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Abstract: The data generated by high-throughput biotechnologies are characterized by their high-dimension and
heterogeneity. Usual, tried and tested inference approaches are questioned in the statistical analysis of such data.
Motivated by issues raised by the analysis of gene expressions data, I focus on the impact of dependence on the
properties of multiple testing procedures in high-dimension. This article aims at presenting the main results: after
introducing the issues brought by dependence among variables, the impact of dependence on the error rates and on
the procedures developed to control them is more particularly studied. It results in the description of an innovative
methodology based on a factor structure to model the data heterogeneity, which provides a general framework to deal
with dependence in multiple testing. The proposed framework leads to less variability for error rates and consequently
shows large improvements of power and stability of simultaneous inference with respect to existing multiple testing
procedures. Besides, the model parameters estimation in a high-dimensional setting and the determination of the
number of factors to be considered in the model are evoked. These results are then illustrated by real data from
microarray experiments analyzed using the R package called FAMT.

This paper is an extended written version of my oral presentation on the same topic at the 44th Journées de
Statistique organized by the French Statistical Society (SFdS) in Bruxelles, Belgium, 2012, when being awarded the
Marie-Jeanne Laurent-Duhamel prize.

Résumé : Les données générées par les biotechnologies haut-débit sont caractérisées par leur grande dimension et
leur hétérogénéité. L’analyse statistique de ces données remet en cause y compris les approches les plus éprouvées,
comme les méthodes usuelles d’inférence statistique. Cet article a pour objectif de présenter une étude de l’impact de la
dépendance sur les propriétés des procédures de tests multiples en grande dimension : après une description introductive
des principales problématiques liées à la présence de dépendance, les mesures de risques d’erreurs et les algorithmes
permettant de contrôler ces risques lors de la mise en œuvre de procédures de tests multiples sont plus particulièrement
étudiés. Cette étude analytique aboutit à la définition d’un cadre général de la prise en compte de l’hétérogénéité des
données, grâce à la modélisation de la structure de dépendance par Analyse en Facteurs. L’instabilité des procédures
induite par la présence de dépendance est alors réduite, procurant à la fois une augmentation de la puissance des tests
et une diminution de la variabilité des taux d’erreurs. La mise en œuvre de cette méthode est également évoquée, et
les résultats méthodologiques sont illustrés à partir de données génomiques, analysées à l’aide du package FAMT du
logiciel libre R qui implémente les méthodes présentées précédemment.

Cet article accompagne la conférence que j’ai eu l’honneur de donner lors de la réception du prix Marie-Jeanne
Laurent-Duhamel, dans le cadre des 44èmes Journées de Statistique organisées par la Société Française de Statistique à
Bruxelles, en mai 2012.
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A general approach to account for dependence in large-scale multiple testing 101

1. Introduction: large-scale multiple testing

1.1. Background

Multiple testing The decision of a statistical test requires to choose between two hypotheses:
the null hypothesis (H0) and the alternative one (H1). The goal of a test procedure is to control the
risk of wrongly reject H0 (type-I error).
Multiple testing refers to the simultaneous tests of several hypotheses. Extending the well-assessed
theory of hypothesis testing, issues raised by multiple testing have been widely discussed in the
statistical literature since the 1930’s when Fisher firstly proposed procedures to test several linear
contrasts in analysis of variance. Multiplicity has been an abounding issue and many methods to
deal with the number of simultaneous tests are available. Basically, multiple testing procedures
rely first on the computation of a p-value for each response variable and then on the choice of
a threshold t on the p-values associated to the individual tests. The decision rule states that null
hypotheses associated to p-values lesser than t are rejected. Differences between the procedures
are due to the way of finding the threshold.
In the first step, the choice of an appropriate test statistic only depends on the experimental design
and on the type of the involved variables. We consider that the test statistic is correctly chosen
with respect to the statistical context. The second step is the main concern of the following as
the threshold on p-values can not be determined as in the univariate issue [12]. More particularly,
the choice of the threshold influences the number of errors in tests decisions. For a given t, the
number of possible errors in a multiple testing procedure are summarized in Table 1, with the
same notations as in [2].

TABLE 1. Numbers of errors in a multiple testing procedure.

declared declared
Total

non significant significant

H0 Ut Vt m0
H1 Tt St m1

Total m−Rt Rt m

m is the known number of tested hypotheses. m0 and m1, respectively the number of true null
and true alternative hypotheses, are unknown parameters. For a given threshold t for the p-values,
Rt , the total number of significant tests, is an observed random variable. On the contrary, Ut and
St on the one hand, and Tt and Vt on the other hand, respectively the number of right and wrong
decisions, are unobserved random variables.
The univariate approach of test theory focus on optimal procedures, optimality being achieved
when, while controlling the type-I error, the type-II error (when the test fails to reject a false
null hypothesis) is minimized. Ideally, a multiple testing procedure would minimize both the
number Vt of false positives (type-I errors) and the number Tt of false negatives (type-II errors).
More false positives can occur when the number of tests increases: multiplicity necessitate to
clearly define global type-I error rates, at the level of the whole set of tests instead of the level of
individual tests. Naturally, extending the single test approach to multiple tests consists initially
in controlling the risk of wrongly rejecting H0 at least once, (called the Family-Wise Error Rate,
FWER) considering P(Vt > 0). Controlling type-I error is of most importance in these contexts
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102 Chloé Friguet

where a moderate number of tests are simultaneously performed, and the power issue is often
set apart. Note that a definition of optimality does not arise and finding the best multiple testing
procedure is still an open question [34].

