4 Journal de la Société Francaise de Statistique
Vol. 153 No. 1 (2012)

SOCIETE FRANGCAISE
DE STATISTIQUE

A class of goodness-of-fit tests
in linear errors-in-variables model

Titre : Une classe de tests d’adéquation pour les modeles linéaires avec erreurs de mesure

Hira L. Koul' and Weixing Song?

Abstract: This paper discusses a class of goodness-of-fit tests for fitting a parametric family of densities to the
regression error density function in linear errors-in-variables models. These tests are based on a class of L, distances
between a kernel density estimator of the residual and an estimator of its expectation under null hypothesis. The paper
investigates asymptotic normality of the null distribution of the proposed test statistics. Asymptotic power of these
tests under certain fixed and local alternatives is also considered, and an optimal test within the class is identified. A
parametric bootstrap algorithm is proposed to implement the proposed test procedure when the sample size is small
or moderate. A finite sample simulation study shows very desirable finite sample behavior of the proposed inference
procedures.

Résumé : Cet article étudie, dans le cadre du modele linéaire avec erreurs de mesure, une classe de tests d’adéquation
pour I’ajustement d’une famille paramétrique de densités a la distribution de I’erreur du modele. Ces tests sont basés
sur une classe de distances L, entre un estimateur a noyau fondé sur les résidus et un estimateur de I’espérance de la
densité des erreurs sous 1I’hypotheése nulle. L’article établit que les statistiques de test proposées sont asymptotiquement
normales sous 1I’hypothese nulle. Les puissances asymptotiques des tests considérés sont obtenues sous des contre-
hypotheses fixées et sous des suites de contre-hypotheses locales, et un test optimal est identifié dans cette classe
de tests. Un algorithme de bootstrap paramétrique est proposé pour mettre en oeuvre la procédure de test quand la
taille d’échantillon est petite 2 modérée. Une simulation met en évidence les treés bonnes propriétés des procédures
d’inférence introduites dans cet article.
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1. Introduction

Statistical inference in classical regression models often assumes both response variable and
possibly multidimensional predictors are fully observable. But, as is evidenced in the monographs
of Fuller (1987) [5] and Carroll, Rupert and Stefanski (1995) [3], in numerous studies of practical
importance predictors are often unobservable. Instead, one observes some surrogates for predictors.
These models are often called errors-in-variables models or measurement errors models.
Extensive research has been devoted to the estimation of the underlying parameters, both
Euclidean and infinite dimensional, in these models. Recent years have seen an increasing
research activity in the study of lack-of-fit testing of a parametric regression model in the presence
of measurement errors in the predictors. Relatively, little published literature exists for checking
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GOF tests for error density 53

the appropriateness of the distributional assumptions on regression errors and/or measurement
errors in error-prone predictors. Focus of this paper is to make an attempt at partly filling this
void.

More precisely, consider the linear errors-in-variables regression model

Y =0+B'X +e, Z=X+u, (1.1)

where Y is the response variable and X is a d-dimensional vector of unobserved predictors. The
variables X, u# and € are assumed to be mutually independent. For model identifiability, as is
typically the case in these models, we assume density of the measurement error vector u is known.
The problem of interest is to develop some goodness-of-fit tests for checking the appropriateness
of a specified family of densities of the regression error €.

Accordingly, let g be a known positive integer, ® be a subset of R?, % := {f(x,0);x € R,0 €
©®} be a parametric family of densities with mean 0 on R and let f denote density of €. Consider
the problem of testing the hypothesis

Hy: f(x) = f(x,0), for some @ € © and all x € RY vs.

H, : Hy is not true.

Goodness-of-fit testing has long been an important research area in statistics. In the case of
completely observable data, beginning with Pearson in 1900, the most commonly used goodness-
of-fit test statistic is a chi-square statistic. Pearson y? test was originally designed for fitting a
finitely supported discrete distribution, but after discretization, this and other related tests can also
be used for checking continuous distribution. However, it is well known that the power of these
procedures is generally low, see, e.g., D’ Agostino and Stephens (1986) [4]. Other well known
goodness-of-fit tests are based on certain distances between empirical distribution function and
the parametric family of distributions being fitted. Kolmogorov-Smirnov and Cramér-von Mises
tests are examples of this methodology. Asymptotic null distributions of these statistics in the case
of fitting a parametric family of distributions is often unknown.

