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Abstract: As a reaction to the restrictive Gaussian assumptions that are usually part of graphical models, Vogel and
Fried [17] recently introduced elliptical graphical models, in which the vector of variables at hand is assumed to have
an elliptical distribution. The present work introduces a class of rank tests in the context of elliptical graphical models.
The proposed tests are valid under any elliptical density, and in particular do not require any moment assumption. They
achieve local and asymptotic optimality under correctly specified densities. Their asymptotic properties are investigated
both under the null and under sequences of local alternatives. Asymptotic relative efficiencies with respect to the
corresponding pseudo-Gaussian competitors are derived, which allows to show that, when based on normal scores, the
proposed rank tests uniformly dominate the pseudo-Gaussian tests in the Pitman sense. The asymptotic results are
confirmed through a Monte-Carlo study.

Résumé : En réaction aux hypotheses gaussiennes restrictives qui accompagnent le plus souvent les modeles graphiques,
Vogel et Fried [17] ont récemment introduit des modeles graphiques elliptiques, qui prévoient que les variables suivent
conjointement une distribution elliptique. Le présent travail introduit une classe de tests de rangs dans le contexte de
ces modeles graphiques elliptiques. Ces tests sont valides sous une densité elliptique quelconque, et en particulier
ne requierent aucune hypothese de moment. Ils sont localement et asymptotiquement optimaux sous des densités
correctement spécifiées. Leurs propriétés asymptotiques sont étudiées a la fois sous 1’hypothese nulle et sous des
suites de contre-hypotheses locales. Leurs efficacités asymptotiques relatives par rapport a leurs compétiteurs pseudo-
gaussiens sont calculées, ce qui permet de montrer que, lorsqu’ils sont basés sur des scores gaussiens, les tests de
rangs proposés dominent uniformément les tests pseudo-gaussiens au sens de Pitman. Les résultats asymptotiques sont
confirmés par une étude de Monte-Carlo.
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1. Introduction

Graphical modeling is one of the main tools that allow to understand the network of linear
dependencies in a collection of random variables X{, ..., X;. It has many applications, especially
in biometrics, where it is used to study gene association networks; see, e.g., [12, 13] and [16].
Classically, graphical modeling produces a graph G in which the k vertices are associated with the
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Rank Tests for Elliptical Graphical Modeling 83

random variables at hand and (undirected) edges indicate that the corresponding pair of variables
are not conditionally independent (conditional on the k — 2 remaining variables).

Standard graphical modeling is based on the assumption that X = (X, ...,X)’ is multinormal.
Conditional independence between X; and X, then is equivalent to (ZC_OIV) j¢e = 0, where X,y stands
for the covariance matrix of X. This implies that determining the edges that should be part of G
can be achieved by considering null hypotheses of the form

cov

i (B =0 or A (Eeh)in == )i, =0, (1)

which therefore are of primary importance in graphical modeling. As often in multivariate analysis,
the daily-practice tests are the corresponding (Gaussian) likelihood ratio tests (LRTS).

Of course, multinormality is a very strong assumption, that is seldom compatible with real data.
In the recent paper [17], Vogel and Fried introduced elliptical graphical models, that only impose
that the distribution of X is elliptically symmetric. In that context, non-gaussianity implies that
conditional independence is replaced with conditional uncorrelatedness, while the possible lack
of finite second-order moments requires substituting a scatter matrix parameter X (see Section 2.1
below for a precise definition) for the covariance matrix X.,y. In that framework, Vogel and Fried
defined robustified Gaussian LRTs that remain valid—in the sense that they asymptotically meet
the level constraint—under a broad range of elliptical densities. More precisely, their tests, that
are based on quadratic forms in an estimator £ of £, remain valid under any elliptical distribution
at which y/nvec(X —X) is asymptotically normal with mean zero and a covariance matrix that
can be consistently estimated from the sample. Choosing an adequate robust estimator £ then
yields tests that do not require any moment assumption. However, to obtain a pseudo-Gaussian
test (that is, a test that is robust to deviations from multinormality, yet is asymptotically equivalent
to Gaussian LRTs in the multinormal case), one has to use the empirical covariance matrix for fi,
which leads to pseudo-Gaussian tests that require finite fourth-order moments.

The main objective of the present paper is to provide a class of tests that achieve local and
asymptotic optimality under any fixed target density, yet remain valid under arbitrary elliptical
densities, in the absence of any moment assumption. The proposed tests, that arise from invariance
arguments, are based on the same multivariate signs and ranks as in [4, 5] and [7]. Denoting by
Xj,..., X, an observed n-tuple of k-dimensional elliptical vectors with location 8 and scatter
matrix X, these signs and ranks are (sample versions of)

1. the standardized spatial signs

2(X,-0)
272X - 0)]|

it , i=1,...,n,

(throughout A!/2, for a symmetric and positive definite matrix A, stands for the symmetric
and positive definite root of A) and

2. the Mahalanobis ranks Rgn), i=1,...,n, where Rl(") denotes the rank of [[Z~/2(X; — )|
among [[£7'(X; - 0)],.... [Z7"*(X, - 0)]].

Of particular interest within the proposed class of rank tests is the van der Waerden—that
is, normal-score—test, that (i) is asymptotically equivalent, under Gaussian densities, to the
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84 D. Paindaveine and Th. Verdebout

corresponding Gaussian LRTs, and (ii) uniformly dominates, in the Pitman sense, the locally and
asymptotically optimal pseudo-Gaussian test.