Large scale multiple testing For the last two decades, innovative improvements have been
made to face new scientific challenges. Particularly, high throughput technologies result in huge
volume of data that allows the global analysis of complex systems. In these situations, the number
of measured variables is close to several thousands, whereas the sample size is about some tens
at most. Data are then said in high-dimension. At the root of the main issue presented in this
article lies questions raised by the analysis of DNA microarray data. DNA microarrays are a
biotechnology that allows the simultaneous measurement of gene expressions, at the level of the
whole genome. Such data can be used, for example, to diagnose tumors, to profile drug-effect, or
to group genes with similar expression patterns associated to common biological processes. This
biological context has markedly contributed to the development of the statistical methodology for
multiple testing in high dimensional data [16, 37, 13].
Indeed, the first step in the analysis of such data is called differential analysis. It aims at identifying
the subset of differentially expressed genes i.e the subset of genes whose expression levels differ
with respect to a covariate of interest, that can be either categorical, such as treatment/control
status, or continuous such as a drug dose.
From a statistical point of view, the biological question of differential analysis is restated as a
multiple hypotheses testing issue, considering the simultaneous tests for each gene of the null
hypothesis H0: "there is no association between the expression levels and the covariate".
The context evoked previously induces thousands of simultaneous tests, one for each gene of
the genome. Procedures, by Bonferroni [8] for example, controlling the FWER become highly
conservative as the number of tests increases. As a matter of fact, the number of truly rejected
null hypotheses (true positives) is very low.
Therefore, controlling the FWER has appeared unsuitable in a high-dimensional setting. An
approach that has turned out to be much more appropriate in high dimension is to control the
False Discovery Rate (FDR) [2], which is the expected proportion of false positives among the
rejected hypotheses:

FDRt = E
(

Vt

Rt

)
(1)

Vt/Rt being set to 0 when Rt = 0. This approach is useful in exploratory analyses, where one
aims at maximizing the discoveries of true positives, rather than guarding against one or more
false positives. Many methods have been proposed to control the FDR, the most famous being
due to Benjamini and Hochberg [2] and called hereafter the BH procedure. The cut-off on the
p-values under which the hypotheses are rejected is derived from the increasingly ordered p-
values p(k) as follows: tα = p(k∗) with k∗ = argmaxk

{
mπ0 p(k)/k ≤ α

}
, provided the proportion

of true null hypotheses π0 =
m0
m is known. In addition to being an interesting quantity in itself,

for its interpretation, π0 is a key parameter in assessing or controlling error rates. It has been
recently shown [5, 21] that a more accurate estimation of π0 would improve the power of multiple
testing procedures. Generally, plugging-in an estimate of π0 into the definition of the threshold
on p-values corrects for the control level of the FDR and results in a less conservative procedure.
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A general approach to account for dependence in large-scale multiple testing 103

Adaptative procedures, including π0 estimation, has then emerged in the literature [40, 3]. See
[24] for a comparative review of the main estimation methods of π0.
Most of multiple testing procedures assume that the p-values are independently distributed
according to a two-component mixture model [16], characterizing p-values distributions under
the null hypothesis (g0 := U[0;1]) and under the alternative one (g1, unknown), respectively.

g(p) = π0g0(p)+(1−π0)g1(p) (2)

where g0(p) = 1,∀p. Further conditions are necessary to ensure identifiability of π0, the mixing
parameter of this model, which can be obtained for instance by assuming that g1 is a decreasing
function of the p-values with g1(1) = 0 [19].
This setting is now illustrated with two examples of microarray data.

Example 1 (Breast Cancer study [20]). These data were primarily analyzed in order to compare
expressions of three types of breast cancer tumor tissues: BRCA1, BRCA2 and Sporadic. The
raw expression data, downloaded from http: // research. nhgri. nih. gov/ microarray/
NEJM_ Supplement/ , initially consist of 3 226 genes in 22 arrays; 7 arrays from the BRCA1
group, 8 from the BRCA2 group and 6 from the Sporadic group. The label of one sample being
unclear, it has been removed from the study. The same preprocessing procedure as in [39] is
used: 56 genes presenting some suspiciously large expressions (larger than 20) are removed and
the data are finally log2 transformed. The analysis focuses on the identification of differentially
expressed genes among the m = 3 170 included in the study between the two types BRCA1 (7
cases) and BRCA2 (8 cases) using classical t-tests. Figure 1(a) displays the distribution of the raw
p-values of these t-tests.
Applying the BH procedure to determine which test should be rejected controlling the FDR, at a
significance level α = 0.05, a list of 96 genes are declared differentially expressed.

Example 2 (Lipid Metabolism study [26]). These data, provided by the INRA Animal Genetics
department in Rennes (France), describe chicken hepatic transcriptome profiles for m = 9 893
genes of n = 43 half-sib male chickens, selected for their variability on abdominal fatness
(Af). The aim is to study the relationships between hepatic gene expressions and abdominal
fatness [7] and to map quantitative trait loci (QTL) for abdominal fatness in chickens. Animals,
marker genotyping, transcriptome data acquisition and normalization are described in [26]. The
normalized microarray dataset is available in the package FAMT [10], which implements the
method presented later in this article. Figure 1(b) displays the distribution of the raw p-values
from the t-tests for the significance of the correlation coefficient between genes expressions and
the abdominal fatness. Applying the BH procedure results in no positive genes for a FDR control
at level α = 0.05.

Microarray experiments involving genome-wide scans usually presuppose most of the genes to
be null so that U [0;1] should fit the right side of the p-values histogram. In case of Example
1, this hypothesis seems to be borne out by the distribution observed on Figure 1(a). On the
contrary, the shape of the histogram in the case of Example 2 on Figure 1(b) clearly shows an
abnormal under-representation of the p-values in the neighborhood of 0 (and consequently an
over-representation of the p-values close to 1). Indeed, if all the gene expressions were all truly
under the null hypothesis, the p-values should be uniformly distributed on [0,1] and the proportion
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104 Chloé Friguet

(a) P-values’ distribution for the t-tests comparing mean
genes expressions in the two tumor types of the Breast
Cancer data.

(b) P-values distribution for the t-tests for the significance
of the correlation coefficient between genes expressions
and the abdominal fatness of the Lipid Metabolism data.

FIGURE 1. P-values distribution for Examples 1 and 2

of observed p-values under 0.05 should be close to 0.05, provided the gene expressions are
independent. This marked departure of the empirical distribution of p-values from the theoretical
uniform distribution has been recently considered by some authors as the impact of a high
amount of dependence among tests (see [15, 25, 18]). These effects have a significant impact on
simultaneous hypotheses testing, and must be accounted for in test decisions.

1.2. Multiple testing and dependence

Among the topics in the literature on multiple testing in high-dimensional data, the assumption of
independence on which most of these procedures are based is recently discussed. The study of the
impact of dependence between the variables is of great interest as taking into account dependence
casts doubt on multiple testing procedures as a whole. Two topics are mainly identified:

(a) Controlling (type-I) error-rates when p-values are no longer independently distributed.

