
Journal de la Société Française de Statistique
Vol. 153 No. 1 (2012)

Infinite-Dimensional Autoregressive Systems and
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Abstract: The Generalized Dynamic Factor Model is usually represented as an infinite-dimensional moving average
of the common shocks plus idiosyncratic components. Here I argue that such representation can only be the solution
(reduced form) of a deeper, structural, infinite-dimensional system of equations which contain both an autoregressive
and a moving average part. I give conditions for the solutions of such infinite-dimensional systems to make sense and
be weakly stationary, and study their decomposition into common and idiosyncratic components. Interesting links to
long memory as generated by aggregation are also shown.

Résumé : Le Modèle à Facteurs Dynamiques Généralisé est habituellement représenté comme une moyenne mobile
infinie des chocs communs à laquelle s’ajoutent des composantes idiosyncratiques. Dans cet article, nous expliquons
que cette représentation n’est que la solution (sous forme réduite) d’un système d’équations plus profond, structural,
de dimension infinie, et contenant à la fois une partie autorégressive et une partie à moyenne mobile. Nous livrons
des conditions qui garantissent que les solutions de tels systèmes sont faiblement stationnaires et nous analysons leur
décomposition en composantes communes et idiosyncratiques. Enfin, nous établissons des liens avec la mémoire
longue qui est engendrée par agrégation.
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1. Introduction

Consider an infinite-dimensional stochastic process

xt = (x1t x2t · · · xnt · · · )′.

Suppose that xt is zero-mean and weakly stationary, precisely that xnt = (x1t x2t · · · xnt)
′ is zero-

mean and weakly stationary for all n. Let ΣΣΣx
n(θ) be the spectral density matrix of xnt , θ ∈ [−π π],

and let λ x
n j(θ) be the jth eigenvalue of ΣΣΣx

n(θ). Assume that there exists an integer q≥ 0 such that
(I) λ x

n,q+1(θ)≤D, for some D > 0, for all n and θ almost everywhere in [−π π], and (II) if q > 0
then λ x

nq(θ)→ ∞ as n→ ∞ for θ almost everywhere in [−π π]. Then, as Forni and Lippi (2001)
prove, there exists a q-dimensional white noise ut = (u1t u2t · · · uqt )

′, square-summable filters
bi j(L), i ∈ N, j = 1,2, . . . ,q, and an infinite-dimensional, zero-mean, weakly stationary process

ξξξ t = (ξ1t ξ2t · · · ξnt · · · )′,
1 Universitá di Roma La Sapienza and Einaudi Institute for Economics and Finance (EIEF)

E-mail: ml@lippi.ws

Journal de la Société Française de Statistique, Vol. 153 No. 1 71-81
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



72 Lippi

such that
xit = χit +ξit

χit = ai1(L)u1t +ai2(L)+ · · · +aiq(L)uqt +ξit = ai(L)ut +ξit ,
(1)

where:
(i) There exists B > 0 such that for all n and θ almost everywhere in [−π π] λ

ξ

n1 ≤ B.
(ii) λ

χ
nq(θ)→ ∞ as n→ ∞, for θ almost everywhere in [−π π]. Note that ΣΣΣ

χ
n (θ) has rank q for all

θ , so that λ
χ

n,q+s(θ) = 0 for all s > 0.
(iii) u jt and ξi,t−k are orthogonal for all k ∈ Z, i ∈ N and j = 1,2, . . . ,q.

The converse is also true, i.e. if xt has a representation of the form (1) with χχχ t and ξξξ t fulfilling
(i), (ii) and (iii), then the above conditions on the qth and (q+1)th eigenvalues of ΣΣΣx

n(θ) hold.
Forni and Lippi (2001) also show that the decomposition of xit into χit and ξit is unique. Of course
neither ut nor the filters bi j(L) are unique. For, a transformation of ut , by an invertible matrix,
and the corresponding transformation of the filters produce a representation equivalent to (1). We
assume that the white noise ut has been normalized, i.e. that ut is orthonormal.

Model (1), under (i), (ii) and (iii), is known as a Generalized Dynamic Factor Model. It has
been the object of a quite vast literature starting with Forni, Hallin, Lippi and Reichlin (2000),
Forni and Lippi (2001), Stock and Watson (2002a and b), Bai and Ng (2002), Bai (2003).

