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Abstract: Multivariate distributions based on elliptical copulas have been widely used in many fields such as hydrology
and finance. We focus on two practical issues of applications of such models. The first is a caveat rooted in a
consistency property defined by Kano (1994, Journal of Multivariate Analysis, 51:139–147) for elliptical distributions.
Some elliptical families do not have this property, which puts practical limitations on applications and software
implementation of the corresponding elliptical copulas. The second issue is on conditional sampling from such
distributions, which is important in Monte Carlo statistical inferences, especially when closed-form solutions are
not available or feasible. Two sampling methods are presented: a direct sampling approach based on a stochastic
representation of elliptical distributions, and an acceptance/rejection sampling method. The latter also provides an
importance sampler as a byproduct, which may have higher efficiency for some applications. A trivariate model of the
volume, duration, and peak intensity of annual extreme storms illustrates the sampling algorithms.

Résumé : Les distributions multivariées construites à partir de copules elliptiques sont utilisées dans de nombreux
domaines comme l’hydrologie et la finance. Nous nous intéressons à deux aspects pratiques concernant ces modèles.
Dans un premier temps, nous attirons l’attention sur l’importance de la propriété de consistance définie par Kano (1994,
Journal of Multivariate Analysis, 51 :139–147). Certaines distributions elliptiques ne satisfont pas cette propriété, ce
qui limite les applications et l’implantation des copules correspondantes dans les logiciels. Dans un deuxième temps,
nous donnons deux méthodes conditionnelles pour la génération d’échantillons aléatoires à partir de distributions
elliptiques. La première approche présentée est fondée sur une représentation stochastique des distributions elliptiques
alors que la seconde utilise une méthode d’acceptation/rejet. L’utilisation des deux méthodes est illustrée dans la cadre
de la modélisation de données hydrologiques trivariées.
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1. Introduction

Copula-based multivariate modeling has found extensive applications in many fields such as
finance (e.g., Cherubini et al., 2004; McNeil et al., 2005), insurance (e.g., Frees and Valdez,
1998), and hydrology (e.g., Genest and Favre, 2007; Genest et al., 2007). By Sklar’s theorem,
the cumulative distribution function (CDF) F of any continuous p-dimensional random vector
Y = (Y1, . . . ,Yp)

> has a unique representation

F(y1, . . . ,yp) =C{F1(y1), . . . ,Fp(yp)} (1)
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where Fi is the CDF of Yi, i = 1, . . . , p, and C : [0,1]p→ [0,1], called a copula, is a p-dimensional
CDF with standard uniform margins (Sklar, 1959). This representation suggests a natural two-part
multivariate model: a collection of marginal distributions and an accompanying copula. Detailed
reviews of copulas can be found, for example, in Joe (1997) and Nelsen (2006).

Elliptical copulas are a class of copulas of great practical importance. In comparison with
another class known as Archimedean copulas (e.g., Genest and MacKay, 1986), the elliptical
class offers a good compromise between convenience and flexibility (e.g., Genest et al., 2007).
An elliptical copula is the implicit copula that is uniquely determined by an elliptical distribution.
A multivariate distribution for a random vector Y with given marginal distributions F1, . . . ,Fp can
be constructed with (1) using an elliptical copula C. Such a multivariate distribution of Y is called
meta-elliptical distribution (Fang et al., 2002; Abdous et al., 2005).

We focus on two practical issues on meta-elliptical distributions. The first is a caveat rooted
in the marginal consistency property for elliptical distributions studied by Kano (1994). This
property is that the marginal distributions of an elliptical distribution belong to the same elliptical
family; see formal definition in equation (7) in Section 3. Nonetheless, some elliptical families do
not have this property. Consider the elliptical exponential power distribution as an example. The
bivariate marginal distribution of the first two components of a p-dimensional exponential power
distribution is not itself a bivariate exponential power distribution. Furthermore, the bivariate
distribution changes with p. This is in contrast to the case of p-dimensional normal distribution
whose marginal distributions are always normal regardless of p. An elliptical family without the
marginal consistency property has limitations in applications and software implementation of the
corresponding meta-elliptical distribution.