Some papers have especially focused on the control of the FDR under various patterns of depen-
dence. An important contribution to this point is the proof that the BH procedure still controls
the FDR under assumption of a certain class of dependence called positive [4]. Other proposals
extending the initial condition of the BH procedure have also been proposed later [40, 6]. In fact,
the general message seems to be that, for a high amount of dependence, the BH thresholding
method tends to over-control the FDR, leading to more conservative rules than expected under the
assumption of independence. Consequently, this also means that dependence affects the power
of the BH procedure and its stability. Some authors [39, 41] proposed to modify the test statistic
and recent proposals suggest to modify the theoretical null distribution [14]. Modification of the
p-values threshold as in [4] or adaptative BH procedures as in [3] have been proposed, leading
again to more conservative rules than expected under the assumption of independence. The
common point of all these approaches to deal with dependence consists in taking effect on one of
the two steps of multiple testing procedures, namely (1) in the formation of the tests statistics or of
their null-distribution for the calculation of p-values, or (2) when defining the p-values threshold.
In each case, the focus is on the control of the type-I error rate.
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(b) Taking into account dependence between test statistics by borrowing information across the
variables rather than treating them as independent.

More recently, a common idea in a few papers [15, 25, 18] is that dependence between test
statistics should be taken into account through a latent dependence structure rather than treating
variables as independent. Indeed, dependence between tests is directly deduced from dependence
between the involved response variables. The true signal and several confusing factors are often
observed at the same time and these factors lead to misleading conclusion on tests decisions. In
microarray data analysis, dependence between gene expressions may comes from some biological
gene interactions, in which the studied biological process is not necessarily involved but which
impact the level of gene expressions as well. Technological bias can also affect gene expressions,
even if some pre-processing treatments of the data such as normalization aim at limiting their
impacts. All these uncontrolled and unobserved factors are referred hereafter as data heterogeneity
components.
The following methodology is in the continuation of the former idea, an overall framework to
deal with dependence, and this article focuses on the properties of multiple testing procedures
under dependence. Section 2 presents the proposed framework based on a factor model for the
dependence structure, introducing the Factor Analysis for Multiple Testing (FAMT) method and
showing the improvement brought by this approach. The effects of dependence on multiple testing
properties are investigated through a simulation study and providing some analytical results. The
implementation of FAMT necessitates to determine the number of factors included in the model,
and the estimation of its parameters. Section 4 describes our proposal, which matches the specific
context of high-dimensional data. Finally, an application to the analysis of gene expressions data is
presented in Section 5. The FAMT method is implemented in the package FAMT [10], available
on the R-project web site and on its own web site http://famt.free.fr.

2. A general framework to account for dependence

For k = 1, . . . ,m, let Yk denotes the kth response variable among m. In a high-dimensional
frameworks, m can be much larger than the number n of independent observations of Y =
[Y1,Y2, . . . ,Ym]. For each response Yk, the link with p explanatory variables is explicitly defined by
the following regression model:

Yk = rk(x)+ ek ∀k ∈ [1;m] := M (3)

where x is the p−vector of covariates, rk is an unspecified regression function and ek is a random
error term. For k ∈M0 ⊂M with #M0 = m0, rk(x) = r(0)k (x), where r(0)k is an arbitrary function
of interest and for k /∈M0, rk(x) 6= r(0)k (x). Multiple testing aims at finding out the response
variables for which the null hypothesis Hk

0 : rk(x) = r(0)k (x) is not true.
The present article focuses on t-tests because they are of major interest in various applied sit-
uations but the general conclusions are valid for other types of tests such as Fisher’s analysis
of variance tests for example. The test statistics are therefore defined as normalized estimations
of linear contrasts c′θk and are denoted Tk =

√
nc′θ̂k/(σk

√
c′S−1

x c), where Sx denotes the em-
pirical variance-covariance matrix of the explanatory variables. Under the null hypothesis, their
distribution is known and the p-value for each test is denoted pk.
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106 Chloé Friguet

Proposition 1.

E(Tk) = τk =

√
nc′θk

σk

√
c′S−1

x c
V(Tk) = 1 Cov(Tk,Tk′) = ρkk′ ,k 6= k′

Note that τk equals 0 if k ∈M0

Proposition 1 shows that the correlation structure between the test statistics is directly inherited
from the correlation ρ between the response variables. Note that this property is generally not
true for other types of tests. Therefore, specific relationships between both correlation structures
should be taken into account in order to adapt the following results to other testing procedures.
More generally, dependence among the p-values is also straightforward inherited from dependence
among the data.
In regression models such as (3), the residuals are usually assumed to be independent. In practice,
and especially in gene expression data for example, unmodeled and/or uncontrolled factors can
interfere with the true signal and then generate dependence across the variables. The consequence
is that the residuals of model (3) are not independent, which violates the assumption of p-values
distribution as in (2). In many areas, dependence can be explained by an underlying structure of
unobserved factors, previously refered to as data heterogeneity. Our proposal consists in capturing
data heterogeneity by modeling this latent structure. Residuals in models (3) are then split into two
terms, one associated to the heterogeneity through latent variables Z, and independent residuals:

Yk = rk(x)+Zb′k + εk, (4)

where ε = (ε1, . . . ,εm) is a random vector with independent components. The mixed-effects
regression models (4) are equivalently defined as fixed-effects regression models as in (3) but
where residual variance Σ can be decomposed into the sum of two components: a diagonal matrix
Ψ of specific variances ψ2

k =V(εk) and a common variance component B′B, where the kth row of
B is bk:

Σ = BB′+Ψ (5)

This general approach is proved in the following proposition [25] which defines a general
framework for multiple testing dependence.

Proposition 2 (see [25]). Under assumption (3), suppose that for each εk, there is no Borel
measurable function g such that εk = g(ε1, . . . ,εk−1,εk+1, . . . ,εm) almost surely. Then, there exists
a random Q−vector Z, with 0≤ Q≤ m and, for all k = 1, . . . ,m, there exist Q−vectors bk such
that,

Yk = rk(x)+Zb′k + εk

where ε = (ε1, . . . ,εm) is a random vector with independent components.