We refer to (i) by saying that the variables ξit are weakly correlated or that they are idiosyncratic.
The variables u jt are called the common shocks and the variables χit the common components.
Thus in (1) an infinite dimensional, large-dimensional in empirical applications, vector is driven
by a small-dimensional vector of common shocks plus the weakly correlated idiosyncratic terms.

If the variables xit are macroeconomic variables, as in the large majority of empirical applica-
tions so far, the shocks u jt , j = 1,2, . . . ,q, represent common macroeconomic sources of variation.
The variables ξit represent instead variable-specific, sectoral, local disturbances or measurement
errors. If further information, economic-theory statements in particular, is available, then the
structural common shocks can be identified with he same methods applied in the construction of
Structural VARs, i.e. determining a matrix H such that for the structural shocks we have ũt = Hut ,
while ãi(L) = Hai(L) are the structural impulse-response functions (see e.g. Forni, Giannone,
Lippi and Reichlin, 2009).

The motivation for the present paper is that representation (1) is in general the moving-average
solution of a system of equations in which each variable xit depends on common shocks and
idiosyncratic components, but also directly on some of the variables x jt , with or without lags.
For example, suppose that the variable x1t is the price of good G. Then x1t depends on the prices
of other goods that enter G’s production process. Or, suppose that x1t results from a decision
rule adopted by an optimizing agent under rational expectations. Then x1t typically depends on
(i) lagged values of x1t , (ii) other variables belonging to the system, both current and lagged, (iii) a
finite moving average of a vector white noise. See Hansen and Sargent (1980), as a paradigm for
this kind of models.

Piecing together (a) the above considerations on the autoregressive links between the variables
xit and (b) the distinction between common and idiosyncratic shocks, under mild simplifying
assumptions, the structural model would take the following form:

C0xt +C1xt−1 + · · ·+Cpxt−p = B0ut +B1ut + · · ·+Bqut−q +ξξξ t , (2)
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Autoregressive Dynamic Factor Models 73

or, in compact version
C(L)xt = B(L)ut +ξξξ t , (3)

where the matrices C j have an infinite number of rows and columns, while the matrices Bk have
an infinite number of rows and q columns.

There are cases in which the existence of a stationary solution for system (3) requires nothing
more than the usual condition. For example, if the system is

xit = αix1,t−1 +biut +ξit ,

then of course a stationary solution exists if and only if |α1| < 1. However, if the system is
genuinely infinite dimensional, for example

xit = αixi+1,t−1 +biut +ξit ,

then the whole infinite-dimensional matrix C(L) must be taken into consideration.
The paper studies the following simplification of (3):

xit =
∞

∑
j=1

ci jx j,t−1 +biut +ξit , (4)

or, in compact form,
(I−CL)xt = but +ξξξ t . (5)

Of course the finite moving average on the right-hand side of (3) does not play any role for the
existence of stationary solutions. Thus having q = 1 and B(L) = b does not imply any los of
generality. On the other hand, generalizing the results proved here to model (3) is a fairly easy
task.

Section 2 provides conditions on the infinite-dimensional matrix C and the infinite-dimensional
vector b, such that equation (5) has a stationary solution. I find that if C is a bounded operator
on the Banach space of bounded sequences ci, the norm being supi |ci|, if supi |bi|< ∞ and the
spectral radius of C is less than unity, then the representation

xt = (I−CL)−1but +(I−CL)−1
ξξξ t

makes sense and is a stationary solution of (5). Section 3 shows that if C′ is a bounded operator
on the Hilbert space of square summable sequences di, the norm being

√
∑i |di|2, and the spectral

radius of C′ is less than unity, then xt is a Generalized Dynamic Factor Model, with q = 1,
in which (I−CL)−1but and (I−CL)−1ξξξ t are the common and the idiosyncratic component
respectively. In Section 4 I discuss some examples and links to long-memory stochastic processes.
Section 5 concludes.

2. Existence of a stationary solution

It will be convenient to re-index the variables xit in Z instead of N, so that (4) becomes

xit =
∞

∑
j=−∞

ci jx j,t−1 +biut +ξit . (4)
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74 Lippi

Assumption 1. The sequence ξit , i ∈ Z, is zero-mean, weakly stationary and idiosyncratic.
Moreover, ut is a unit-variance white noise.

Assumption 2. limn→∞ ∑
n
j=−n b2

j = ∞.

Assumption 3. ut ⊥ ξ j,t−k for i ∈ Z and k ∈ Z.