The outline of the paper is as follows. In Section 2, we introduce the notation and the
parametrization to be used in the sequel (Section 2.1) and exploit the uniform local asymp-
totic normality of the parametric submodels considered (Section 2.2) to build optimal parametric
tests (Section 2.3). In Section 3, we turn the Gaussian version of these parametric tests into
pseudo-Gaussian tests, that remain valid under any elliptical distribution with finite fourth-order
moments. The rank tests we introduce in Section 4 are validity-robust in the sense that they
remain valid under arbitrary elliptical densities, without any moment assumption. They are also
efficiency-robust, as we show by deriving asymptotic relative efficiencies (Section 5.1) and by
conducting a Monte-Carlo study (Section 5.2). Finally, the Appendix collects technical proofs.

2. Parametrization, ULAN, and optimal parametric tests

In this section, we describe the parametrization of elliptical families that will be relevant for
graphical modeling and we state the corresponding uniform local asymptotic normality (ULAN)
result, that is the key result in the construction of optimal tests in the context.

2.1. Parametrization

We throughout assume that the k-dimensional observations Xg"), . ,XE,"> are elliptically symmet-

ric. More precisely, defining
F = {g : Ra’ —R": Mi—1,e < 00},

where i, == [ r'g(r)dr, and

1
Fi={acF ;(uk_lvgl)—l/o #lgy () dr=1/2),

(n)

we assume that the Xin
of the form

’s are mutually independent with a common probability density function

X > Chg, (detX)~/2g, (\/(XO)’ZI(X9)> , ()

for some k-dimensional vector 0 (location), some symmetric and positive definite (k X k) matrix X
(scatter), and some g| € %] (standardized radial density). This latter terminology is justified
by the fact that the Mahalanobis distances d;(0,Z) := ((X;—0)'E~(X; —0))"/? are i.i.d. with
probability density function r — g (r) := (Hx—1,) " ' "' g1(r)I};>q), Where Iz stands for the
indicator function of the set B. In the sequel, the corresponding cumulative distribution function
will be denoted as G1x(r) = [§ 1x(s)ds.

Special instances are the k-variate multinormal distribution, with radial density g; (r) = ¢ (r) :=
exp(—ayr?/2), the k-variate Student distributions, with radial densities (for v € R degrees of
freedom) g1(r) = f1 ,(r) = (1+ aryr?/v)~*+V)/2 and the k-variate power-exponential distribu-
tions, with radial densities of the form g (r) = ff , (r) := exp(—bynr*"), n € RY; the positive
constants ax, a,y, and by, are such that g € 7.
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Rank Tests for Elliptical Graphical Modeling 85

Since graphical modeling is based on £, it is natural to replace the parametrization in (6,X,g1)
with a parametrization in (6,271, g1)- Actually, we will further factorize £ into

2 l=¢W,  with (W) =k, (3)

since the classical testing problems in graphical modeling, parallel to those associated with (1),
are problems for which W is the parameter of interest, while ¢> plays the role of a nuisance.
The factorization in (3) mimics the decomposition of the scatter matrix £ = 6>V into a shape
parameter V (with trace k, say) and a scale parameter 2, that has proved useful in many inference
problems involving the shape of elliptical distributions; see, e.g., [4, 5, 6] and [7].

To sum up, the parametrization of elliptical families we will consider in the context of graphical
modeling involves, beyond the infinite-dimensional radial density parameter g, € .%1, the finite-
dimensional parameter

& =(0',¢% (vechW)') € @ :=R* x R x vech (.%}),

where ., stands for the set of k X k symmetric and positive definite matrices with trace k and where
vech(A) := (A1, (vechA)’) € R'™K (with K := k(k+1)/2 — 1) denotes the vector stacking the
upper-triangular elements of the matrix A (the upper left entry of W may be dropped from & since
it can be obtained from the other entries of W by using the fact that W has trace k). In the sequel,

(n) (n)

we will write Pg ¢ OF P for the joint distribution of the mutually independent random

evgszagl
vectors Xgn), e ,X,(ln) with common pdf
X g 6 (det W) 2g1 (6/(x—B)W(x—9) ). @)

which is the pdf in (2) written in terms of the new parametrization. The semiparametric model
considered for elliptical graphical modeling is then associated with the family of probability
distributions

@(n) = Uglergl ’@g) = Uglerg] U§€® {ngi,l } (5)

As mentioned in the Introduction, the derivation of optimal—at some fixed g; = fj—tests
for graphical modeling will be based on the ULAN property of the corresponding parametric
submodel L@}?)
2.2. ULAN

As usual, ULAN requires some mild regularity conditions on f]. More precisely, we need here that
f1 belongs to the collection .#, of all absolutely continuous densities in .#; for which, denoting
by fi the a.e. derivative of f; and letting @5, := —f1/f1, the integrals

A= [ G Fundr and _gif)= [CPeEOFar©)

exist and are finite. The quantities % (f1) and _Z(f1) play the roles of radial Fisher information
for location and radial Fisher information for shape/scale, respectively. Slightly less stringent
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86 D. Paindaveine and Th. Verdebout

assumptions, involving derivatives in the sense of distributions, can be found in [5], where we
refer to for details.

Stating the ULAN result relevant for elliptical graphical models requires introducing some fur-
ther notation. Denoting by e, the (th vector of the canonical basis of R¥ let K := Zﬁ =1 (eie}) ®
(eje) be the k* x k? commutation matrix, put J; := (vecI;)(vecy)’, and write A®? for the Kro-
necker product A ® A. Finally, let My be the K x k> matrix such that M}, (vech w) = vec w for any
symmetric k X k matrix w satisfying tr(w) = 0. Applying Lemma A.1 from [7] to Proposition 2.1

of [5] then yields the following result.