In the one sample i.i.d. set up, a test based on L, distance between a kernel density estimator and
its null expected value for fitting a given density was discussed in Bickel and Rosenblatt (1973)
[1]. Unlike the tests based on residual empirical processes, in the case of fitting an error density up
to an unknown location parameter, asymptotic null distribution of an analog of this statistic based
on residuals is the same as if the location parameter were known. In other words, not knowing
the nuisance location parameter has no effect on asymptotic level of the test based on the analog
of this statistic. Lee and Na (2002) [10], Bachmann and Dette (2005) [2], and Koul and Mimoto
(2010) [7] observed that this fact continues to hold for the analog of this statistic when fitting an
error density based on residuals in autoregressive and generalized autoregressive conditionally
heteroscedastic time series models. In all of these works data are completely observable. To the
best of our knowledge to date, this methodology has not been developed for testing of Hy in the
model (1.1).

In this paper we shall construct a class of goodness-of-fit tests of Hy based on a class of the
analogues of the above mentioned L, distances in errors-in-variables regression model (1.1). The
paper is organized as follows. The class of test statistics and the needed regularity assumptions
are described in Section 2. Asymptotic normality under Hy of the test statistics is stated in Section
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54 Hira L. Koul, Weixing Song

3. Results about consistency of the proposed tests against a fixed alternative and their asymptotic
powers against a class of nonparametric local alternatives are stated in Section 4 where we also
discuss the choice of an optimal test within the class considered that maximizes this asymptotic
power. Section 5 reports findings of some simulation studies and a bootstrap approximation to the
asymptotic null distribution of the proposed tests. The proofs of the results stated in Section 3 and
4 appear in the last section.

2. Test Statistics and Assumptions

In this section we shall describe the proposed test statistics and needed assumptions for their
asymptotic normality. Let &, By be the true values of the regression coefficient in (1.1) and 6 be
the true value of 6 under Hy. Plug in X = Z — u in there to obtain

Y=o+ Bz+E  E—e—Bu

With g denoting the density of u, assumed to be known, the density of & is
= [ 0+ Bwsg(u)du
Under Hy, the density of & is h(v; By, 6), where
(v;B,0) = /f(v+ﬁ’u,9)g(u)du, veER,BeRY €O,

By the independence of € and u, characteristic function of & = & — fju is the product of the
characteristic functions of € and Bju. Because the characteristic function of u, hence Bju, is
known, this implies that the characteristic functions of £ and € can be uniquely determined from
each other. Therefore, there is a one-to-one map between the densities of € and £. Consequently,
testing for Hy is equivalent to testing for the hypothesis

4 h(v) = h(v; By, 6p), forsome 6y € O, and for all v € R.

The given data consist of n i.i.d. observations (Z;,Y;),1 <i < n, from the model (1.1). Let
O, B be any \/n-consistent estimators of o, By, respectively. Let & :=Y; — ap — B(Z;, E =
Y, — &, — BnZ,, K be a density kernel function, b denote the bandwidth, K}, (+) := b~ 'K(-/b), and
let

ll’l
ha(vio,B) = ;ZKb(V—Yi—i-OH-ﬁ/Z,-), acR, B eR?,
i=1

ha(v) = ha(v:0t0, o) = Z&v%l

For known o, Bo, h,(v) is an estimator of i(v). But since they are rarely known, a genuine
estimator of &(v) is provided by the kernel density estimator /4, (v).
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Next, define
/K,,v— wB,0)du, BeR’ 6cO.
With Ej denoting the expectation under Hy,
Eo(hy,(v)) = hp(v; Bo,60), vER.
Let W be a nondecreasing real-valued function inducing a o-finite measure on R and set
T,(a,B,0) = /[h,,(v;oc,ﬁ) — Eohy(viat, B)]%dW (v), B €R?, 6 € RY.

Clearly,

(0o, Bo.00) = [ Ihu(v30t0,Bn) — Eo(la ()W (1)
= [l Bo) ~ ho(v3 o, B0)PdW ()

Let 6, be any \/n-consistent estimator of 6 under the null hypothesis. The proposed class of
goodness-of-fit tests of Hy, one for each W, are to be based on the statistics

(8t Bus80) = [ () = 3B 6,)] "W (). @.1)

A way to construct an estimator of 6y is to use minimum distance (MD) method. For any
preliminary estimators of & and fy, one can estimate 6 by

6, = argminTn(dn,ﬁn,G). 2.2)
0cO

We can show that under some regularity conditions, the MD estimator 8, is \/n-consistent and
asymptotically normal. In fact, the proof is similar to the arguments used in Koul and Ni (2004)
[8] and Koul and Song (2009) [9]. We do not pursue the proof here.