Model (4) establishes the existence of Q latent variables Z which capture the dependence among
the variables in a Q−dimensional linear space. Without loss of generality, in the following, it is
assumed that the latent variables Z have means 0 and variance IQ. Furthermore, the estimation of
the Factor Analysis model parameters as detailed in Section 4.1 assumes that the common factors
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are normally distributed. Therefore, model (4) can be viewed as a Factor Analysis model [27]
and the latent variables are hereafter called (common) factors. Factor Analysis is an analytic tool
used for many years in economics, social sciences and psychometrics, originally in the field of
intelligence research [35]. It has only appeared recently in the study of the dependence structure
in high dimensional datasets provided by microarray technology [31, 23]. The common point
between all these applied sciences is to deal with large quantities of data. In such a case, we often
need to determine a smaller set of synthetic variables that could explain the original set.
The following proposition gives the conditional distribution of the tests statistics T = [T1; . . . ;Tm],
given the factors.

Proposition 3. Conditionally on Z, T is normally distributed with, for k = 1, . . . ,m, E(T (k) | Z) =
τk + b′kτZ/σk, where τZ is the Q−vector defined by τZ =

√
ncθ̂z/

√
c′S−1

x c and θ̂z denotes the
least-squares estimator of the p×Q matrix of the slope coefficients in the multivariate regression
of Z onto the explanatory variables x. Moreover, V(T |Z) = diag(ψ2

k /σ2
k ). Note that τZ is normally

distributed with mean 0 and variance IQ

Factor-adjusted test statistics T̃k are now defined as conditionally centered and scaled versions of
the classical test statistics Tk:

T̃k =
σk

ψk

[
Tk−

b′k
σk

τZ

]
The following proposition gives the distribution of T̃ = [T̃1; . . . ; T̃m].

Proposition 4. Under assumption of a decomposition of the covariance matrix as in (5), T̃ is

normally distributed with, for all k ∈ [1;m], E(T̃k) = τk/
√

1−h2
k , where h2

k = bkb′k/σ2
k is the

communality of Yk. Moreover, V(T̃ ) = Im.

The non-centrality parameter of T̃k being always larger than τk, the variable-by-variable power
of the factor-adjusted tests are larger than for the t-tests. Furthermore, this non-centrality pa-
rameter, and consequently the power of the factor-adjusted tests, are increasing functions of the
communality h2

k , which confirms the idea that the multiple testing procedure can be improved by
a correction of the individual test-statistics regarding their contribution to the common variability
across variables. On the contrary, if the kth variable does not contribute to the factor structure,
bk = 0 and T̃k coincides with the usual test statistic Tk. As the factor-adjusted tests statistics are
independent, the associated factor-adjusted p-values are also independent [17].
Estimated factor-adjusted test statistics T̃ are obtained by plugging estimates of the factor model’s
parameters in the test statistic. In Section 4, ML estimates are proposed. As these estimators of the
variance parameters are consistent, this does not affect the asymptotic distribution of the factor-
adjusted test statistics. By analogy with the classical situation, we propose to take into account
the effect of estimating the variance parameters in small-sample conditions by approximating the
null distribution of ˆ̃Tk by a Student distribution.
Note that the factor-adjusted test statistics can be equivalently obtained by computing the usual
test statistics on the data centered with respect to the dependence kernel ZB′:

Ỹk = Yk−Zb′k = rk(x)+ εk (6)
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3. Impact of dependence...

The impact of dependence on multiple testing procedures and improvements brought by the
general framework introduced in previous section are illustrated by simulation studies and some
analytical results are also provided in this section. Model estimations issues are set apart in
this section and are developed in Section 4. In the following simulation studies, the parameters
estimations are computed using the method presented in Section 4.
In similar simulation studies presented in the literature, the patterns of correlation for simulated
data is relatively simple: equi-correlated data [1] or block equi-correlated data [22] for example.
These dependence structures are simple to implement and easily interpretable. Controlling the
level of dependence within each scenario is possible by varying the value(s) of the correlation
matrix. Nevertheless, this modeling of the dependence is far from reality, mainly in the analysis
of microarray data, where the connections between variables of interest are sometimes much
more complex. In the following studies by simulations, in a manner similar to [21], we propose to
consider a set of correlation matrices, while imposing a constraint of conditional independence.
The theoretical variance-covariance matrix for the simulated datasets is split into two components,
a diagonal matrix Ψ of specific variances and a common-variance component B′B: Σ = BB′+Ψ.
Conditionally on the common structure, the data are independent. The desired level of dependence
is reached by weighting the common structure (BB′) by a coefficient from 0 (independence) to 1
(highest level of dependence).

3.1. ... on p-values distribution

Model (2) assumed both independence of the p-values and uniformity of the null component g0.
In some situations of weak correlations, or "clumpy" correlations (many groups made of a small
number of variables with high correlation within groups and no correlation between groups [38]),
the uniform assumption still holds [24]. However, in the presence of highly dependent data, g0 can
severely deviate from uniform distribution. Considering the factor-adjusted data to compute the
p-values redresses the p-values distribution with respect to the raw data case, under dependence.
This point is illustrated by simulation scenarios with increasing amounts of dependence among
data.

Simulation study 1. 10 levels of dependence are considered, from independence (scenario 0) to
highly correlated data (scenario 9). The proportion tr(BB′)/tr(Σ) of common variance increases
along with the scenarios:

TABLE 2. Common variability (%) for the 10 simulated scenarios

Scenario 0 1 2 3 4 5 6 7 8 9
Common variability (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19

In each scenario, 1 000 datasets are simulated according to a multivariate normal distribution:
each dataset is composed of m = 500 variables and n = 60 observations such as Yn×m ∼Nm(0;Σ).
Besides, let’s consider a binary variable X such that the observations are split into two arbitrary
groups of size n/2. The multiple testing procedure aims at finding out which variables have
different expectations in two groups with equal sample size. For each dataset, the p-values of the

Journal de la Société Française de Statistique, Vol. 153 No. 2 100-122
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



A general approach to account for dependence in large-scale multiple testing 109

usual t-tests for the comparison of means are calculated, both on raw and factor adjusted data.
In this simulation study, for each dataset, all hypotheses are true null, so that all set of p-values
should be uniformly distributed.