Assumption 2 implies that the first eigenvalue of the spectral density matrix of

(b−n · · · b0 · · · bn)
′ut

tends to infinity as n→ ∞. As a consequence, under Assumptions 1, 2 and 3, defining yit =
biut + ξit , the sequence yit is a Generalized Dynamic Factor Model with q = 1 (note that the
dynamics for the variables yt may only come form the idiosyncratic terms).

As an example, we may think of an infinite production system, whith ci j and b j representing,
respectively, the quantity of commodity j and labour necessary to produce one unit of commodity
i. If xit and ut are the the price of commodity i and the wage rate respectvely, then (4) is the price
equation, with ξit being a disturbance term, under the assumption of a zero rate of profit (or of a
factor profit embodied in the coefficients ci j). Given the non-negative vector

d = (· · · d−n · · · d0 · · · dn · · ·),

the equation
(I−C′)z = d

determines the activity levels necessary to obtain d as a net product. Special cases are

xit = ciixi,t−1 +biut +ξit , (6)

in which each industry employs only its own product as a means of production, and

xit = ci,i−1xi−1,t−1 +biut +ξit , (7)

in which the only mean of production used in industry i its the product of industry i−1. Further
discussion of these cases is postponed to Section 5.

An obvious candidate for a solution of equation (5) is

xt = (I+CL+C2L2 + · · ·)but +(I+CL+C2L2 + · · ·)ξξξ t . (8)

But of course we must impose conditions on the infinite-dimensional matrix C and the vector b.
It seems natural to assume that bi < b for some positive b. Moreover, we must have that all the
components of Cb are finite, i.e. that ∑

∞
j=−∞ ci jb j is finite for all i.

Denote by `∞ the Banach space of all complex bounded sequences

c = (· · · c−n · · · c0 · · · cn · · ·)′,

with norm ‖c‖`∞
= supi |ci|.

Assumption 4. The vector b belongs to `∞ and the matrix C is a bounded operator on `∞.
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Autoregressive Dynamic Factor Models 75

Let us recall that C is a bounded operator on `∞ if

sup
‖d‖`∞=1

‖Cd‖`∞
< ∞,

and that the norm of a bounded operator on `∞ is defined as the left-hand side of the above
inequality:

‖C‖`∞
= sup
‖d‖`∞=1

‖Cd‖`∞
. (9)

Moreover, it easily seen that

‖C‖`∞
= sup

i

∞

∑
j=−∞

|ci j|.

Under Assumption 4, the spectrum of C is the subset of the complex field C containing all λ s
such that λ I−C has not a bounded inverse. The spectrum of C is a bounded, closed subset of
C. The spectral radius of C, denoted by r`∞

(C), is defined as sup |λ |, for λ belonging to the
spectrum of C.

Assumption 5. r`∞
(C)< 1.

Under Assumption 5 the series

I+Cµ +C2
µ

2 + · · ·

converges with respect to the norm (9) for some µ > 1. This implies that ‖Cn‖`∞
< Aµ−k for

some A > 0 and therefore
1+‖C‖`∞

+‖C2‖`∞
+ · · ·< ∞. (10)

For the spectrum of bounded operators on Banach spaces and the results mentioned above, see
Dunford and Schwartz (1988), p. 566-7, Lemma 4 in particular.

Proposition 1. Under Assumptions 1 through 5, (8) is a weakly stationary solution of equation
(4). Moreover supi E(x2

it)< ∞.

Proof. I want to prove that the right-hand side of (8) has finite second moments. Consider first
the common component of the ith variable in (8):

(bi +
∞

∑
j=−∞

ci jb jL+
∞

∑
j=−∞

c(2)i j b jL2 + · · ·)ut ,

where c(k)i j denotes the (i, j) entry of Ck. The filter’s squared gain is

|bi +
∞

∑
j=−∞

ci jb je−iθ+
∞

∑
j=−∞

c(2)i j b je−i2θ + · · · |2

≤ ‖b‖2
`∞
(1+

∞

∑
j=−∞

|ci j|+
∞

∑
j=−∞

|c(2)i j |
2 + · · ·)2

≤ ‖b‖2
`∞
(1+‖C‖`∞

+‖C2‖`∞
+ · · ·)2.
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Consider now the idiosyncratic component

ξit +
∞

∑
j=−∞

ci jξ jt +
∞

∑
j=−∞

c(2)i j ξ jt + · · ·= (I[i]+C[i]L+C2
[i]L

2 + · · ·)ξξξ t

where Ck
[i] denotes the ith row of Ck. Then consider

(I[i,m]+C[i,m]L+C2
[i,m]L

2 + · · ·)ξξξ t , (11)

where Ck
[i,m] denotes the row vector

(c(k)i,i−m c(k)i,i−m+1 · · · c(k)i,i · · · c(k)i,i+m−1 c(k)i,i+m).