As for the preliminary estimators of o and Sy, we use the bias-corrected estimators. Let
Szz and Szy denote the sample covariance matrices of Z, and of Z and Y, respectively, and let
Y, := E(u), which is assumed to be known. The respective bias-corrected estimators &, =
Yy-7 3,2 and 3n = (SZZ ¥,) " 'Szy of ap and By have the following asymptotic expansion. With
ay = O — 0, d, ﬁn B07

() = Bt

where ;s are i.i.d. with En =0, Cov(n) =Zqp > 0,and E||n ||2+8 < oo, for some & > 0. Indeed,

e,—uBo—uXZ N(Zi — px) (& — 1 Bo) — 1y Zx " ZuPo.
\/ﬁ<dn> Z( v (Zi— ux) (& — o) + Zx Zuﬁo )+0p(1),
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where uy = EX, £y = Cov(X). Therefore, &, 3,, are y/n-consistent and asymptotically normal,
even if the regression error distribution is misspecified. Certainly there are many other estimators
of o and By having similar properties, but for the sake of convenience we shall use the above
estimators in this paper.

The following is a list of regularity conditions needed for deriving the following asymptotic
results for 7, (&, B, 6,,). Throughout, for any smooth function y(v; B, 0) of the three variables
v,,0, 1 (v; B, 0) denotes the vector of first order derivatives of ¥ with respect to the variable
x=v,,or0.

ASSUMPTIONS:

About the kernel function K:

(k1). Density kernel K is four times differentiable, with the ith derivative K () bounded for

i=1,2,4.

(k2). [IKM (u)|du+ [ K"/ (u)du < oo, for some & > 0.

(&3). [uKN (u)du#0, [u' KD (u)du=0,foralli=0,j=1,2,3;i=1,j=2,3
For example, standard normal density function satisfies all the conditions (k1)-(k3).

For the bandwidth b:

(b). b—0, nb"/?— co.

About the weighting measure W':

(w). The weighting measure W has a compact support ¢ in R.
For the design variable and measurement error:

(@. EI|X[* + Ellul|* < .

For the density function 4:

(hl). Forall B and 6, h(x;f3,0) is a.s. continuous in x(W).

(h2). The functions hbﬁ (v Bo, 60), hbg(v; Po, 6p) are continuous in v, and for any consistent
estimators Bn, 6, of Bo, 6o,

sup |1y (v: B, 6) — iy (v Bo, 80) — il (vi Bo. 80) — Al (v Bo, 80) | = O (Ildul|* + [|Anl|?),
v

where d,, ;= Bn —Po and A, := 6, — 6p.
(h3). The integrating measure W has a Lebesgue density w such that for some 6 > 0,

| Vo Bo. 80) (v o, B () <
/Hhﬁ (v Bo, o) H2+5h(v;[30, Go)wz(v)dv < oo,
For the sake of brevity, in the sequel, we let
ho(v) := h(viPo, 60), ho(v) :=h(viBo, ), an:= by — .

Moreover, Wj;(v) := y((v—&)/b) /b, for any function y defined on the support of K.
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3. Asymptotic null distribution of the test statistics

In this section we shall describe asymptotic null distributions of the proposed test statistics. To
proceed further we need to define

N 1 & ~
&= X [ K= Eyaw ), 3.1)

- 2/h2 dx/ /K K(utv)dv] du.

Theorem 3.1. Under the conditions of (kl)-(k3), (b), (w), (d), (h1)-(h4), and under Hy,
nb' 2L (T, (8, B, 6,) — C) —p N(0,1).

Let & denote the distribution function of a standardized normal r.v. and for an 0 < & < 1, zq
be such that ®(z4) = 1 — @, and let

Ty i=nb 2T (T8, By 62) — Cr)-

A consequence of the above theorem is that the test that rejects Hy whenever |.7,| > z, /2 is of the
asymptotic size a. The proof of the above theorem appears in the last section.