Distribution of null p-values under dependence Figure 2 reproduces the average histograms
of p-values with 95% error bars in situations of independence, intermediate level of dependence
and high level of dependence for raw data (Figure 2(a)) and factor-adjusted data (Figure 2(b)).
Obviously, this shows that the assumption of uniformity for the null p-values distribution is true
on average (grey histograms), whatever the level of dependence, for both raw and factor-adjusted
data. However, in case of dependent data, the distribution of raw p-values can show marked
departures from uniformity. This leads either to a much larger representation of the p-values
close to 0 (and consequently an under-representation of the p-values close to 1, the distribution
of null p-values being decreasing instead of being flat) or inversely much lesser small p-values
than expected under uniformity (the distribution of null p-values being increasing instead of being
flat). It should be noticed that the first situation is much more marked. This point has a direct
consequence on the proportion of false positives in tests decisions, which can be much higher
than expected under the uniform assumption for p-values distribution.
For each scenario, Table 3 gives the proportion of significant Kolmogorov-Smirnov goodness-
of-fit tests, the null hypothesis of each test being that the null p-values distribution is uniform
(level of significance of 5%). As the dependence structure gets stronger, going from scenario
0 to scenario 9, the proportion of significant tests increases, up to 80% for the highest level of
dependence. This violation of the uniformity of the null distribution is also mentioned in [15],
which reports that correlation can widen or narrow down the distribution of test statistics with
respect to the theoretical null distribution.

TABLE 3. Proportion of significant goodness-of-fit tests for uniformity of null p-values within each scenario of
simulation (Kolmogorov-Smirnov tests; significance level: 5%) - case of raw-data

Scenario 0 1 2 3 4 5 6 7 8 9
Prop. of sig. tests (%) 4.4 7.1 20.2 38.0 56.1 63.8 68.5 71.6 75.5 80.1

Considering the factor-adjusted p-values, there is low variability around this uniform distribution,
whatever the level of dependence, as suggested by the 95% error-bars on Figure 2(b).

3.2. ... on error-rates

Variance of the number of False Positives (Vt) For a given threshold t, Vt is defined as the
number of erroneous rejections of the null hypotheses. For independent test statistics, Vt is
distributed according to a binomial distribution: Vt ∼ Bin(m0, t). This random variable has mean
m0t and variance m0t(1− t). Under general dependence, the following proposition holds:

Proposition 5 (Variance of the number of false-positives (Vt)).

E(Vt) = m0t (7)

V(Vt) =
[
m0 + ∑

k 6=k′∈M0

Dt(ρkk′)
]
t(1− t) (8)
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(a) P-values computed from raw data (b) P-values computed from factor-adjusted data

FIGURE 2. Mean histograms of the p-values for 1 000 simulations with 95% error bars, for 4 dependence structures
(low (1), intermediate (3 and 6) and high (9) level of dependence)

Dt(ρkk′) is defined as follows:

Dt(ρkk′) =
∑

m
k=1 ∑

m
k′=1,k′ 6=k Gkk′(t)−Gk(t)Gk′(t)

m(m−1)
. (9)

Where, G denotes the distribution function for the kth p-value, such as for the kth variable:
Gk(t) = P(pk ≤ t) and for k 6= k′, the bivariate distribution function is Gkk′(t) = P(pk ≤ t; pk′ ≤ t).
Figure 3 shows that, for any preset t, Dt(ρ) is a U-shaped function, closed to an equivalent term
appearing in Owen’s formula [29] for the variance of the number of false discoveries and in [15],
where the bivariate normal probability function is also involved in the expressions of the variance
inflation. Dt(ρ) equals zero for independent variables, and increases as the correlation grows.

FIGURE 3. Dt(ρ) for various values of the threshold t along with the correlation ρ
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Therefore, by comparison with the binomial variance m0t(1− t) for the independent case, the
impact of dependence on the variance of Vt can be measured by the term ∑k 6=k′∈M0 Dt(ρkk′), where
ρkk′ is the correlation between the test statistics for variables k and k′. Proposition 5 shows that
correlation modifies the distribution of Vt by increasing its dispersion, leaving its expectation
unchanged. Correlation has an important impact on the tail of the distribution, which is directly
involved in the calculation of the error rates. Proposition 5 confirms that a strong correlation
structure leads to a very unstable distribution of the number of false discoveries.

False Discovery Rate and Non Discovery Rate Proposition 5 shows that correlation modifies
the distribution of Vt by increasing its dispersion, leaving its expectation unchanged. Therefore,
correlation shall have an important impact on the tail of the distribution, which is directly involved
in the calculation of the error rates.

Simulation study 2. The same simulation scheme as in the first simulation study is considered
here. In addition, for m1 = 100 variables, expectations in each group A and B are set so that the
usual t-tests have a variable-by-variable power of 0.8. For the remaining m0 = 400 variables,
the difference is set to 0. For each dependence level (see Table 2), 1 000 datasets are simulated
according to a normal distribution. Finally, for each dataset, the p-values of the usual t-tests for
the comparison of means are calculated, both on raw and factor adjusted data. The BH procedure
is used to define the threshold t on p-values, with α = 0,2. The threshold on the p-values is
determined using the package multtest [30]. The true False-Positives Proportion (FDP) and
the true Non-Discovery Proportion (NDP) are then computed for each dataset.

Figure 4 reproduces multiple boxplots of the distributions of the FDP and NDP, for both raw
data (gray) and factor-adjusted data (black). Let’s first consider the case of raw data: mean of
FDP, which is FDR, is steady for all scenarios, but its variability sharply increases along with the
proportion of common variability (Figure 4(a)). Figure 4(b) shows that the fraction of common
variance generates slight instability in the distribution of NDPt . The mean NDPt , which can be
viewed as a type-II error rate, remains steady whatever the level of dependence. By comparison,
the distribution of the FDP is clearly stabilized when considering the factor-adjusted strategy:
using the usual t-tests, the variability of the FDP reaches up to four times the variability obtained
under independence whereas it remains controlled at almost the same level using the factor-
adjusted method. Another striking property of our method is the very important improvement of
the global power of the multiple testing procedure compared with the BH procedure based on
t-tests, illustrated by Figure 4(b). This result probably illustrates the idea that dependence between
the responses should not just be seen as a nuisance for controlling the FDR but also as a support
to provide improved estimation of the effects of covariates.