For the spectral density of (11) we have

(I[i,m]+C[i,m]e−iθ +C2
[i,m]e

−i2θ + · · ·)ΣΣΣ
ξ

[i,m](θ)(I[i,m]+C[i,m]e−iθ +C2
[i,m]e

−i2θ + · · ·)′

≤ ‖I[i,m]+C[i,m]e−iθ +C2
[i,m]e

−i2θ + · · ·‖2
Eλ

ξ

i+m,1(θ)

≤ ‖I[i,m]+C[i,m]e−iθ +C2
[i,m]e

−i2θ + · · ·‖2
EB,

where ‖ · ‖E is the standard Euclidean norm, ΣΣΣ
ξ

[i,m](θ) is the spectral density of the vector

(ξi−m,t · · ·ξi+m,t), λ
ξ

i+m,1(θ) is the first eigenvalue of ΣΣΣ
ξ

i+m(θ), which is greater or equal to the

first eigenvalue of ΣΣΣ
ξ

[i,m](θ) (because ΣΣΣ
ξ

[i,m](θ) is a submatrix of ΣΣΣ
ξ

i+m(θ), see Forni and Lippi, [9]).
On the other hand,

‖I[i,m]+C[i,m]e−iθ +C2
[i,m]e

−i2θ + · · ·‖2 = |ci,i−me−iθ + c(2)i,i−me−i2θ + · · · |2

+ · · ·+ |1+ ciie−iθ + c(2)ii e−i2θ + · · · |2 + · · ·+ |ci,i+me−iθ + c(2)i,i+me−i2θ + · · · |2

≤ (|ci,i−m|+ |c(2)i,i−m|+ · · ·)2

+ · · ·+(1+ |cii|+ |c(2)ii |+ · · ·)2 + · · ·+(|ci,i+m|+ |c(2)i,i+m|+ · · ·)2

≤

(
1+

m

∑
j=−m
|ci,i+ j|+

m

∑
j=−m
|c(2)i,i+ j|+ · · ·

)2

≤
(
1+‖C‖`∞

+‖C2‖`∞
+ · · ·

)2
.

The conclusion follows, with E(xit)
2 bounded by (‖b‖2

`∞
+B)(1+‖C‖`∞

+‖C2‖`∞
+ · · ·)2. Q.E.D.

3. The solution of the autoregressive equation as a Generalized Dynamic Factor Model

Consider a zero-mean weakly-stationary infinite dimensional process ηit , i ∈ Z. According to
condition (i), see the Introduction, ηηη t is idiosyncratic if λ

η

n1(θ) is essentially bounded. Now
consider a sequence of infinite-dimensional filters

fn(L) = (· · · fn,−n(L) fn,−n+1(L) · · · fn,0(L) · · · fn,n−1(L) fn,n(L) · · ·), (12)

and assume that

lim
n→∞

∫
π

−π

∞

∑
j=−−∞

| fn, j(e−iθ )|2dθ . (13)
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Autoregressive Dynamic Factor Models 77

The most obvious example is the arithmetic average:

fn, j(L) =

{
0 if | j|> |n|
(1+2n)−1 if | j| ≤ |n|.

Forni and Lippi (2001) prove that the sequence ηηη t is idiosyncratic if and only if (13) implies that

lim
n→∞

fn(L)ηηη t = 0, (14)

in mean square.
We denote by `2 the Hilbert space of all complex square-summable sequences

d = (· · · d−n · · · d0 · · · dn · · ·)′,

with norm ‖d‖`2 =
√

∑
∞
i=−∞ |di|2.

Assumption 6. The matrix C′ is a bounded operator on `2, i.e.

sup
‖d‖`2=1

‖C′d‖2
`2
< ∞.

The `2-norm is defined as ‖C′‖`2 =
√

sup‖d‖`2=1 C′d, the spectrum and the spectral radius are

defined as above, r`2(·) denoting the spectral radius. We suppose that

r`2(C
′)< 1.