As a matter of fact, the tests based on .7}, are nonparametric smoothing tests. It is well known
that for such tests the Monte Carlo simulation method and the bootstrap method often provide
more accurate approximation to the sampling distribution of the test statistics than the asymptotic
normal theory does. Thus, we propose the following parametric bootstrap algorithm:

Step 1: Use the full data set (¥;,7;),i = 1,2,...,n to estimate &,, ﬁn and 6,
Step 2: Draw independent sample of size B, é 7, J=12,...,B, from the density h(v; 6., Bn),

and calculate
= [[2 ZKb*<v— 1)~ e (42 6,)] AW ),

where b* satisfies the assumptions b* — 0, Bb*7/2 — co as B — oo,

Step 3: Repeat Step 2 R times, denote the resulting Ty’s as Ty |, Tz, -+, Tg g. Sort the
absolute values of these R simulated 7 in increasing order. For the preassigned significance
level a, find the (1 — a/2)100% percentile, denoted as 5 .

Step 4: Calculate T;,(&,, [;,,, é,,) using the original full data set. If |T,,| > 5.4 reject the null
hypothesis; otherwise, accept the null hypothesis.

Sometimes, in Step 2, it is not easy to draw independent sample from A(v; 3,,, é,,), but it is
easy to draw sample from f(&;6,), and g(u). Note that / is the density of £ — B’u, so one can
draw independent samples €7, j = 1,2,...,B from f (g 6 ), and draw independent samples u’; i
j=1,2,--- B from g(u), then sj — A,’lu’;-,j =1,2,---,B can be considered as a sample of size B

from h(v;ﬁn, é,,)

4. Consistency and asymptotic power against local alternatives

In this section, we discuss consistency of the .7,-test against a class of fixed alternatives, derive its
asymptotic power against sequences of local nonparametric alternatives, and provide an optimal
W that maximizes this power among the proposed tests.
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4.1. Consistency

We shall show that, under some regularity conditions, the above .7,-test is consistent against
certain fixed alternatives. Let f, ¢ .# be a density on R with mean zero and finite second moment,
and consider the alternative hypothesis H, : f(v) = f,(v), for all v € R. Under H,,, density of & is

N

ha(v;B) = [ fu(v+u'B)g(u)du. We shall assume that 6, converges to a value 6, in probability
under H,. In fact, if

6. :=argmin [ ha(v3o) — (26, Bo) W (1),

is well defined, then one can show that the MD estimator defined in (2.2) converges to 6, in
probability. The proof is omitted for the sake of brevity. Let

hav(v:8) = [ Koltv—u)ha(u,B)d

and /1, g(v; B),ha g (v; B) denote the derivatives of hg, and h, with respect to 8, respectively.
Assume that

(h1"). For all B, hy(v;B) is a.s. continuous in x(W).

(h2"). hgp g(v;B) is continuous. Under H,,

b (V3 Ba) = has (v Bo) = (Bn = Bo)"hrabp (v Bo) = Op ([ B — BolI*)-

(h3’). The integrating measure W has a Lebesgue density w such that for some § > 0,

[ Vg (0 B0) a3 o () < o
The following theorem states the consistency of the .7, -test. Its proof is given in the last section.

Theorem 4.1. Under the conditions of (kl)-(k3), (b), (w), (d), (hl’)-(h3'), H,, and the additional

assumption that
/ [ha(v: Bo) — h(v: B, Bo)|2dW (v) > 0,
we have

nbl/zf;1/2|Tn(an7[§n7 én) _én| _>l7 .

Consequently, the above J,-test is consistent against H,,.

4.2. Asymptotic power at local alternatives

Here we shall study asymptotic power of the proposed .7, -test against some local alternatives and
the choice of an optimal W that maximizes this power against these alternatives. Accordingly, let ¢
be a known continuous density on R with mean 0 and positive variance 62, and let 8, := 1 /vnb!/2.
Consider the sequence of local alternatives:

Hipe: f(0) =(1=8,)f(v,60) + 8,0(v), veR. 4.1)
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Under Hy,., we shall assume that \/nA, has the same asymptotic normal distribution as under
the null hypothesis. In fact, one can show that the MD estimator 6, satisfies this assumption. The
following theorem gives asymptotic power of the 7,-test against the local alternative Hy,. Its
proof also appears in the last section. Let

D(:B,0) = /[f<v+u’ﬁ,e>—<p<v+u’ﬁ>]g<u>du, peroco
D(v) = D(v:Bo,60), /K K(v+u)du, veR,
c = Z/Kf(v)dv, FZ:C/h(Z)(V)W v)dv

Theorem 4.2. Under the conditions of Theorem 3.1, and under Hy,,,,
nb' 215 (T, (00, By ) — C) —p N(T'/ / D*(v)dW (v),1).