False Discovery Rate and False Discovery Proportion Multiple testing theory usually focus
on the control of type-I error rates, such as FDR control. The present section illustrates issues
occurring in the estimation of the FDR in case of dependent data.
The empirical FDR estimator is defined as

F̂DRt =
m0t
Rt

=
E(Vt)

Rt
(10)
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(a) FDP (b) NDP

FIGURE 4. False Discovery Proportion (FDP) and Non Discovery Proportion (NDP), along with the 10 scenarios in
Simulation study 2: raw data (grey) and factor adjusted data (black)

Let’s introduce a novel estimate for the FDR, which takes advantage of the factor structure, and
compare it with the empirical estimate defined in (10) thanks to the data of Simulation study 2.
The following expression gives the expectation of Vt conditionally on the factors.

E(Vt |Z) = ∑
k∈M0

P(pk ≤ t|Z) = ∑
k∈M0

GZ(k, t) (11)

The above expression of E(Vt |Z) is now used to define a conditional estimate F̂DR
Z
t of the FDR,

by analogy with the proposition made by [15], who defines FDRA
t as E(Vt |A)/Rt , where A is a

random variable which value essentially differs according to the amount of dispersion among the
correlations between the test statistics.

F̂DR
Z
t =

E(Vt |Z)
Rt

=
m0t
Rt

+
∑k∈M0 GZ(k, t)

Rt
− m0t

Rt

= F̂DRt .

[
1+

∑k∈M0(G
Z(k, t)− t)

m0t

]
(12)

This FDR estimate is defined as a correction of the unconditional estimate, accounting for the
correlation among the test statistics through factors.

The conditional and the empirical estimates of the FDR are now compared on the simulated
datasets of the Simulation study 2. For each dataset and for t = 0.05, the conditional estimate
FDRZ

t is estimated, together with the empirical estimate F̂DRt . To avoid discussions about the
impact of the estimation of m0 in this comparative study, m0 = 400 is supposed to be known.
For each scenario, Table 4 gives the regression coefficients between the observed false discovery
proportion FDPt and both FDR estimations. Results for scenario 9 are illustrated on Figure 5 by
plots of both FDR estimates versus FDPt .
Ideally, a correlation of 1, or at least a high and positive correlation, between the estimated FDR
and the true FDP is expected. In practice, this means that the estimation of the FDR is a suitable
indicator to accurately reflects the true proportion of false positives.
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TABLE 4. Regression coefficients between FDR estimates and FDP

scenario 0 1 2 3 4 5 6 7 8 9
common var. (%) 0 4,65 15,56 28,56 40,31 50,76 57,90 65,45 70,09 75,19
F̂DRt -0,197 -0,196 -0,189 -0,176 -0,187 -0,171 -0,175 -0,182 -0,169 -0,171
FDRZ

t -0,197 0,025 0,578 0,815 0,844 0,886 0,907 0,889 0,915 0,913

FIGURE 5. Estimated FDR versus observed true proportion of false positives (FDP) with α = 0.2 for a high level of
dependence (scenario 9 in Simulation study 2)

The unconditional estimate F̂DRt is negatively correlated with the observed FDPt , which can
result in strongly misleading estimations especially when FDPt is high. Figure 5 shows that this
concern is particularly clear for large fractions of shared variance (scenario 9). For small fraction
of shared variance, FDRZ

t suffers from the same problem, essentially because the number of

factors is most often estimated by zero, in which case F̂DR
Z
t = F̂DRt . From scenario 2 to 9, when

the factor structure is clearer, F̂DR
Z
t is positively correlated with FDPt , confirming the importance

of accounting for the correlation between test statistics in multiple testing procedures.

4. Factor Analysis in high-dimension

The method presented in Section 2 involves the estimation of the model parameters. Several
approaches could be planed. As an example, the Surrogate Variable Analysis [25] which is based
on a similar model decomposition as in (4) considers a singular values decomposition. On our side,
we consider that models (4) can be viewed as a Factor Analysis model. Therefore, this section
focus on the practical aspects of implementing Factor Analysis, in a high-dimensional setting.
More precisely, we now consider two issues in carrying Factor Analysis in high-dimension: factor
number determination and parameter estimation. For each issue, different methods are presented
and the choice the most appropriate one for the present context of multiple testing is discussed.
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4.1. Estimation of the model parameters

Let’s consider that each variable Yk, k ∈ [1..m], can be expressed as a linear combination of
common factors, Zq, q ∈ [1..Q] and a specific term as in (4). The issue is then to determine B̂ and
Ψ̂, respectively the estimation of the loadings, representing the weight of the considered variable
on the Z structure, and the estimation of the uniquenesses, so that: S = B̂B̂′+ Ψ̂.

Existing methods There are several methods to extract factors from the data. Generally, two of
them are implemented in the leading statistical software: Principal Factoring (PF) and Maximum
Likelihood (ML). The ML method has some nice statistical properties such as asymptotic effi-
ciency, invariance under change of scale, and the existence of a test for additional factors. ML
method is favored in the following for these interesting properties in an inferential aim [32].

ML Factor Analysis for high-dimensional data To avoid "Heywood cases" (specific variances
greater than 1) that can be brought by Newton-Raphson algorithms in the seek of the ML
estimators, an EM algorithm is proposed [33]. This class of algorithm is now a very popular tool
for iterative ML estimation in issues involving missing or incomplete data. In the Factor Analysis
framework, we aim at estimating the parameters of a multivariate normal model with missing data,
where in this case, the missing data are the unobserved latent variables Z, which are assumed to
be normally distributed. The EMFA algorithm is described hereafter:

1. E-step: Scores estimation

E(Z(i)|Y (i)) = Y (i)
Ψ
−1
0 B0(IQ +B′0Ψ

−1
0 B0)

−1

E(Z(i)Z′(i)|Y (i)) = (IQ +B′0Ψ
−1
0 B0)

−1 +E(Z(i)|Y (i))′E(Z(i)|Y (i))

2. M-step: Estimation of B and Ψ

B1 =
n

∑
i=1

[
Y ′(i)E(Z(i)|Y (i))

][ n

∑
i=1

E(Z′(i)Z(i)|Y (i))

]−1

Ψ1 = diag

[
S− 1

n

n

∑
i=1

Y ′(i)E(Z(i)|Y (i))B′1

]

A bias correction in order to account for the small sample conditions in which these models are
usually estimated is proposed [18]. EM Factor modeling can indeed be viewed as a particular

nonlinear smoothing procedure where Hz = Ẑ
[
∑

n
i=1 S(z)i

]−1
Ẑ′ stands for the smoothing matrix of

the factor model. cz denotes the trace of In−Hz and the degree-of-freedom corrected estimator
(n/cz)Ψ̂ of Ψ is deduced.