Theorem 2.1. For any f| € %,, the family 331({’) = {Pén
with central sequence ‘ 7

)fl :E=(0',¢%,(vechW)') € @} is ULAN,

&N &0 78 A28 A3
where (letting d; = d;(0, W) := ((X;—0)W(X;—0))"/2 and U; = U;(8, W) := W'/2(X; - 0) /d;)

A :(Aw A ALY >’7

L 2 n
n ._ S 1/2 n . 6
A = L oG W UL Ao 1= =5 Y (sdign(6di) — k)
and B | ) =
AL yi=— M (We2) 72 di o5, (¢di) UU; — 1
&3 T2 (W) ;Vec (¢di @7, (6di) UU; 1) ,
and full-rank information matrix
r&mfl;ll 0 y 0
Le = 0 Ue i Fg,f,;32 ’
0 Ce iz Te g
where
2
"Ik h
révle“ = k()w7
S (A(f1) —k s (Ak(fh) —K7) _
F€7f1;22 = j ( >? r&,fl;32 = (/ ) M (VeCW 1)7
4 4k
and

1 -1/2 k(1) -1/2
T a3 = 5 M (W) [,;/(iJrz) (L + K +J0) = Ji | (WF2) ™M

More precisely, for any «’,‘(") =€+ O(nfl/ %) and any bounded sequence T € RMEHL e have
that, as n — o under P(n)

é(n)afl’
log (4P Japl) )= ()AL - Ly, 1 1 op(1)
g(”)+ ~1/2g(m) J1 5(") J1 g(n) S 2 é’fl
dA,w . L Nk (0T
an 0 f ik +1(0, g_fl)-
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Rank Tests for Elliptical Graphical Modeling 87

The block-diagonal structure of the information matrix I , implies that the unspecification
of @ has no asymptotic cost when performing inference on ¢ and/or W. In contrast, the non-zero
asymptotic covariance I'g ; .3, between the ¢2- and W-parts of the central sequence entails that
the unspecification of ¢ will have an asymptotic cost when performing inference on W. In such a
situation, asymptotic inference should be based on the fi-efficient central sequence

X)) axm) A NG
App =8 s = A~ Tepmle 1008 1o )
1 o2\ -12 % . w1
- 2\/ﬁ Mk(W ) 1:21 gdl (pfl(gd,)vec<U,Ui k1k>v

(n

which, under P‘5 is asymptotically normal with mean zero and covariance matrix

)
f’
R - —1 /
1-'gvfl '_ngfl;33 T F€7f1;33 _r‘€~fl»32F§fl,22 éafl;32

. 2 - ,
= 452(_{12)) M; (W®2) 1/2 [Ikz + Ky — ka} (W®2) ]/sz

= J(f))Gr(W); (®)

throughout this paper, inference will be about W, which allows to make the notation a bit lighter by
dropping the indices 3 and 33 in efficient central sequences and information matrices, respectively.

2.3. Optimal parametric tests

We focus on the problem of testing linear restrictions on W, which covers most testing problems
of interest in graphical modeling. More precisely, we consider a generic problem of the form

A : (vechW) € . (X) (N vech (%)) caquivalentl I € € Op(Y) ©)
A : (vechW) ¢ .4 (X) (N vech (%)) d YV A4 E¢ @) |

where Y is a given (arbitrary) K x (K — r) matrix with full rank K — r, and where . (Y) stands
for the vector space that is spanned by the columns of Y. Under the null, W satisfies a set of r
independent linear constraints. Note that the null hypotheses in (1)—when formulated in terms of
the scatter matrix ¥—are of this form : for instance, the null hypotheses 73 : (2_1)12 =0and
A (27112 = (Z71) 13 = 0—equivalently, 5% : (W)12 =0 and 4 : (W) = (W);3 = O—are
respectively associated with

_( Qixx-n Ay 23 [ 02
Y—( Lo, and Y=L 'TI:=Lg s ,

where LE?'}) is the K x K permutation matrix that exchanges the second and third rows of I1. More
generally, this class of testing problems allows to test that any fixed collection of off-diagonal
entries of W is only made of zeroes.
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88 D. Paindaveine and Th. Verdebout

It follows from [11] that, when considering the testing problem in (9) at asymptotic level &, the
locally and asymptotically fi-optimal test ¢¢ , —more precisely, the locally and asymptotically

most stringent test in & }:’)—rejects the null whenever

" - ] px0)
Q§7fl T (A€7fl)/ |:(1—‘E7f1) I_Y(Y/FE7f1Y) lr,i| Ag:fl (10)

i B TGW) TG W) YA >

where sz |_o denotes the a-upper quantile of the chi-square distribution with r degrees of freedom.
Of course, & remains unspecified under the null, hence should be replaced with an appropriate
estimator &, which leads to the statistic Qy, and to the test ¢y, say. While this test achieves (local
and asymptotic) optimality at fi, it is of rather limited practical value since it is usually not valid
under g; # f1—in the sense that, under g; # fi, its asymptotic size is not @ under the null.