Remark 4.1. Optimal W. From this theorem we conclude that the asymptotic power of the
asymptotic level o .7,-test is

1-® (z /2—1“*1/2/D2 )dv)—i—@(—za/z— 1/2/D2 (v)dv).

Clearly, the w that will maximize this power is the one that maximizes

w) = F_I/Z/Dz(v)w v)dv

[D2Ww(v)dy i [DHY) N2
Na oo (./ h2<v>d) ’

with equality if, and only if, D?(v)/h?(v) =< w(v), for all v. Since y(aw) = y(w), for all a > 0,

But,

y(w) =

we may take optimal w to be

w(v) = D*(v) _ (f [f(v+ Bju, 60) — (v + ﬁéu)]g(u)du) 2
w2 (v) Jf(v+ Byu, 60)g(u)du '

Clearly this w is unknown because of fy and 6, but one can estimate it by w;,, the analog of w

where these parameters are replaced by ﬁn and 6,.

5. Simulation Studies

To assess the finite sample performance of the test .7;,, we conducted some simulation studies,
findings of which are reported here. The null hypothesis Hy is chosen to be € ~ N(0,62), so the
unknown parameter 0 in the distribution of € is 6. Nine alternative hypotheses are considered:
Double exponential distribution with mean 0 and variance 1, Cauchy distribution with location
parameter O and scale parameter 1, Logistic distribution with location parameter 0 and scale
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parameter 1, t-distribution with degrees of freedom 3,5 and 10, two-component normal mixture
models 0.5N(c,02) +0.5N(—c,c2) with ¢ = 0.5,0.75 and 1.

In the simulation, we generate the data from model (1.1) with @ = 1,8 = 1, 62 = 62 = 0.52,
X ~ N(0,1), u ~ N(0,02). The weight measure W is taken to be a uniform distribution on
the closed interval [—6,6] so that computationally the integration over this interval is nearly
same as the integration over the whole real line, the kernel function K is chosen to be standard
normal density function, and the bandwidth is chosen to be » = n~%%7 based on the condition
(b). For each scenario, we repeat the testing procedure 500 times, and the empirical level and

power are calculated from #{ |nb1/2f;1/2(Tn(&n, B, 6,)—C,)| > Za/2}/500. Here, &, B, are bias-

corrected estimators, 6, = 62 = f% — B?o2, with s% is the sample variance of & =Y; — 0, — . Z;,
i=1,2,--- ,n. In our simulation, the significance level & is 0.05, and the sample sizes are chosen

to be 100 and 200.

For comparison, in addition to the test .7}, we also conduct simulation studies using Kolmogorov-
Smirnov (KS) test in which the normality of &; is checked, and Bootstrap .7, test using the
algorithm provided in Section 3 with B = n, b* = B~%?7 and R = 200. The simulation results are
present in the following table.

Bootstrap
Model KS Test T, Test T, Test
100 200 100 200 100 200

N(0,07) 0.000 | 0.000 | 0.002 | 0.000 | 0.054 | 0.052
Logistic(0,1) 0.002 | 0.002 | 0.012 | 0.030 | 0.038 | 0.048
Cauchy(0,1) 0.996 | 1.000 | 0.990 | 0.994 | 0.998 | 1.000
Double Exponential (0, 1) 0.024 | 0.088 | 0.150 | 0.386 | 0.194 | 0.452
t(3) 0.130 | 0.360 | 0.268 | 0.594 | 0.344 | 0.692
t(5) 0.014 | 0.028 | 0.054 | 0.130 | 0.094 | 0.134
t(10) 0.002 | 0.000 | 0.006 | 0.012 | 0.020 | 0.016
0.5N(0.5,67)+0.5N(—=0.5,67) 0.000 | 0.000 | 0.002 | 0.004 | 0.044 | 0.026
0.5N(0.75,62) +0.5N(—0.75,062) | 0.002 | 0.002 | 0.026 | 0.074 | 0.044 | 0.136
0.5N(1,62)+0.5N(—1,02) 0.010 | 0.100 | 0.316 | 0.724 | 0.338 | 0.744

From the simulation, one can see that both the KS test and the .7, test are conservative. It is
also evident that the .7, test is more powerful than KS test for almost all chosen scenarios, while
the simulation result from Bootstrap algorithm is more desirable.