The second issue is on conditional sampling from such distributions, which is important in
Monte Carlo statistical inferences such as risk analysis, power study and parametric bootstrap,
especially when closed-form solutions are not available or feasible. For example, consider a
trivariate hydrological application. Structural design engineers demand detailed knowledge of
three major storm characteristics: peak intensity, volume, and duration. Given volume and duration
at certain levels, the conditional distribution of peak intensity is of great hydrological interest.
A large sample from the conditional distribution can be used to assess risks in designing flood
protection structures.

This article is organized as follows. Elliptical distributions and some of its properties such as
marginal and conditional distributions are reviewed in Section 2. The consistency property of
marginal distributions of an elliptical family and its implications in multivariate modeling with
elliptical copula is discussed in Section 3. Sampling algorithms to draw from the conditional
distribution of an elliptical distribution are presented in Section 4. These algorithms are illustrated
in a simplified example from a hydrological application in Section 5. A discussion concludes in
Section 6.

2. Elliptical Distribution

A p-dimensional random vector X has an elliptically contoured distribution with a p×1 location
vector µ and p× p dispersion matrix if it can be expressed as

X = µ +RpAUp, (2)
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104 X. Wang & J. Yan

where Rp ≥ 0 is a random variable known as the generating variate, A is a p× p matrix such that
AA> = Σ, and Up is a p-variate random vector independent of Rp, uniformly distributed on the
p-dimensional unit sphere Sp = {(u1, . . . ,up) ∈ Rp : ∑

p
i=1 u2

i = 1}.
If the density of Rp exists and Σ is positive definite, the density function h of X can be expressed

with a scalar function gp called density generator:

h(x; µ,Σ,gp) = |Σ|−1/2gp{(x−µ)>Σ
−1(x−µ)}, (3)

where gp is uniquely determined by the distribution of RP. Let fRp be the density of Rp. The
relationship between gp and fRp is (Fang et al., 1990, Theorem 2.9)

fRp(v) =
2π p/2

Γ(p/2)
vp−1gp(v2), v > 0. (4)

In other words, the density generator function gp in (4) must satisfy the condition∫
∞

0

π p/2

Γ(p/2)
vp/2−1gp(v)dv = 1, v≥ 0,

where the integrand is the density of R2
p. The distribution of X is denoted by Ep(µ,Σ,g). More

details about elliptical distributions can be found in Fang et al. (1990).
Table 1 summarizes the density generator gp and generating variate Rp for some examples of

elliptical families. The most commonly used examples are the multivariate normal distribution
and the multivariate Student t distribution. For the multivariate normal distribution, the density
generator gp(u) is cp exp(−u/2) with normalizing constant cp, and the generating variate Rp is a
chi variable with p degrees of freedom. For the multivariate Student t distribution with ν degrees
of freedom, the density generator gp(u) = cp,ν(1+u/ν)−(p+ν)/2 with normalizing constant cp,ν ,
and the generating variate Rp is such that R2

p/p follows an F distribution with parameters p and ν ,
denoted by F(p,ν). Another popular example is the exponential power family, also known as the
generalized normal or generalized error distribution, which has been widely used in practice when
multivariate normality is rejected (e.g., Lindsey, 1999; Basu et al., 2001). Its density generator is,
with γ > 0 and s > 0, gp(u) =Cp,γ,s exp(−γus), which facilitates the derivation of the distribution
of its generating variate — R2s

p γ follows a Γ
(

p/(2s),1
)

distribution. It reduces to the multivariate
normal distribution when s = 1 and to a form of multivariate Laplace distribution when s = 1/2.
Heavier or lighter tails than the normal distribution is achieved by taking s < 1 or s > 1. Note
that the Kotz type family and the Pearson Type VII family are very wide: the former covers the
multivariate normal family and the multivariate exponential power family; the later covers the
multivariate Student t family.

Elliptical distributions are often characterized by characteristic functions in many references
(e.g., Fang et al., 1990). Without loss of generality, consider the case with µ = 0 and Σ = Ip, the
identity matrix of dimension p. The characteristic function of Ep(0,Ip,g) is∫

Rp
exp(it>x)gp(x>x)dx = φp(t>t)

for some scalar function φp known as characteristic generator (e.g., Cambanis et al., 1981). It can
be used to check the marginal consistency of elliptical distribution, especially for the stable laws
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106 X. Wang & J. Yan

family which is often defined through its characteristic functions because the densities are usually
not available in explicit forms (e.g., Nolan, 2006).

