] and is
omitted for the sake of brevity.
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6.3. Proof of Theorem 4.3

We use the decomposition

Mh(C̃n, Ân,h)−Mh (C,A∗) = S1 +S2 +S3, (6.2)

where

S1 = 2
∫

∆d−1

∫ 1

0

{
C̄n (y, ttt)−C̄ (y, ttt)

}{
C̄ (y, ttt)−A∗ (ttt)(− logy)

}
h(y)dydttt,

S2 =
∫

∆d−1

∫ 1

0

{
C̄n (y, ttt)−C̄ (y, ttt)

}2 h(y)dydttt

S3 =−Bh

∫
∆d−1

{
Ân,h (ttt)−A∗ (ttt)

}2
dttt

and we used the notations

C̄ (y, ttt) =− logC(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1),

C̄n (y, ttt) =− logC̃n(y1−t1−...−td−1 ,yt1 , . . . ,ytd−1).

To investigate the convergence of the first term in (6.2) we first notice that |ν (y, ttt) | ≤ ν̄ (y), with
ν̄ (y) := 2h∗(y)

− logy . The assumptions of the theorem on the weight function h imply that we van invoke
Theorem 6.1. With the continuous mapping theorem this yields

√
nS1 ; Z1 and it remains to show

that the remaining two terms S2 and S3 can be neglected. By Theorem 3.1 and the continuous
mapping theorem we have S3 = OP

(1
n

)
and finally S2 can be estimated along similar lines as in

the proof of Theorem 4.2 in [Bücher et al., 2011].
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