6. Proofs

This section contains the proofs of some of the previously stated results.

Proof of Theorem 3.1. Adding and subtracting £, (v), hy(v; o, 60), the statistic (2.1) can be
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written as the sum of the following six terms:

Tu = b2 [ [ (6) = ha()PAW (),

Te = b [ ha(v) ~ (3o, 60) AW (),

Tia = b [ (03B, 80) o (v: B, 60) W (1),

T, = 2nb'/? / [y (v) = B (V)] [n (V) — By (v Bo, 60)]dW (v),

Ts = 2nb\/? / [ (v) = (V)] 15 (v B, 60) — T (v By €)1 AW (v),

T = anl/z/[hn(v)_hb(V;ﬁano)][hb(V;BOa90) _hb(V;ﬁméﬂ)]dW(V)'

We claim T;,; = 0,(1). To see this, by Taylor expansion, write 7;,; as the sum of the following ten
terms.

i = ' :i;(CZ’+diZi)Klgll)(v)]2dW(v),
T = w2 [ [L i_il(‘;udf'f’)zK;?)(v)}de(v),
s = b [ [L3 (G BE) K0 aw,
Tps — nbl/z/:ig(éz#d’f" 4K(4>(§,~)rdW(v),
o = [ (5 et

s = s [ L3 (% BA) k]

L5 (% 5 v
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Ty = gt [ L (%4 %5 k)]
L o5 s,
e = L5, 22
L, (e v
o = o {15 (5 580
i=1

x [1 y (% + déz")“zd‘” (&)]aw ().

ni3

For the sake of simplicity, we shall assume d = 1. The argument for the case of d > 1 is
straightforward. Let’s consider 7,1;. It is bounded above by the sum

{5 [ Lo avor 5 [ Bz avo)
=nb‘/20p<1/<nb2>> 0p(1/(nb) +b%) = 0,(1).

Similarly 7},1» is bounded above by

2nb1/2{ /[ ZK,,, ] +§/[iézi1<,§?(v)rdww)}
=nb‘/20p<1/<n2b4>> O0p(1/(nb) +b*) = 0,(1).

Similarly, one can show that 7,13 = nb'/20,(1/(n*b%)) 0,(1/(nb) + b*) = 0,(1), and T,,14 =
nb'20,(1/(n*b%)) 0,(1/b*) = 0,(1). By similar arguments and the Cauchy-Schwarz inequality,
we can show that 71, = 0,(1) fork =35,---,10. Therefore T,,; = 0,(1).

Now, consider T,3. By (h4) and the \/n-consistency of 8, and B, T3 = nb'20,(n"") = 0,(1).

By the Cauchy-Schwarz inequality, 7,4 is bounded above by 2T1/ 2 1/ 2. We shall show later that

T» = 0,(1), so T4 = 0,(1). Similarly, one can show that 7,5 = 0,,(1).
Next, consider 7,,5. Note that

1 (v; Bay 02) — By (v; Bo, 80) = Al (v; o, 80) + g (v Bo, 0) + Op(n1).

Hence, T, can be written as the sum of the following three terms.

Tier = —27119]/2/[ Zsz — EKp ( )}%9("2[50,90)6”’"(")%,
Ty = —2nb'/? /[ ZK;,, — EKp )}h;,ﬁ(v;/so,eo)dW(v)dn,

Thes = anl/z/[ ZKbl — EKp ( )]dW(V)Op(nfl).
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We can show that

/ [ ZKb, — ERy1(v) oo (v3Bo, B0)dW (v) = O, (). ©.1)

In fact, denote s,,; = [ [Kbi(v) — EKp, (v)} Iy o (v)AW (v), then

/ ZKb, — EKy (v )}h’be(v)dvv(v):\}ﬁi);sm.