Sampling from an elliptical distribution is straightforward from the stochastic representation (2)
if sampling of the generating variate Rp is known. Generation of uniform variate Up on the unit
sphere Sp can be done by Up = Zp/‖Zp‖, where Zp is N(0,Ip) (Marsaglia, 1972). Generation of
Rp can often be done by sampling a transformation of it such as R2

p and then transforming back;
see column 3 in Table 1. When neither Rp nor any transformation of it has a standard distribution
with a readily usable random number generator, sampling from fRp has to be done with general
random variate generation techniques (e.g., Devroye, 1986).

To construct a meta-elliptical distribution with given marginal distributions and an elliptical
copula, it suffices to consider only X ∼ Ep(0,Σ,g), with Σ being a correlation matrix, because
copulas are invariant with respect to monotone transformations. The implicit elliptical copula of
X is

C(u1, . . . ,up) = G{G−1
1 (u1), . . . ,G−1

p (up)}, ui ∈ (0,1), i = 1, . . . , p, (5)

where G is the multivariate CDF of X, Gi is the univariate marginal CDF of Xi, and G−1
i is

the inverse function of Gi, i = 1, . . . , p Clearly, Gi’s and G−1
i ’s are important in application of

meta-elliptical distributions. A meta-elliptically distributed target random vector Y with marginal
distributions F1, . . . ,Fp is obtained from

Yi = F−1
i {Gi(Xi)}, i = 1, . . . ,n, (6)

where Fi is the inverse function of Fi. An elliptical copula is a meta-elliptical distribution with all
Fi’s being the CDF of uniform over (0,1).

3. Marginal Consistency and Its Implications

3.1. Marginal Consistency

Without loss of generality, consider an elliptically contoured random vector X∼ Ep(0,Ip,gp). Its
marginal distributions are still elliptical distributions, but not necessarily in the same elliptical
family. Partition X into (X1,X2), where X1 is r×1, r < p, and X2 is (p− r)×1. Correspondingly,
partition Σ into

Σ =

(
Σ11 Σ12
Σ21 Σ22

)
.

The marginal distribution of X1 is Er(0,Σ11,gr,p), where the density generator gr,p may depend
on p (Fang et al., 1990, Theorem 2.16).

Kano (1994) defined marginal consistency as follows. An elliptical distribution family with
density generator gp has marginal consistency if and only if

∫
R

gp+1

(
p+1

∑
i=1

x2
i

)
dxp+1 = gp

(
p

∑
i=1

x2
i

)
, (7)

for all p ∈ N and almost all (x1, . . . ,xp) ∈ Rp. An elliptical family is marginally consistent if it
possesses the marginal consistency property; it is marginally inconsistent otherwise. Equation (7)
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essentially requires that the marginal density of the first p components of an elliptical distribution
of dimension p+1 is the same as the density of an elliptical distribution of dimension p in the
same elliptical family. The family has marginal consistency if this holds for all p ∈ N.

The marginal consistency property is equivalent to any one of the following (Kano, 1994,
Theorem 1):

1. the density generator satisfies gp(u) =
∫

∞

u (y−u)−1/2gp+1(y) for all p ∈ N and almost all
u > 0;

2. the characteristic function φp is unrelated to p;

3. the generating variate Rp can be expressed as Rp = χp/
√

ξ , for any p ∈ N, where χ2
p is a

chi-squared variable with p degrees of freedom, and ξ > 0 is a random variable unrelated
to p, and ξ , χp and Up are mutually independent;

4. X can be expressed as a mixture of standard normal random vectors with an independent
mixing variable whose distribution is unrelated to p.

The first three conditions are statements of the marginal consistency property in terms of density,
characteristic function, and stochastic representation. The last condition provides an intuitive way
to check for marginal consistency.