3. Pseudo-Gaussian tests

In view of the central role played by multinormal densities in classical multivariate analysis, the
Gaussian version of the tests defined above, namely ¢, with f| = ¢y, is of particular interest.
As already mentioned, however, this test is of limited practical value since it is valid under
multinormal densities only—or more precisely, as we will show, under elliptical densities with
Gaussian kurtosis only. Now, it turns out that it is possible to extend the validity of this Gaussian
test to the whole class of elliptical densities with finite fourth-order moments, while maintaining
its optimality properties at the multinormal. This section defines and studies the resulting so-called
pseudo-Gaussian tests.
As, e.g.,in [1, 2] or [3], we define the kurtosis of the elliptical density in (4) as

k Ex(s1)
Kk(gl) = —FX — 1,
k+2 " Di(g1)
with
Dilgr) i= S8 (g [Ca(0,W)] ) and Ei(gr)i= o5 (=B, [c*d!(6,W)] );

Hi—1,, Hic—1,g,

this clearly requires that g € .# 1(4) = {81 € Z1 1 Wiy3,4, < oo}, thatis, the elliptical distributions
considered need to have finite fourth-order moments. For Gaussian densities, Ex(¢1) = k(k+2) /a2,
Dy (¢1) = k/ay, which leads to k(¢;) = 0. Positive (resp., negative) kurtosis values ki (g1) would
therefore indicate tails that are heavier (resp., lighter) than in the multinormal case.
Robustifying Gaussian tests into pseudo-Gaussian ones requires investigating the asymptotic

(n) Letting ng) =1y (X;—0)(X;—8),

behavior of the Gaussian efficient central sequence AE ’;1 .

first note that this central sequence rewrites

*(n) _ak€2 22\-1/2 \ p oL
Ay = —zﬁMk(W ) ;divec (UlU,- Rl (11)
2 1 n n
= _akgz\/ﬁ M, |:Ik2 — k(vechov)(VecZCOlv)’] vec (Sé )) =: akngé;:wva
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Rank Tests for Elliptical Graphical Modeling 89

where X, denotes the common covariance matrix of the X;’s. The asymptotic properties of AL ,
under any elliptical density with finite fourth-order moments, are given in the following resu?t.

Lemma 3.1. Fix& = (8',¢2, (vechW)') €©, g, € Z\V := 7Y N.Z,, and a bounded sequence
) = () ) (veochw(”))’ )" in REKH1 such that vechw := lim,, .. vechw") exists. Then,

(n)

under Png 1/2q00 g

(n) £ * re

Ag g = Mgy o TEG),

where u*gl = k+2)Di(g1)Gr(W)(vechw) and T3 = a2E(g1)Gr(W); for T = 0, the
ér &.01 k

z®

claim actually only requires that g1 € 7,

In view of the Gaussian (f] = ¢1) version of (10), Lemma 3.1 leads to considering the pseudo-
Gaussian test "statistic"”

81 R *(n)\/ *g1 \— %81 1y *(n)
0f , = (&%) [(r‘m) ~Y(OTE, Y)Y ALY (12)

= a,%Ek(gO(Aé(‘P?) [(GL(W)) ™' —Y(X'GL(W)T) 1] ALY

Ex(81) o) [(GKW) ™ =YX G (W) '] Ty

which, by using the fact that X o, = %Dk(gl X = éDk(gl YW~ rewrites as

Di(g1)

81 _ k (n)

Qv = szk(g1)(T9’2
1

= Ty Mon) [(GEm) T YA GELD T Ty

S)om gk Ve

) [(Gk(By) ™ =Y (X'Gi(Z,,

cov

In practice, adequate estimators 0 and i‘.cov need to be substituted for @ and X, respectively.
The following result allows to control the impact of this substitution.

Lemma 3.2. Fix§ € ®and g, € J1(4) and assume that 0 and f‘.cov are root-n consistent for 0

and oy under Pé ") Then, letting Weoy := kECOV Jtr (X COv)

™, -1V

o —Tok, =~ (k+2) (r ) Gu(E )Vt vech (Weo, — W) +op(1),

as n — oo under Pén) .
81
As shown in the proof of Theorem 3.1 below, it follows from Lemma 3.2 that the replacement
of 8 and X.,, with root-n consistent estimators @ and X.,; will have no effect on the null
asymptotic behavior of Q?( v in probability, provided that the estimator X, is constrained—in

the sense that the corresponding WCOV satisfies the null constraint in (9). Such an estimate can of
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90 D. Paindaveine and Th. Verdebout

course be obtained by projecting a preliminary estimator £ ov on the null constraint, that is by
replacing X.,, with

N k A
z:cov;O = 1 cov;0?
tr (zcov)

where Wcov;o is the statistic with values in .#; defined through

1 cov

o A o k A —
(vech Weoy:0) := Y (X'Y) 1Y’ vech < — % 1 >
tr (ZCOV)
Clearly, root-n consistency of ﬁcov will entail root-n consistency of f«:ov;o under the null. The
resulting pseudo-Gaussian test—@ 4, say—rejects the null at asymptotic level o whenever

1

O R

(T, ) (6B YOG B 1) Y| Ty > 2o

where K := kJ’iZ( ((X e>lzcov O(Xi - é))Z)/( (X e)lzcov O(Xi - é))Z — 1, for

any g1 € ,/a( ), con51stently estimates ki(g;) under Uée@)o(r){Pgngl }. The following result sum-

marizes the asymptotic properties of ¢_y.

Theorem 3.1. (i) Under Ugcg, )Y

degrees of freedom;

e { £ } Q_y is asymptotically chi-square with r

(ii) under Péi 2 g , with T as in Lemma 3.1, & € @y(Y), and g, € FY, O _y is asymp-
totically non- central chi-square with r degrees of freedom and non-centrality parameter

Kk+2) o, / N o
T (g (eehw) [GKW) = GeWIT(XGL (W) Y'G(W)] (vechw):

(iii) ¢y has asymptotic level o under Ug g, xyU e { §g1}

(iv) @y is locally and asymptotically most stringent, still at asymptotic level o, for Ug cg, )
) {Pénin} against alternatives of the form Uw@oa—){ngLl }.

Wrapping up, we defined in this section a pseudo-Gaussian test ¢_y for 7). This test achieves
local asymptotic optimality in the multinormal case and remains valid under any elliptical density
with finite fourth-order moments.