In the following, we shall show the asymptotic normality of the above entity. For convenience,
we shall give the proof here only for the case ¢ = 1, i.e., when /,g(v) is one dimensional. For
multidimensional case the result can be prove by using linear combination o its components, and
applying the same argument. By the Lindeberg-Feller CLT, it suffices to verify that for all A > 0,
E sﬁl converges to some positive number, and

Es2 I[|sn1] > /nA] — 0

To show this, we have

Es2, = Var(sy) = [ / Kot ()po (v)dW (v) ]2— [ / EKy (v)ipo (v)dW (v) C 62

The first term on the right hand side of (6.2) equals
E [ Kot (9o (x)Kin (7)o (3)W ()W ()

— ] Kot~ o : o 80) Ko w)ne () s o B0)W (x)aW ()

- / / / K(0)K () (1 -+ xb)pe (1t + yb) (1) w(ut £ xb)w(u+ yb)dudxdy

- / / / KOOK ()i (u)h(u)w(we) w(u)dudxdy = / g () w(10) > (1) .

Similarly, [ EKpy (v)hpe (v)dW (v) — [ h(v)hg(v)w(v)dv. Hence,

2

Var(sn) — / e (s w(a) ) — | / h(v)ig (V)w(v)dv
= Var(hg(&)w(§)).

or, in the multidimensional case, Cov(s,1) — Cov(hg(&)w(&)). To verify the Lindeberg-Feller
condition, note that for any & > 0, the LHS is bounded above by A ~%n~%/2Es?+°. But,

E|snl|2+6 — E‘/[Kbl(v)—EKbl(v)]hbg(v)dW(v)‘Ha

IN

H1+6 (E‘ / K,,l(v)hbe(v)dW(v)‘M

+‘/EKhl(V)hbe(V)dW(V)‘M)'
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The second term on the RHS is O(1) while the first term, by Holder’s inequality, conditions (k2),
(h3), is bounded above by

E[ 1K 0] 2o )2 2aw ()] = 0572,

Consequently, n~%/2E|s,1|**% = O(n=%/?b=%) = O((nb?)=9/%) = o(1). This fact verifies the
Lindeberg-Feller condition here. Therefore,

vl iw — ERy ()] o ()W (v) = 0, (1),

This, in turn, implies 7,61 = 0,(1). Similarly, one can show that 7,6, = 0,,(1) and T,,63 = 0,,(1).
Putting all of the above facts together yields

nbl/zTn(&mﬁnv én) = TnZ‘i‘Op(l)-

Now, define
G o= Y [ [Kat) - K] aw ) 63)
i=1
1/2
F&d) = o [1K(v) ~ EKn ()] Koy () — EKn (]dW ).
Then,
/
To = nbl/ZCn'f—Zbrll ’ Z /[Kbi(v)—EKbl(V)][ij(V)—EKbl(V)]dW(V)
1<i<j<n
= nbl/zCn+2 Z Hn(éiaéj)-
1<i<j<n

To proceed further, we need to recall Theorem 1 in Hall (1984) [6] which is reproduced here
for the sake of completeness as

Lemma 6.1. Let U;, 1 <i<n, be i.i.d. random vectors, and

Vo= Y. H,(Up,Uj), Gu(u,v)=EH,(U1,u)H,(Uy,v),

1<i<j<n

where H, is a sequence of measurable functions symmetric under permutation, with
EH2(Uy,Us) < oo, and E(H,(Uy,U,)|Uy) = 0, a.s., for each n > 1. If, additionally,

EG:(U\,Uy) +n 'EH} (U, Uy)
[EHZ (U, U2)]?

— 0,
then V,, is asymptotically normally distributed with mean 0 and variance n? EH?*(U,Us) /2.
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Apply the above lemma to U; = &; and H, defined in (6.3). Obviously, this H,(&;,§;) is
symmetric and E[H,(&;,&;)|&;] = 0. Moreover,

ER2E.6) = 5 [ (B ()~ B (][Kn ) ~ K 0)]) aW ()aw (),
By the change of variable formula,
E[Kp1 (x) = EKp1 (0)][Kp1 (v) — EKp1 ()]
— [ 1Ko (x )~ Ry~ &Koy — ) ~ EKy(y — &) (u)du
_ /Kb x— u)Kp(y — u)h(u)du — EKy(x — E)Ky(y — E)
_ /K LS v = bv)dv — ho()h(y) + O(5?).

Therefore, by changing variable again, EH2(&;,&,) is the sum of

P // /K K(u+v)h (x—bv)dv—bh(v)h(x+bu)]2dW(x)dW(y)

and another term of the order O(b%), which together imply
noon 22
?EHn (&1,&) — 5 // /K (u+v)dvh(v )} w*(x)dxdu (6.4)

= E/ /K(v)K(u—}-v)dv 2du/hz()c)wz(x)dx.