The density generator and sampling distribution of Rp in Table 1 can tell which families are
consistent. As pointed out by Kano (1994), the families of multivariate normal distributions,
multivariate Student t distributions, and stable laws distributions have marginal consistency;
the families of logistic, Pearson Type II, Pearson Type VII, Kotz type, and multivariate Bessel
distributions do not have marginal consistency. The exponential power family with s > 1 has
lighter tails than the normal distribution, which cannot be a normal mixture; the family with
s ∈ (0,1) is a scale mixture of normal distribution with a nonstandard mixing variable (Gómez-
Sánchez-Manzano et al., 2008), whose distribution depends on p. Therefore, the exponential
power family is inconsistent for all s 6= 1.

Application of elliptical families without the marginal consistency property may lead to
undesired features in multivariate modeling. For instance, the univariate marginal distributions of
a member from such a family would depend on p. In risk analysis, this would imply the rather
odd fact that the distribution of any marginal loss depends on the number of losses considered
in the portfolio (Bilodeau, 2003). For marginal distributions of dimension two or higher, this
would imply that the joint distribution of a subset of losses depends on the number of losses under
consideration.

3.2. Implications on Elliptical Copula Modeling

Consistent elliptical families provide elliptical copulas that have desired properties in meta-
elliptical modeling. The univariate CDF Gi of such families does not depend on p, and hence does
not affect the density of the elliptical copula as seen from (5). The elliptical copula of any lower
order marginal multivariate distribution does not depend on p either. The two properties make
software implementation easy for these copulas as long as the multivariate CDF G is available.
For instance, the R package copula provides density, distribution, and random number generation
for normal copula and t copula (Kojadinovic and Yan, 2010b) based on the implementation of
multivariate normal and t distributions in the R package mvtnorm (Genz and Bretz, 2009).
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Application of elliptical copulas coming from inconsistent elliptical families is limited in
several aspects that can subtly compromise the modeling approach.

Impact of Univariate Marginal Inconsistency The effect of inconsistency on the univariate
distributions is not removed by using elliptical copulas with desired univariate margins. From (5),
the density of the elliptical copula depends on the marginal distribution Gi’s of the elliptical family.
Further, the univariate marginal densities are usually difficult to obtain explicitly for exponential
power or logistic families; they are trivial only for consistent elliptical families. This means that the
univariate marginal CDFs (and their densities) may not be available and differ according to p. It
prohibits a universal implementation of random number generation with the “quantile-to-quantile”
transformation (6) and evaluation of the density and the CDF of the meta-elliptical distribution.
The likelihood or pseudo-likelihood method for parameter estimation would not be possible (e.g.,
Kojadinovic and Yan, 2010a). Even if the marginal density and CDF can be derived, they need
to be derived for all practically possible p’s, which complicates software implementation. This
explains why, despite the popularity of exponential power distributions, its copula is not widely
used in meta-elliptical modeling.

Impact of Marginal Copula Inconsistency An inconsistent elliptical family also has implica-
tions on the dependence structure captured by the implicit elliptical copula. For any 1 < r < p,
the elliptical copula of an r-dimensional marginal distribution of a p-dimensional elliptical distri-
bution depends on p, and is not the same as the copula of an r-dimensional elliptical distribution
from the same family, which would be the case for a marginally consistent elliptical family. In
financial applications, the dependence structure of a fixed number of risks in a portfolio would
change as the portfolio size increases. In our hydrological example, this would imply that the
dependence structure between duration and volume of extremal storms would change if peak
intensity were additionally considered. The densities of r-dimensional marginal distributions of
an inconsistent p-dimensional elliptical family are hard to obtain. These distributions have known
location and dispersion parameters but the density generators are complex and dependent on p.
As p increases, a sequence of marginal copulas of dimension r are obtained, which all have the
same location and dispersion parameters. To appreciate their differences, consider Kendall’s tau
and Spearmans’s rho. As Kendall’s tau of elliptical distributions is independent of the density
generator, τ = 2arcsin(ri j), where ri j is the (i, j)th entry of the correlation matrix Σ, they all have
the same pairwise Kendall’s tau (Fang et al., 2002). Nevertheless, they have different Spearman’s
rho, which generally depends on both the density generator and ri j (Abdous et al., 2005).