4.2. Determination of the number of factors

In Factor Analysis, the first step consists in estimating the number of factors Q to be considered in
the model. This step is the most crucial in conducting Factor Analysis and must balance between
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parsimony (low model complexity), and accuracy in representing the correlation structure.Under-
estimation of Q leads to loss of information by ignoring a factor or recombining one with
another: the loadings for measured variables are therefore biased and interpretation based on
them would not be much reliable, the true structure of the data being concealed. Over-estimation
is commonly considered as less severe, but considering too many factors underlines minors
factors: interpretation is difficult and such model is unlikely to be robust for replication. Therefore,
considering both too few and too much factors has significant consequences in the reduction of
information, affecting parameters estimation and data interpretation. Because of all these reasons,
the number of factors issue leads to plenty of methods proposed in the literature, with more or
less subjective decision rules.

Existing methods Many popular methods can be implemented to achieve a good compromise
between the specific and common variance components of the model, such as parallel analysis
[28] or the scree test [9]. Nevertheless, there is no consensus in which method is more appropriate,
mainly in a high dimensional context.

A criterion based on the variance inflation of the false positives In the present multiple
testing framework, in which an overestimation of the common variance part can result in a higher
false discovery proportion, we propose a new criterion to determine the number of factors to retain,
which matches with high-dimension constraints. It consists in the minimization of an ad-hoc
criterion, which can be viewed as the variance inflation of the number of false discoveries due to
dependence. This variance inflation is deduced from expression (9), where the sums are restricted
to indices of variables in M0 [18]. This criterion is successively estimated using the residual
matrix obtained with an increasing number of factors. Let’s consider the following model defined
previously in (4) and assuming q common factors for each variable k: Yk = µk +Zb′(q)k + ε

(q)
k . If

the whole correlation structure is well modeled by the Factor Analysis model, then the residual
correlation should be zero. Indeed, cov(εk;εk′) = σkσk′ρkk′−bkb′k′ and V(εk) = Ψk so the residual
correlation is defined, assuming a q-common factors model, by:

ρ
(q)
kk′ =

σkσk′ρkk′−b(q)k b′(q)k′√
ΨkΨk′

(13)

Beforehand, let’s recall the definition a U-shaped criterion called Dt(ρkk′) which appears in the
expression of the variance of the number of false positives. It ranges from 0 in ρ = 0 to 1 in ρ =−1
and ρ = 1. Considering the Dt(ρkk′) criterion for each pair of variables {Yk,Yk′},k 6= k′ ∈M0, the
proposed method to determine the number of factors is to choose Q satisfying:

Proposition 6. If ρ
(q)
kk′ is the residual correlation between Yk and Yk′ as in (13), let’s define Q as:

Q = argmin
q∈[0;qmax]

1
m(m−1) ∑

k 6=k′∈[1;m]

Dt(ρ
(q)
kk′ ) (14)

Q is the number of factors that minimizes the mean of Dt(ρ) criterion over all the pairs of variables.
In the multiple testing context, this criterion calculated over variables in M0 allows to extract
the number of factors that minimizes the variance of Vt (8). The consequence is that multiple

Journal de la Société Française de Statistique, Vol. 153 No. 2 100-122
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



116 Chloé Friguet

testing procedures are stabilized. In practice, this criterion is successively estimated using the
residual matrix obtained with an increasing number of factors and the retained number of factors
is obtained when the variance inflation is minimized.
This procedure for the number of factors determination is now implemented for the 10 scenarios
introduced in Simulation study 1, in which the true number of factors is Q= 5. Figure 6 reproduces
barplots of the distribution of Q̂. It clearly shows that when the proportion of common variance is
small, the estimated number of factors is relevantly lower than Q and when the factor structure
dominates the specific part, Q̂ provides a precise estimation of Q.

FIGURE 6. Distributions of the estimated number of factors along with the dependence level. From scenarios 4 to 9, Q̂
turns out to be constant and equal to Q=5.

In practice, implementing this method requires to calculate the Dt(ρkk′) criterion for all pairs
of variables, namely m× (m−1). As the correlation matrix is symmetric, it actually requires to
consider m×(m−1)/2 pairs. In the multiple testing framework, this is reduced to m0×(m0−1)/2
pairs, as the factors must be extracted from the variables in M0. Indeed, the information about the
experimental condition X should not be captured by the common factors. The choice of subset
of variables considered in M0 is discussed in section 6. In any case, the number of pairs is very
huge, and can reach several thousands. As also suggested by [29], we propose to consider a range
of η values, equi-distributed on [0;1]. Then, we count the number of times each value appears
in the correlation matrix, considering an approximation of correlations by taking their absolute
value and rounding them at the specified significant decimal figure:

∑
k 6=k′

Dt(ρkk′)≈
η

∑
j=1

n jDt(ρ j) (15)

where n j represents the number of variables pairs for which the rounded correlation is equal to ρ j.
If the correlation distribution is symmetric, which is the case in most of applications, then the
approximation given in (15) is accurate and leads to a sharp increase in computation time.
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In the R package FAMT, the minimized criterion is based on the following approximation:

1
m(m−1) ∑

k 6=k′
Dt(ρkk′)≈

∫
[0;1]

Dt(ρkk′) f (ρ)dρ

where f (ρ) is the null correlations density function. It is estimated thanks to sampling in observed
correlations.

5. Application to genomics

The methodology presented in Section 2 is now applied on data introduced in Example 2. Mi-
croarray experiments were initially conducted to identify differentially expressed genes from
hepatic transciptome profiles for m = 11 213 genes of n = 45 half-sib male chickens variable
for abdominal fatness (AF) ([26], [7]). The data are provided by the INRA Animal Genetics
department in Rennes, France.