4. Rank tests

In the previous section, pseudo-Gaussian test statistics were obtained by building quadratic forms
in the Gaussian efficient central sequences A ) Distribution-freeness there was achieved by
estimating the asymptotic covariance matrix of this central sequence at the underlying radial
density g1, which required estimating the kurtosis ki (g;) of g;.
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Rank Tests for Elliptical Graphical Modeling 91

Another, more elegant, way of eliminating the nuisance g; is to exploit the strong invariance
structure of the model considered. For any fixed values of @ and W, the corresponding submodel

(n) ._ (n)
yerfw = UgeRar Ugleﬁ] {Perfg27w7gl}

is indeed invariant under the group gé"‘),v = {ggl)v}é :h € S}, of continuous monotone radial
transformations of the form

g(eri)v}:’(xlv"wxn) = gh(e—}—le*l/zUl""’9+dnwfl/2Un)
= (e+h(d1)wil/2U1,...,G—I—h(dn)W*l/zUn)?

where the d; = d;(0,W)’s and the U; = U;(8,W)’s are the quantities involved in Theorem 2.1,
and where 7 denotes the collection of the mappings #: R*™— R™ that are continuous, monotone
increasing, and satisfy 2(0) =0 and lim,_,. /(z) =oo. This group actually is a generating group
for Q@g%v, which implies that invariant statistics are distribution-free in ﬁénz,v This is what leads
to considering signed rank tests (below, we simply speak of rank tests), since invariant statistics
are exactly those that are measurable with respect to

(Uy,..., U, R, R,

where RS") = Rl(") (6, W) denotes the rank of d; among dj, ..., d,; see [5] for details.
The rank tests we propose will be based on linear rank statistics of the form

n (n)
x(n) _ 2\—1/2 R, o 1

i=1

where the score function K : (0,1) — R is continuous and square-integrable, and can be written

A *(n)

as the difference of two monotone increasing functions. As Lemma 4.1(i) below shows, A £

(n)

under Pg o is asymptotically equivalent in probability to

*g1(n -1/2 © = 1
Agg[](( ) = —2\7M (W@Z) / L:ZI K(le(di(G,W)))vec(UiUg— %Ik>

In particular, A g(K) , with Ky, (u) == F (u) @y, (F,;' () for all u, is a rank-based version of the
*(n)

efficient central sequence Ag P in (7), hence can serve as the basis for the construction of optimal
(at f1) rank tests.
*(n)

The asymptotic behavior of A EK is described in the following result.

Lemma 4.1. Fix & = (8’,62, (vechW)')’ € ® and (") as in Lemma 3.1. Then,

(i) (asymptotic representation) under Pé " with g1 €%, A 5(';() Azg}((n) +0;2(1) as n — oo,

(i) (asymptotic normality) under Pénln—l/zm) " with g € .Z,, Aggll( (n) 4 asymptotically normal
with mean
B Eg; k=L ggé(VeChW) Ji(K,g1)Gi(W)(vechw)
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and covariance matrix

FE.,K = _Ji(K)Gr(W), (13)
where #i(K,g1) = [ K(u)Kq, (u)duand _#;(K) := [y K (u)du;
(iii) (asymptotic linearity) under Pg?gl,with 91674 A, . égf;g T % (vechw()

+op(1) asn — oo,

Mimicking the form of the optimal parametric test in (10), we consider the rank test ¢ x that
rejects the null in (9) at asymptotic level & whenever

— 2
QK = Q ") > Xrl-a

3
where

Oex = (AW |07 —x(rTs, )77 A (14)

_ /f( (AL (G W)™ = YO GWN) T A

and where (é (n)) is an adequate sequence of estimators of &. More precisely, we will assume the
following.

Assumption (A). The sequence of estimators (é (n)) is

(A1) constrained: for any n € Ny, § € ©y(Y) and g, € .Z,, Pé";l [.’;‘ )

S @o( )]

(A2) \/n-consistent under the null: for any & € @y(Y) and g € .Z,, v/n( é §
as n — oo, underPé )1
(A3) locally asymptotically discrete: for all & € ®y(Y) and all ¢ > 0, there exists M = M(c) > 0
such that the number of possible values of 5( in balls of the form {t: n'/?||t—&| < ¢} is
bounded by M, uniformly as n — co.

Among the many possible estimators &, we propose the estimator

A

E = (é,,gz,(veochwo)')/ (15)
= (é/,gz,T(Y’T)*IT/(VeOChW))’

(note that g2 does not appear in Q £ hence does not need to be estimated), where 0 and W, as
in [8], are defined through

Ly vie.w)= Ui(0, W)UL(8,W) = %Ik, and (W) = k.

n
ni3 ni3

A sn
The estimator & in (15)—or more precisely, the resulting sequence of estimators (:';( ))—satisﬁes
Assumptions (A1)-(A2). After appropriate discretization, it would also satisfy Assumption (A3).
In practical situations, however, where n is fixed, this discretization is superfluous, as one may
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always assume that é is part of a locally and asymptotically discrete sequence of estimators; see,
e.g., [5, 7] or [9] for a discussion.

The following theorem, which states the asymptotic properties of the rank test ¢ g, is the main
result of this paper.

Theorem 4.1. Let Assumption (A) hold. Then,
(i) under Ug cg,y) g c 2, {Pé";l }. Q k is asymptotically chi-square with r degrees of freedom;

(n)

(ii) under P§+n’1/2‘t("),g|’ with T as in Lemma 3.1, Ec0y(Y), and gy € Z,, Q  is asymptot-
ically non-central chi-square with r degrees of freedom and non-centrality parameter

/2 (Kv 81 ) o ’ , e . '
% (vechw)' [Gr(W) — G (W)Y (X'G(W)Y) Iy G (W)] (vechw):

(iii) @ k has asymptotic level o under Ug g, x) Ug e 2, {Pg?gl }.