For illustration, consider the bivariate marginal copula of an exponential power family Ep(0,Ip,gp)
with dimension p ∈ (2,4,8) and γ = s = 0.5. Sampling from the distribution is easy (see Table 1).
Although the univariate marginal distributions and the bivariate marginal copulas have no explicit
expressions, we can approximate them using a large sample of draws from the exponential power
distribution. To facilitate comparison, we convert the margins to standard normal. Figure 1 shows
the contours of bivariate kernel densities with standard normal margins and bivariate marginal
copulas from exponential power distributions with p ∈ (2,4,8). The bivariate kernel densities
were obtained with the kde2d function in the R package MASS (Venables and Ripley, 2002) for a
random sample of size 400,000 for each distribution. It is clear that these bivariate copulas are
quite different as p changes.
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FIGURE 1. Contours of bivariate kernel densities with standard normal margins and bivariate marginal copula of an
exponential power distribution with γ = s = 0.5 and three values of p: Left: p = 2. Center: p = 4. Right: p = 8. The
contours were obtained with a sample of 400,000 draws from each distribution.

4. Conditional Sampling from Meta-elliptical Distribution

Conditionally sampling of a random vector Y with a meta-elliptical distribution can be done easily
with conditional sampling from an elliptical distribution given the marginal transformation (6).
Partition Y into (Y1,Y2), where Y1 is r× 1, r < p, and Y2 is (p− r)× 1. Let fY1|Y2(y1|y2) be
the conditional density of Y1 given Y2 = y2. The idea is to transform Y to X in the “elliptical”
space by the inverse transformation of (6), do the conditional sampling of X, and transform
the sample back to the original scale by (6). Partition accordingly X into (X1,X2), (F1, . . . ,Fp)
into (F1,F2), and (G1, . . . ,Gp) into (G1,G2). Let x2 = G−1

2 {F2(y2)}. Let fX1|X2(x1|x2) be the
conditional density of X1 given X2 = x2. If X1 is a draw from fX1|X2(x1|x2), then F−1

1 {G1(X1)}
is a draw from fY1|Y2(y1|y2). Therefore, the problem boils down to sampling from fX1|X2(x1|x2).

The conditional distribution of an r-dimensional vector X1 given X2 = x2 is still an elliptical
distribution but not in the same family as X (Fang et al., 1990, Theorem 2.18). In copula modeling
we have µ = 0, and the conditional distribution is Er(µ1.2,Σ11.2,gr,p,q(x2)), where µ1.2 =Σ12Σ

−1
22 x2,

Σ11.2 = Σ11−Σ12Σ
−1
22 Σ21, q(x2) = x2Σ

−1
22 x2, and the density generator gr,p,a is

gr,p,a(u) =
Γ(r/2)gp(a+u)

πr/2
∫

∞

0 vr/2−1gp(a+ v)dv
. (8)

Given that the marginal distribution of X2 may depend on p, it is not surprising that the density
generator of the conditional distribution depends on p in addition to q(x2) and r.

We present two conditional sampling approaches. The first one is based on the stochastic
representation of elliptical distributions because the conditional distribution of X1 given X2 = x2 is
still an elliptical distribution. The second one is an acceptance-rejection approach with the proposal
distribution being the marginal distribution recentered at the conditional location parameter. The
second approach also provides a weighted sample, which can be used in importance sampling to
estimate quantities that are of an integral form such as mean or variance.
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Stochastic Representation Method Since the conditional distribution fX1|X2 is an elliptical
distribution, sampling can be done in principle with the stochastic representation method. The
difficulty is how to sample the generating variate Rr,p,q(x2) whose distribution, similar to gr,p,q(x2),
may depend on p in addition to q(x2). Putting (8) into (4) with dimension r gives the density of
Rr,p,q(x2)

fRr,p,q(x2)
(v) =

2πr/2

Γ(r/2)
vr−1gr,p,q(x2)(v

2), v > 0, (9)

which implicitly depends on p for marginally inconsistent elliptical families. Conditional sampling
from fX1|X2 is straightforward when Rr,p,q(x2) can be sampled; see column 4 in Table 1. Of course,
for some families such as normal and Student t, the conditional distribution is known and standard
methods can be employed instead of the stochastic representation method.