Let L2 be the Hilbert space of all sequences

f = (· · · f−n · · · f0 · · · fn · · ·)′,

where
(1) fn is defined on [−π π], takes values in C and is square integrable;
(2)
∫

π

−π ∑
∞
j=−∞ | f j(θ)|2dθ < ∞.

The L2-norm is defined as

‖f‖L2 =

√∫
π

−π

∞

∑
j=−∞

| f j(θ)|2dθ =

√∫
π

−π

‖f(θ)‖2
`2

dθ .

Now consider the function C , with sends θ ∈ [−π π] on the matrix C′e−iθ . For f ∈L2, using
Assumption 6:

‖C kf‖2 =
∫

π

−π

‖C′ke−ikθ f(θ)‖2
`2

dθ ≤ ‖C′ke−ikθ‖2
`2
‖f‖2

L2
= ‖C′k‖2

`2
‖f‖2

L2
,

so that C k is a bounded operator on L2 and ‖C k‖L2 ≤ ‖C′
k‖`2 . Moreover, for n < m,

‖C n +C n+1 + · · ·+C m‖L2 ≤ ‖C n‖L2 +‖C n+1‖L2 + · · ·+‖C m‖L2

≤ ‖C′n‖`2 +‖C′
n+1‖`2 + · · ·+‖C′

m‖`2 .
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Under Assumption 6, (10) holds in the `2-norm. Therefore, denoting by I the identity operator
on L2,

I +C +C 2 + · · ·

converges in the L2-norm. Thus, in conclusion, I −C is invertible and

(I −C )−1 = I +C +C 2 + · · ·

Proposition 2. Under Assumptions 1 through 6 the infinite-dimensional process xt , as defined in
(8), is a Generalized Dynamic Factor Model with q = 1, where χχχ∗t = (I+CL+C2L2 + · · ·)but is
the common component and ξξξ ∗t = (I+CL+CL2 + · · ·)ξξξ t is the idiosyncratic component.

PROOF. Given a complex-valued function defined on [−π π], we denote by f (L) the filter
∑

∞
k=−∞ a f ,kLk, where a f ,k is the coefficient of e−ikθ in the Fourier expansion of f . Given f ∈L2,

we define
f(L) = (· · · f−n

(L) · · · f
0
(L) · · · f

n
(L) · · ·).

Note that f is a column whereas f(L) is a row vector. The component ξξξ ∗t is idiosyncratic if and
only if, given the sequence fn ∈L2, ‖fn‖2

L2
→ 0 implies that E(fn(L)ξξξ

∗
t )

2→ 0 in mean square.
Given fn, let gn =

[
(I −C )−1fn

]
. We have

fn(L)ξξξ
∗
t = g

n
(L)ξξξ t .

On the other hand, (I −C )−1 is linear, bounded and therefore continuous, so that ‖fn‖2
L2
→ 0

implies that ‖gn‖2
L2
→ 0, which in turn implies that E(g

n
(L)ξξξ t)

2→ 0.
Regarding the component χχχ∗t , take the sequence

hn(θ) =
1

∑
n
j=−n b2

j
(· · · 0 b−n · · · b0 · · · bn 0 · · ·)′

and observe that ‖hn(θ)‖`2 → 0 for all θ ∈ [−π π], so that obviously hn ∈L2. Moreover,

hn(L)χχχ t = hn(L)but = ut .

Then define gn = [(I −C )hn]:

g
n
(L)χχχ∗t = hn(L)χχχ t = ut .

Now consider
gn = (· · · gn,−m gn,−m+1 · · · gn,0 · · · gn,m−1 gn,m · · ·)′,

and define gn,s, s > 0, as the truncation of gn obtained by setting equal to zero all entries of gn

whose index exceed s in modulus. There exists a sequence gn,mn , with mn→ ∞ as n→ ∞, such
that

g
n,mn

(L)χχχ∗t → ut

in mean square. For the spectral density of g
n,mn

(L)χχχ∗t , we have

sn(θ) = gn,mn(θ)ΣΣΣmn(θ)gn,mn(θ)
′ ≤ λmn,1(θ)‖gn,mn(θ)‖2

E.
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Autoregressive Dynamic Factor Models 79

Now observe that

‖gn(θ)‖`2 = ‖(I−C′e−iθ )hn(θ)‖`2 ≤ ‖hn(θ)‖`2(1+‖C
′‖`2)→ 0

for all θ ∈ [−π π], so that
‖gn,mn(θ)‖E ≤ ‖gn(θ)‖`2 → 0

for all θ ∈ [−π π]. Leting Λ be the subset of [−π π] where λ
χ∗

n,mn,1(θ) does not tend to infinity,
sn(θ)→ 0 in Λ. Because g

n,mn
(L)χχχ∗t → ut in mean square, we have∫

π

−π

|sn(θ)− (2π)−1|dθ → 0.