(iv) ¢ Ky, IS locally and asymptotically most stringent, still at asymptotic level ¢, for Ug g )

Ug e, {ngl} against alternatives of the form Ug ¢¢, (x) {ng}l }.

This result confirms that the proposed rank tests do not require any moment condition, as they
are valid (and distribution-free) under any g; € .%,. When based on the optimal score function K,
they also achieve local and asymptotic optimality at f. In particular, the van der Waerden (normal-
score) rank test Q vdW = Q Ko, (see Section 5.2 for details) is locally and asymptotically optimal
in the Gaussian case.

5. Asymptotic relatives efficiencies and simulations

In this section, we compare, through asymptotic relative efficiencies (AREs) and simulations, the
pseudo-Gaussian tests from Section 3 and the rank-based tests from Section 4.

5.1. AREs

The results of both previous sections allow to compute in a straightforward way the asymptotic
relative efficiencies of the proposed rank tests ¢ x with respect to their pseudo-Gaussian competi-

tors ¢ 4. These AREs indeed are simply obtained by dividing the non-centrality parameter in
Theorem 4.1 by the one in Theorem 3.1.

Theorem 5.1. The asymptotic relative efficiency of the rank tests @ x with respect to the pseudo-

Gaussian tests ¢_y, under standardized radial density g (€ 5@54)), is

1+ Ki(g1) sz(K»gl)'

Kk+2)  _AK) (10

ARE; 4 (9x/9n) =
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Unlike their pseudo-Gaussian competitors, the proposed rank tests do not require finite fourth-
order moments. If the underlying elliptical density has infinite fourth-order moments, the AREs
of our rank tests with respect to pseudo-Gaussian tests may therefore be considered infinite. This
implies that the assumption that g; € 3%(4) is not restrictive in Theorem 5.1.

The AREs in (16) do coincide with the ones obtained in [5], in the context of testing sphericity
of the underlying elliptical distribution. As a direct corollary, the Chernoff-Savage result of [14]
applies in the present context, and shows that the AREs of the proposed van der Waerden test @ vaw
with respect to the pseudo-Gaussian tests are uniformly larger than or equal to one, with equality
under multinormal densities only.

Numerical values of these AREs are provided in Table 1, for various rank tests that are defined
in Section 5.2 below. Further ARE values will be provided when presenting simulations results in
Table 2.

5.2. Simulations

Simulations were conducted as follows. We generated N = 1,500 mutually independent samples
of i.i.d. trivariate (k = 3) random vectors &, { =1, 2,3, 4,i=1,...,n =200, with spherical
Gaussian (€1), t3 (€2:1), t5 (€3.;), and #; (€4;;) densities, respectively. Each &;.; was successively
transformed into

Xpin = (G2 (Wo+wn)) V2ep, €=1,2,3,4, i=1,....n, 1=0,1,2,3, 17)

with
1/2 1/4 0 0 0 n/10
=2, Wo:=| 1/4 1/2 1/2 |,andwp:=| 0O 0 0
0 1/2 2 n/10 0 0

The value n = 0 corresponds to the null hypothesis .74 : W3 = 0, while the values n =1,2,3
provide increasingly severe alternatives.
We performed the pseudo-Gaussian test ¢ 4 and various rank-based tests ¢ g, all at asymptotic

level o¢ = 5%. The rank-based tests considered are

— the van der Waerden (normal-score) test ¢ vaw (= P, ), that uses

Ko () =¥ (u) and _Zi(91) = k(k+2),

where W), stands for the x,f distribution function;
— the #y-score tests ¢, for v =1,5,8, which are based on

k(k+Vv)G., (u)
\Y —|—kG,;\1/(u)

k(k+2)(k+V)

Ky (u)=
7, ) k+v+2

and  _Zi(fiyv) =

)

where Gy y denotes the Fisher-Snedecor distribution function with k£ and v degrees of
freedom;
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Rank Tests for Elliptical Graphical Modeling 95

— the sign test ¢ S("), Wilcoxon test ¢ \g'f ) and Spearman test ¢ s(g)’ that are obtained for

K,(u) :=u" and _Z(K,)=1/(2a+1),

witha =0, a =1 and a = 2, respectively;

Table 2, which reports the corresponding rejection frequencies, confirms our asymptotic results.
The pseudo-Gaussian test ¢ 4 meets the level constraint under Gaussian, fg and t5 distributions,
but not under the #; (that has infinite fourth-order moments). In contrast, the rank tests always
meet the nominal asymptotic level constraint. Despite the relatively small sample size (n = 200),
the rankings based on empirical powers and AREs agree in most cases. In particular, under all
Student distributions considered, the optimality of the rank tests based on correctly specified
densities is confirmed (van der Waerden tests notoriously require larger sample sizes to show
agreement with asymptotic results).

6. Appendix

PROOF OF LEMMA 3.2. In this proof, all stochastic convergences are as n — oo under Pé";l, for

the values € € ® and g € .7 1(4) fixed in the statement of the Lemma.