Conditional sampling is more challenging when Rr,p,q(x2) or a transformation of it does not have
a standard distribution, as is the case for marginally inconsistent families in general. The density
generator gr,p,q(x2) involves an integral in the normalizing constant, which may not have a closed-
form evaluation. The density fRr,p,q(x2)

(v) in (9) is only known up to a normalizing constant in
general. Therefore, one can apply the adaptive rejection Metropolis sampling (ARMS) algorithm
(Gilks et al., 1995), which samples from an arbitrary density function known up to a constant with
convex support. This algorithm is available in the R package HI (Petris et al., 2006). The draws
from the algorithm may be autocorrelated, but can still be used for inferences as in Markov chain
Monte Carlo (MCMC) methods. Autocorrelation in the sample may be alleviated by obtaining a
larger initial sample and then thinning it.

Acceptance-Rejection Method Using the rejection method to sample from fX1|X2 requires
evaluation of fX1|X2(x1|x2) and a proposal density π(x1) such that fX1|X2(x1|x2) ≤Mπ(x1) for
some 0 < M < ∞. The bigger M, the less efficient rejection algorithm. The conditional density
fX1|X2(x1|x2) is hr(x1; µ1.2,Σ11.2,gr,p,q(x2)), which by definition, is calculated as the ratio between
the full density hp(x; µ,Σ,gp) and the marginal density hp−r(x2; µ2,Σ22,gp−r,p) for some genera-
tor function gp−r,p depending on p. From the discussion about marginal consistency, this method
can only be easily carried out for marginally consistent families, where the marginal densities can
be easily obtained. The marginal distribution of X1 re-centered at µ1,2 provides a natural proposal
distribution with density hr(x1; µ1.2,Σ11,gr,p) for some generator gr,p. This proposal density has a
heavier tail than the target density. The smallest M that satisfies the constraints on the proposal
density is the ratio of two density evaluated at the center µ1.2:

M = hr(µ1.2; µ1.2,Σ11.2,gr,p,q(x2))/hr(µ1.2; µ1.2,Σ11,gr,p).

The calculation of M is straightforward using (3) for marginally consistent families. When
sampling from the proposal distribution Er(µ1.2,Σ11,gr,p) is possible (e.g., from the stochastic
representation approach), Algorithm 1 can be used to sample from fX1|X2(x1|x2). In the example
of the multivariate normal or Student t distribution, sampling from Er(µ1.2,Σ11,gr,p) is easy with
the R package mvtnorm (Genz et al., 2011).

Application of the acceptance-rejection method is limited by its need of the marginal density
and random number generation of X1. Random number generation of X1 is easy as long as a
random number generator of the whole vector X is available. The marginal density of X1 may
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Algorithm 1 Acceptance-Rejection Sampling from g(x1|x2).
1: repeat
2: Generate z from Er(µ1.2,Σ11,gr,p)
3: Generate u from U(0,1).
4: until u < hr(z; µ1.2,Σ11.2,gr,p,q(x2))/{Mhr(z; µ1,2,Σ11,gr,p)}
5: return z

be difficult to derive if the distribution of X is not a consistent elliptical family. The stochastic
representation method is more applicable in that it only needs random number generation from
a univariate random variable Rr,p,q(x2), whose density is known up to a constant if the density
generator gp of X is known.

Importance Sampling When the goal of conditional sampling is to approximate the conditional
expectation of a function H of X1 given X2 = x2, E[H(X1)|X2 = x2], importance sampling can
be adapted from the acceptance-rejection algorithm (e.g., Robert and Casella, 2004). Unlike
acceptance-rejection sampling, importance sampling uses all the generated values z without
rejection and assigns an importance weight to each one of them. Let z1, . . . ,zn be a large sample
of size n from the proposal distribution Er(µ1.2,Σ11,gr,p). The target conditional expectation is
estimated by

Ĥx2 =
∑

n
i=1 H(zi)w(zi)

∑
n
i=1 w(zi)

,

where the importance weight is given by w(zi) = hr(zi; µ1.2,Σ11.2,gr,p,q(x2))/hr(zi; µ1.2,Σ11,gr,p).
Because the weights are known, the standard error of Ĥx2 is easily calculated as

SE(Ĥx2) =

√
∑

n
i=1{H(zi)− H̃x2}2w2(zi)

∑
n
i=1 w(zi)

,

where H̃x2 = ∑
n
i=1 H(zi)/n. When the stochastic representation method is available, the target

density itself can be used as the proposal density. In that case, all importance weights are
equal to one, which lead to the usual Monte Carlo estimator H̃x2 with the usual standard error
SE(H̃x2) = [∑n

i=1{H(zi)− H̃x2}2]−1/2/n.