(a) Histograms of raw p-values (empty bars) and
factor-adjusted p-values (grey bars)

(b) Interpretation of the common factors with respect to heterogeneity components [7]: p-values
from the test of the link between each factor and some individual or gene information

FIGURE 7. FAMT on the Lipid Metabolism study of Example 2

In order to figure out the differences between both analyses (from raw and factor-adjusted data),
Figure 7(a) compares the empirical distributions of the raw and the factor-adjusted p-values. As
noticed previously, the shape of the raw p-values distribution clearly shows an abnormal under-
representation of the p-values in the neighborhood of 0. Indeed, if all the gene expressions were
all truly under the null hypothesis, the p-values should be uniformly distributed on [0,1] and the
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proportion of observed p-values under 0.05 should be close to 0.05, provided the gene expressions
are independent. This marked departure of the empirical distribution of of p-values from the
density function of a uniform distribution has been recently considered by some authors as the
impact of a high amount of dependence among tests [15, 25, 18]. Applying the BH procedure on
the raw p-values results in no positive genes. Factor-adjustment restores independence between
tests statistics, which results in a correction of the distribution of the p-values from the concave
shape observed on Figure 7(a). Indeed, it seems that a large amount of p-values are uniformly
distributed and a few small p-values shall correspond to significant genes. The FAMT method is
conducted considering a model with Q = 6 common factors, which corresponds to the minimum
value of the variance inflation criterion introduced in Proposition 6. The model parameters are
estimated with this choice of a 6-factor structure and π0 is estimated using a smoothing spline
method [36] applied on the factor-adjusted p-values. As the factors are designed to be independent
from the explanatory variables (the abdominal fatness), they shall be described according to the
other available covariates such as the hatch, the total body-weight of the chicken, gene (length) or
microarray information (block, column, row) as shown in Table 7(b). This confirms a posteriori
the strength of capturing heterogeneity through latent variables in the model rather than correcting
multiple testing procedures at each step.
For a threshold of t = 0.05 on the p-values (no correction for multiplicity), d1 = 287 and d2 = 688
gene expressions are declared significantly correlated to the abdominal fatness trait, considering
the raw and factor-adjusted data respectively. The list of significant tests is larger in the case of
factor-adjusted data but also, and above all, it is much more relevant as illustrated by Figure 8
which represents the factorial maps obtained from PCA on each list respectively. On the right
map, the discrimination between lean (L) and fat (F) chicken is much more highlighted along
with the first axis than on the left map.

FIGURE 8. Factorial maps based on gene expressions selected from the raw data (left) and the factor adjusted data
(right).

A more relevant list of genes declared as differentially expressed is of great interest for geneticists
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who carry further analyses of biological properties from this result of differential analysis.

6. Discussion

The issue of this article deals with studying the impact of dependence in large-scale multiple
testing procedures. Motivated by issues raised by the analysis of gene expressions data, the aim is
to propose a statistical tool to take into account data heterogeneity in simultaneous hypotheses
testing for high-dimensional data. Heterogeneity may arise from technical or environmental
factors that have not been observed or have not been controlled by the experimental design. The
proposed method consists in identifying the linear space generated by a set of latent variables that
models the heterogeneous structure, catching the common variability shared by all the response
variables. The suggested model is related to a Factor Analysis model.
Most of the existing multiple testing procedures rely on the analysis of the empirical process of
p-values associated to the individual tests, under the assumption of independence. A thresholding
rule takes into account the multiplicity of the tests. The impact of dependence on the stability of
these procedures is one of the prime results of this work. Indeed, dependence induces variability
that interferes in particular with p-values distribution under the true null hypothesis. The main
impact is a sharp deviation from the theoretical null distribution when the level of common
variability between variables is high. Consequently, the variability of false-positives increases.
More precisely, the variance of the number of false-positives includes a term which explicitly
depends on the correlation between the response variables. Dependence has therefore repercussion
on the estimation of error rates, leading to high instability in multiple testing procedures.
A procedure is defined from the factor adjusted variables as the data are independent conditionally
on the latent structure. Dependence is actually addressed at the level of the original data, integrated
in the model used to calculate the tests statistics. Consequently, the present method illustrates the
fact that the well-known individual optimality of the tests indebted to the Neyman-Pearson theory
does not imply the global optimality of a multiple testing procedure in situations of dependence
between the variables. As data are independent conditionally on the factors, this framework
allows to extend to general dependence the results on error rates control initially gained under
independence. Thus, the proposed framework leads to less correlation among tests and shows
large improvements of power and stability of simultaneous inference. The impact of dependence
on the FWER and on π0 estimation have also been studied and improvements are also brought by
the factor analysis framework. These studies are detailed respectively in [11] and in [17].
The proposed procedure is called Factor Analysis for Multiple Testing (FAMT), from the name of
the package. This package is available on the R-project website (http://cran.r-project.
org/). The package has also its own website (http://famt.free.fr). The different steps of
the procedures are summed up hereafter:

1. Estimation of M0 Classical t-tests are calculated for each variables and a first estimation
of M0 is deduced by taking the indices of the p-values exceeding 0.05;

2. Choice of the number of factors The number of factors is estimated by minimization of
the criterion given in Proposition 6;

3. Estimation of the model’s parameters ML estimates are computed considering the EMFA
algorithm
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4. Calculating factor-adjusted p-values The factor-adjusted test statistics T̃ and the corre-
sponding p-values are calculated;

5. Up-dating the estimation of M0 The estimation of M0 is updated by taking the indices
of the factor-adjusted p-values exceeding 0,05.
STEPS 2 to 4 are performed again with this new estimation of M0;

6. π0 estimation The estimation of this parameter is in general a crucial step of multiple
testing procedures. Several methods are available (see [24] for details). The estimation is
based on the factor-adjusted p-values.

7. Decision rule A BH thresholding procedure at level α is applied to the factor-adjusted
p-values to decide which null hypotheses are rejected. The BH procedure is improved by
plugging-in π0 estimate.

Beyond the study of the model itself, many points concerning the effective implementation of
the factor-adjusted multiple testing procedure are addressed, including the model parameters
estimation thanks to an EM algorithm, the estimation of the proportion of true null hypotheses and
the choice of the number of factors. The EMFA algorithm provides accurate estimates of variance
parameters in a high-dimensional setting (not asymptotic). We propose a criterion allowing to
define the model that fits best the covariance structure, minimizing the inflation of variance of
false-positives. However, some issues are still to be explored, such as the preliminary estimation
of M0 involved in the calculation of the scores (step 1 in FAMT procedure). This last issue is
probably very similar to problems encountered by [15] and by [25].
Finally, the method has been applied to microarray data and great improvements for biological
interpretation of differential analysis in gene expressions data have been highlighted [7].
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