First note that, since (vecEg) ) (vecEeoy) = tr(Iy) =k, Tox,, = ng:m rewrites

cCovV

1 n
Tos, = \éﬁMk [Ikz - k(vecZCOV)(Vechlv)’] vec (Sé ) —Zeov)- (18)

(n) , (n)

(") _$ into 0" +1, —tgn), where tl(") =8 _ Sgl) =op(n~1/?), é") =

) )
Sg’) —Xeov = Op(nfl/z), and t3(n) =% v — Zeoy = 0p(n*1/2), (18) and the continuous mapping
theorem yield

Decomposing S

n 1 N A1 A
Tos, = — LM [l - et (veeti)) vee(Sy) ~Bun)

1 L
= Tox, + \éﬁ M; [Ikz — k(veczcov)(veczc_olv)’} vec (ZCOV —ZCOV) +op(1).

By using first the delta method, then the identities vec(ABC) = (C'®@ A)(vecB) and K (vecA) =
vec (A'), this entails that

n 1 _ a—1 _
Té Seov T Zeov \2f My |:Ik2 - % (VeC 2"(:ov) (VGCZCOE,)/] (Z?O%,)VGC (zcov - 2“colv) +op ( 1)

Vn 1 o1 _
= _TMk(zcgg)%/)l/z Ik2 - %Jk (zc%))%/)l/zvec (Zcov _Zcolv) +0P(1)

A

- _\é/tﬁ M (E52)2H (E52) P vec (Zcolv _zcioif) +op(1),
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where we let Hy := I;2 + K — Jk Clearly, W,y is a root-n consistent estimator for W =

KE L /tr(Zo.)). Recalling that 2‘. — 2.} is Op(n~1/?), the continuous mapping theorem then
yields

Tes —Tos, = ﬁ M (Z52) "2 H (232

0 >zcov cov

)1/2

L~ _ o _ -
((tr Bl — B ) Weay + (r B ) (Weoy — w>) top(1)

— —Z/kﬁ (tr (2;,1, E&W)) (ZS?V)I/ZH (Z®2)1/2(VGCW)
7£ (tr 2“cov) (E&%)I/ZH (Z®2 )I/ZVCC(WCOV —W)+op(1).

4k

2)12(veeW) = Hyvee(Sehy WELLY) = kH (vecly) /tr (E..}) = 0. This and the
definition of My (note that WCOV — W has trace zero) finally provides

Note that Hy(Z52

Téyf’cov o TO7EC0V = - Z]: (tr ZCOV) (Z(%)QV) 1/2H (2‘@2 )I/ZM/ VeCh (WCOV - W) + OP(l)

= (k + 2) (tr 2Cov) Gk (zcov) ﬁ VCoCh (WCOV - W) + OP( 1 )’
which establishes the result. ]

PROOF OF THEOREM 3.1. (i) Fix & = (8',2, (vechW)")' € @y(Y) and g; € 91(4). By construc-
tion, (vech Wovo) takes its values in .2 (Y), so that Lemma 3.2 implies that

Té,ﬁ‘acov - Teyzcov = - (k + 2) (tr ZCOV) Gk (ZCOV) \/ﬁ VeOCh (WCOV'O - W) + OP(I)

= —(k+2)(trZ.)) Gr(Zo )Y (X' T) 1Y /i vech (Weoy:0 — W) + 0p(1),

as n — oo under Pé";] . This entails that

[(Gk (Zcov)) T(T/Gk (z’cov)r)ilr/] (Té,)icov - TG,ZCOV) = 0P<1)7 (19)

still as n — oo under ng;] . Jointly with the consistency of K and the continuity of the mapping

A — Gy (A), this yields that Q_y — Q?’JV =op(1) as n — oo under Pé"il . Equality (12), the (") =0
version of Lemma 3.1, and the idempotence of 7
g1 *g1 \— %81 1y
Bi=Ty, (08 YOm0~y
then yields (see., e.g., Theorem 9.2.1 in [15]) that Q 4, under Pg?g], is asymptotically chi-square
with '

tr(B) = tr (IK — (T )T (0T, )Y T )1/2) —K—(K—r)=r (20)

degrees of freedom.
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(i1) Assume now that g; € %E“) and fix a sequence T(") as in Lemma 3.1. From contiguity,

Oy — Q?;i - is also op(1) as n — o under Pé"l’r, 240 g

and using Lemma 3.1 now shows that Q 4, still under P

- Applying again Theorem 9.2.1 in [15]
(n)

E+n—1/2¢0) g
non-central chi-square with r degrees of freedom and non-centrality parameter

g is indeed asymptotically

*, / *, -1 ok, —1 *
(g o) @) = XOTE 1)~
2D1% (g 1

Er(g1)

B k(k+2)
1+ xe(gr)

~—

= (k+2) (vechw)' [Gx(W) — G(W)Y(XY'Gi(W)Y) "' Y'G(W)] (vechw)

(vechw)' [Gx(W) — Gr(W)Y(XY'Gi(W)Y) "' Y'G(W)] (vechw).

(>iii)-(iv) Part (iii) of the result directly follows from the asymptotic null distribution given in

Part (i) and the classical Helly-Bray theorem. As for Part (iv), the asymptotic equivalence Q 4 —

? _y =op(1) under Pé"_?gl shows that, in the multinormal case g; = @1, Q 4 is asymptotically
equivalent in probability to Q¢17 y = Q¢ ¢, the local asymptotic optimality result in Part (iv) then
is a consequence of the weak convergence of local experiments to Gaussian shifts (see, e.g.,

Section 11.9 of [11]). O

PROOF OF THEOREM 4.1. (i) Fix & = (0',¢2, (vechW)') € @ and g| € .%,. Lemma 4.1
in [10] allows to replace the deterministic perturbation ") in Lemma 4.1(iii) with /(& — &),
which yields

AN AL = T e (WY - W) o)
_ _SlKg) v W _
= &) s xv/nvech(Wy" — W) +op(1) (21)

as n — oo, under P('f) . Applying the continuous mapping theorem, using (21) in conjunction with
Assumption (A1), and then applying Lemma 4.1(i), we obtain that