5. An Illustration

We illustrate conditional sampling with a hydrological example where a meta-elliptical model with
a t copula. Since the multivariate t distribution is a marginally consistent, both the stochastic rep-
resentation method and the importance sampling method can be easily applied. We compare their
efficiency in approximating a univariate conditional mean and a bivariate conditional probability.

In hydrology, estimation of design storms and the associated risks requires detailed knowledge
of three major storm characteristics: volume, duration, and peak intensity. A thorough theoretical
and practical introduction concerning the use of copulas in hydrology can be found in Salvadori
et al. (2007). We use the fitted model from Wang et al. (2010) to illustrate risk assessment with
conditional sampling. The model was a multivariate distribution with a Student t copula for
volume (Y1, 0.01 inch), duration (Y2, hour), and peak intensity (Y3, 0.01 inch / 15 min) of annual
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TABLE 2. Summaries of estimated conditional expectation of peak intensity given duration and volume with two
methods from 1000 replicates, each based on a sample of 10,000. Estimator H̃ is based on a sample directly from the
conditional distribution. Estimator Ĥ is based on a weighted sample from a proposal distribution. SE: Mean of the
standard error. SEE: Empirical standard deviation.

Duration Volume Estimator H̃ Estimator Ĥ

Mean SE SEE Mean SE SEE

8 100 9.913 0.068 0.068 9.914 0.089 0.089
8 200 11.231 0.046 0.046 11.228 0.039 0.038
8 300 12.486 0.050 0.050 12.485 0.043 0.042
8 400 13.687 0.060 0.058 13.687 0.054 0.054
8 500 14.929 0.073 0.072 14.933 0.074 0.075

5 200 13.147 0.053 0.052 13.146 0.046 0.046
10 200 10.411 0.044 0.045 10.411 0.037 0.038
15 200 9.033 0.041 0.041 9.034 0.035 0.034
20 200 8.122 0.041 0.040 8.122 0.036 0.036
25 200 7.441 0.042 0.042 7.440 0.040 0.040

extreme rainfall based on the 15-min precipitation data at a monitoring station in Connecticut.
The extreme rainfall storm in a given year was defined to be the rainfall event which possesses the
largest empirical joint cumulative probability of volume and peak intensity (Kao and Govindaraju,
2007). The fitted marginal distribution was LN(5.573,0.430) for Y1, Gamma(2.000,6.747) for
Y2, and LN(2.292,0.515) for Y3, where LN(a,b) is a lognormal distribution with mean a and
standard deviation b on the log scale, and Gamma(a,b) is a gamma distribution with shape a and
scale b. The copula was a t-copula with 5 degrees of freedom (df) and dispersion matrix

Σ =

 1.000 0.541 −0.083
0.541 1.000 −0.463
−0.083 −0.463 1.000

 .

Consider the conditional expectation of peak intensity at a set of combinations of volume and
duration: E(Y3|Y1 = y1,Y2 = 8) for y1 ∈ {100,200,300,400,500} and E(Y3|Y1 = 200,Y2 = y2) for
y2 ∈ {5,10,15,20,25}. We approximate the conditional expectations by Monte Carlo simulation.
Let Fi be the CDF of Yi, i = 1,2 and 3, and let G1 be the CDF of univariate t distribution with df
5. Because the multivariate Student t family possesses marginal consistency, the three marginal
distributions are all G1. For i= 1 and 2, let xi =G−1

1 {Fi(yi)}. Define function H(z) =F−1
3 {G1(z)}.

The target conditional expectation is then E[H(X3)|X1 = x1,X2 = x2], where (X1,X2,X3)
> follows

a trivariate Student t distribution centered at 0, with dispersion matrix Σ and df 5. We compare
two approximations. The first one, denoted by H̃, is based on a sample from the conditional
distribution of X3 given (X1,X2) = (x1,x2) using the stochastic representation method. The second
one, denoted by Ĥ, is based on a weighted sample drawn from the proposal distribution defined
in the acceptance-rejection method, which is the marginal distribution of X3 recentered at the
conditional mean. Each approximation is based on a sample of size n = 10,000 and we repeat
each approximation 1000 times.