This implies that Λ has measure zero. In conclusion, the first eigenvalue of the spectral density of
χnt diverges almost everywhere in [−π π]. Q.E.D.

4. Examples. Long memory processes

An important observation is that, unlike finite-dimensional autoregressive equations, in our case
the condition that the spectral radius of C, as an operator on `∞, is sufficient but not necessary
for stationarity of xt . Consider example (6) and suppose that |cii| < 1 but that supi |cii| = 1. In
this case 1 belongs to the spectrum of C, i.e. I−C has not a bounded inverse. For, (I−C)−1v,
where v is the vector having unity in all entries, is not a member of `∞ (note that 1 belongs to
the spectrum of C but has no corresponding eigenvectors). Nevertheless, equations (4) can be
solved one after another and each of the variables xit is stationary. Boundedness of E(x2

it) is not
obtained unless we make further assumptions on b and ξξξ t . Of course Assumption 6 fails to hold
and Proposition 2 holds only under further assumptions on ξξξ t .

Consider example (7). We have, assuming bi = 1 and using the notation ci,i−1 = αi,

xit = [ut +αiut−1 +αiαi−1ut−2 + · · · ]+ [ξit +αiξi−1,t−1 +αiαi−1ξi−2,t−2 + · · · ].

If supi |αi|< 1 for all i, then the spectral radius of both C and C′ are less than unity and Proposi-
tions 1 and 2 hold. But neither supi |αi| < 1 nor supi |αi| ≤ 1 is necessary. What matters is the
behavior of the terms

γis =
s

∏
k=0

αi−s,

as s→∞. For instance, if |α j|> 1 only for a finite number of values of j, the remaining ones being
bounded away from unity, the spectral radius of C would be less than unity. On the other hand,
under supi |αi| = 1, the process xit can exhibit long memory. Interestingly, here long memory
arises for individual variables from the infinite-dimensional autoregressive system, rather than
from aggregation as in the literature following Granger (1980), see also Zaffaroni (2004).

Lastly, consider the example

xit = αix0,t−1 +ut +ξit , (15)

in which all variables depend on x0,t−1. Assuming |α0 < 1 we have a stationary solution, while the
values of αi, i 6= 0, play no role. However, if for example αi = α for all i 6= 0, then the stationary
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solution depends on two common shocks, namely ut and ξ0,t−1, so that a common shock arises
with the inversion of I−CL. Clearly here Assumption (6) does not hold.

Systems that are very close to the infinite-dimensional autoregression studied here have been
considered in Dupor (1999) and Horvath (2000). These papers study the possibility that autoregres-
sive links among productive sectors cause idiosyncratic components to produce macroeconomic
effects. An important difference between this paper and these contributions is that instead of an
infinite-dimensional system, their models consist of sequences of non-nested finite-dimensional
autoregressive systems which grow in size. My observations above on long memory are in the
spirit of their results.

In a fairly different perspective, di Mauro et al. (2007), Pesaran and Chudik (2010) and Chudik
and Pesaran (2011) also consider non-nested finite-dimensional sequences of VAR systems.
They also assume a sparse structure for the matrix C, according to neighborhood and dominant
relationships (example (15) is a case with a dominant sector/country). This makes estimation
of the autoregressive coefficients possible. Such a structure is an important difference with
respect to the model studied in the present paper and those in Dupor (1999) and Horvath (2000).
The aim of the these studies is to determine general conditions under which, for example, long
memory or macroeconomic effects emerge from the inversion of I−CL. However, without further
assumptions the autoregressive matrix cannot be estimated.

5. Conclusion

If the spectral radii of C and C′, as operators on `∞ and `2 respectively, are smaller than unity,
then system (4) has a stationary solution. Moreover, no common shocks are produced from the
idiosyncratic components ξξξ t through inversion of I−CL. However, if the above conditions do
not hold then individual variables may exhibit long memory. Moreover, common shocks may
arise from inversion of I−CL.
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