Qx = (égf'g)’ {(FE’K)_I—T(T’F’E’KT)‘IT’}égf'l?—l—()p(l)

= (A [0 —x(rmg ) Y] ALY or(1)

ek ~&,
= @5 @) YT 1) T A oe(1) 22)

as n — oo, under Pégl. The result then follows again from Theorem 9.2.1 in [15], by using

(the T = 0 version of) Lemma 4.1(ii) and the fact that T ¢ [(Tg ) = XYQTE X)) is
idempotent with trace r (the trace can be computed as in (20)). '

(n)
E4n-1/2200) g,
via Lemma 4.1(ii), now yields that Q g, under these local alternatives, indeed is asymptotically

(i1) From contiguity, (22) also holds under P , so that the same result from [15],
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non-central chi-square with r degrees of freedom and non-centrality parameter

(55 ) [T ) =YD )Y 1 L

2
- %(V&hw)/ [GL(W) = G (W)Y (X'GL(W)Y) ' T'G((W)] (vechw).

(iii)-(iv) Part (iii) directly follows from the asymptotic null distribution given in Part (i) and
the classical Helly-Bray theorem. As for Part (iv), note that the K = K, version of (22) shows
that Q 5 and Q¢  in (10) are asymptotically equivalent in probability under standardized radial

density fi; as in the proof of Theorem 3.1, the local asymptotic optimality of ¢ g, is then a

consequence of the weak convergence of local experiments to Gaussian shifts. 0
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degrees of freedom of the underlying ¢ density

test k|lv<4d v=5 v=8 v=15 v=20 v—oo
2 4o 2204 1215  1.047 1.025 1.000

3 4oo 2270 1.233  1.052 1.028 1.000

Qvaw | 4 4oo 2326 1.249  1.057 1.031 1.000
N 6 4o 2413 1275  1.066 1.036 1.000
10 | +e 2531 1312 1.080 1.045 1.000

2 4o 2331 1.248  1.045 1.013  0.957

3 4o 2398 1.267 1.052 1.018  0.957

Qs 4 4o 2453 1284  1.058 1.023  0.958
6 4o 2537 1311  1.070 1.031  0.959

10 | +oeo 2,646 1349  1.087 1.044  0.963

2 4+ 1500 0.750  0.591 0.563  0.500

3 4o  1.800 0900 0.709 0.675  0.600

ds 4 40 2.000 (1.000 0.788  0.750  0.667
N 6 4o 2250 (1.125 0.886  0.844  0.750
10 | +e 2500 1.250 0985 0938  0.833

2 4o 2258 1.174 0956 0919 0.844

3 4o 2386 1.246 1.022 0985 0913

Ow 4 4oo 2432 1273  1.048 1.012  0.945
- 6 4o 2451 1283  1.060 1.026  0.969
10 | +oo 2426 1264 1.045 1.013  0.970

TABLE 1. AREs, with respect 1o the pseudo-Gaussian tests ¢y, of the van der Waerden (¢ vaw ), tv (with v = 6), sign
(¢ s), and Wilcoxon (¢ w) rank tests § g, under k-dimensional Student (v <4, v =35, 8, 15, and 20 degrees of
freedom) and normal densities, respectively, for k =2,3,4,6, and 10.
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test | g1 | M=0 n=1 n=2 n=3]ARE(/¢,)
oy 0513 2500 .7893 9940 1.0000
¢ vaw 0500 2487 7713 9920 1.0000
04 0633 2533 7753 9907 9714
O | N | 0647 2487 7660 9867 9460
9, 0600 2253 6867 .9667 7824
95 0527  .1893 5747 9200 .6000
Ow 0653 2413 7533 9833 9130
sp 0567 2500 .7640 9887 9568
oy 0433 1933 6220 9507 1.0000
¢ vaw 0453 2207 6880 9713 1.2329
0 0487 2247 7140 9767 1.2692
¢ | 1 | 0487 2227 7180 9747 1.2637
9, 0567 1967 .6887 .9560 1.1319
95 0567 1773 5767 9100 9000
Ow 0500 2180 7147 9740 1.2464
sp 0487 2227 6967 9727 1.2249
0y 0500 .1453 4887 8373 1.0000
¢ vaw 0507 2200 .6747 .9660 2.2705
04 0447 2493 7020 9760 2.3895
9 0453 2540 7120 9753 2.4000
¢, | 15 | 0473 2373 6793 9613 2.2244
0s 0540 1860 .5827  .9140 1.8000
Ow 0473 2500 7100 9767 2.3858
sp 0507 2300 .6780 9727 2.2766
0 0233 0307 .0293 .0627 -
¢ vaw 0467 1340 5247 8787 +o0
O 0520 .1580 5787 9180 +o0
¢, | n | 0527 1640 5913 9227 +oo
04 0513 1727 6420 9407 +oo
0s 0513 1667 5893 9153 +o0
Ow 0507 .1667 5993 9260 400
sp 0553 .1413 5207  .8740 +o0

TABLE 2. Rejection frequencies (out of N = 1,500 replications), under the null (1) = 0) and increasingly severe
alternatives (1 = 1,2,3; see Subsection 5.2 for details), of the pseudo-Gaussian test ¢ 4, and the van der Waerden
(¢ vaw) tv (v=8,5,1), sign (¢ s), Wilcoxon (¢ w), and Spearman (¢ sp) rank tests. Sample size is n = 200. All tests

were based on asymptotic 5% critical values. The last column provides numerical computations of the AREs in (5.1).
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