Table 2 summarizes the mean of the estimates, mean of the standard errors, and empirical
standard error of the estimates from both approximation methods. The means of the estimates of
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the two methods are very close for all target conditional expectations. The conditionally expected
peak intensity increases with volume when duration is fixed at 8 (hour), and decreases with
duration when volume is fixed at 200 (0.01 inch). From the empirical standard errors, estimator
Ĥ is as efficient as or slightly more efficient than H̃ except for (x1,x2) = (100,8). Finally, the
close agreement between the means of the standard errors and the empirical standard errors for Ĥ
suggests that the standard error formula for the weighted sample mean provides a good variation
measure of the estimate.

For further illustration on joint events, consider Pr(Y2 > y2,Y3 > y3|Y1 = y1) for y2 = 26.244,
y3 = 19.144, and y1 = 500. This is the conditional probability that the duration exceeds 26.244
(hours) and the peak intensity exceeds 19.144 (0.01 inch / 15 min) simultaneously given that
the volume is 500 (0.01 inch). These thresholds are the 90th percentiles of the marginal dis-
tributions of duration and peak intensity, respectively. The marginal conditional probabilities
Pr(Y2 > y2|Y1 = y1) and Pr(Y3 > y3|Y1 = y1) are approximated as 0.310 and 0.106, respectively. If
duration and peak intensity were conditionally independent, Pr(Y2 > y2,Y3 > y3|Y1 = y1) would
be approximately 0.033. We approximate this conditional probability with a large sample from
the bivariate conditional distribution of duration and peak intensity given volume at 500 (0.01
inch). Figure 2(a) shows a sample of 1000 observations drawn from the conditional distribution.
Negative dependence between duration and peak intensity given volume at 500 is clearly observed.
Figure 2(b) shows a sample of 1000 observations drawn from the importance sampler. Apparently,
the importance sampler has heavier tails at both margins than the target distribution. We approxi-
mated the target probability with a sample of size n = 100,000 for both methods and repeated
the process for 1000 times. The mean of the approximation from both methods are very close,
0.010, much lower than what would happen under conditional independence (0.033). This is not
surprising given the negative dependence between duration and peak intensity given volume at
500. The standard errors of the two methods are very close, 3.27×10−4 from direct samples and
3.21×10−4 from weighted samples.

6. Discussion

Meta-elliptical distributions based on elliptical copulas have been a useful tool for multivariate
modeling in many fields. In addition to basic properties, their tail properties have been studied as
motivated by the importance of tail dependence in practice (e.g., Frahm et al., 2003; Landsman
and Valdez, 2003; Hashorva, 2008; Manner and Segers, 2011). Nevertheless, the lesser known
marginal consistency property of elliptical distributions and its implications in meta-elliptical
modeling appear to have gained insufficient attention. The impact of inconsistent elliptical families
on elliptical copula modeling had puzzled us in our own experience. We hope that this note can
help practitioners of meta-elliptical distributions to avoid misuse of elliptical copulas.

Conditional sampling from multivariate distributions is a necessity for problems where no
closed-form solution is available. For Archimedean copulas, sampling algorithms are often
based on conditional sampling; see Hofert (2008) and Hofert (2011) for recent development.
Conditional sampling of meta-elliptical distributions boils down to conditional sampling from
elliptical distributions, which may not be well known to practitioners using elliptical copulas. The
marginal consistency property also has implications on conditional distributions of meta-elliptical
distributions. In our opinion, the stochastic representation approach is generally applicable since it
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FIGURE 2. (a) 1000 draws from the conditional distribution of duration and peak intensity given volume at 2 inch. (b)
1000 draws from the importance sampler for the conditional distribution of duration and peak intensity given volume
at 2 inch.

only needs the density generator of the whole vector and sampling of a univariate density known
up to a constant. The acceptance-rejection method (and the importance sampling method) requires
the density generator and sampling of the subvector in addition to the density generator of the
whole vector.
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