Now consider G, (x,y) = EH,(&1,x)H,(&1,y). Note that
Guly) = 5 [ EAIR (= &) — ERn (] K~ &) — R )]}
X [Kp(v—x) —EKp(v—&)|[Kp(u—y) — EKp(u— &)|dW (u)dW (v).
By the change of variables formula,
E[Ky(v—&) —EKy(v—&)][Ky(u—&) — EKy(u—&)]
[ Koy =K =x)hx)dx = EKo (v = ) Ko —)

— %/K(x)K -

Using this, direct calculations show that

EG,(£1,8) = O(b/n?).

Similarly, expanding the 4th power and using change of variables formula, one verifies

+x>h(v — xb)dx — ho(v)h(u) + O(b?).

EHELE) = TE| (K8~ Ky 8K &) — EKr— )]

= 0(1/(n*D)).
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From (6.4), we know that EH?(&1,&) = O(n™2). Therefore,

EGX(&,&)  Ob/n*)
[EH,%(éll, 522)]2 = oG /nny ~ 0) =e(l);

BB &.&) a0/ (')
[EH2(E1,&)>  O(1/n?) = O(1/(nb)) = o(1).

This verifies the applicability of Lemma 6.1. In view of (6.4), we conclude

b2, (s, B, 6) — Ca) —+p N(0,T), 6.5)

where

r—2 / B2 (v)w?(v)dv / (K. () 2du,  K.(u):= / K()K (4 +v)dv.

Direct derivations verify that [, of (3.1) is a consistent estimator of I". We shall now show G,
of (3.1)is an nb'/?-consistent estimator of C,. Let

~ 1 &
G o= E; / K2(v)dW ().

Note that
G = én+% / [EKbl(v)]de(v)—nzzinl [ KnEEs ()aw ).
But,
nb!/2 % [IEK0Paw () = 002) = o(1)
and

nb'/? niz ; / Koi(V)EKy (V)W (v) = 2b'/2 / Ty (V) EKp1 (v)dW (v)
7 = 0,'%) = 0,(1).
Hence, nb'/2C, = nb'/>C, +0,(1). We claim
nb'2(C, —C,) = 0,(1). (6.6)

For this purpose, note that C, can be written as the sum of C, and the following two terms
1 1 ol 2
G = =) [ K(—&) Ko=) Paw(y).
i=1

Go = SY [Kelv—&)—Klv— )R~ E)aW ().
i=1
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By Taylor expansion, with éi between v — éi andv—¢&;,

wicy = D3 [[( ) <a>} W

2a 1 & 2 2d2 1 n 2
< bng/ (ENPaW )+ /ZK (E)2aw (v)
_ OP(nb7/2> op(1),
and
wbV2C, = 2! i/[(arszd,’,Zi)lK(l)(g)}K‘(V)dW(V)
! n = b b /b )| Rbi

2ay 1 2d! 1 "

Y /K (&) Kpi(v)dW (v) — i /ZK (&) Kpi(v)dW (v)

0,,(\/’W> = o0,(1).

Hence, nb'/?(C, — C,) = 0,(1). This implies nb'/?(T, (G, B, 6,) — €,) —p N(0,T), thereby
completing the proof of Theorem 3.1.

Proof of Theorem 4.1: Let h,,(v, ) = [ Kp(v— u)h(u; B)du. Add and subtract kg, (v; B,) from
hu(v) — hp(v; Bu, 6,) and expand the quadratic term to write 7, (&, B, 6,) as the sum of the
following three terms:

Tn = /[iln(v)_hab(V;ﬁn)]de(V)v
To = [ lhalv3B) — o3P 6,)PaW (),
Tis = 2 [ 1ha(v) = hao (63 Bl o (v: o) — (v B B.))aW ().

One can show that
nb' 25,2 (T — 6,) —p N(O, 1). (6.7)

The proof is similar to that of Theorem 3.1. Note that now
B2 [ IR0 B ()dv [ K. ()P
Also,

nb\ 2V, = nbl/zr*1/2/[ha(v;[30)—h(v;ea,ﬁo)]de(v)+op(nb1/2). (6.8)

By the Cauchy-Schwarz inequality and the elementary inequality (a + c)l/ 2<a'? 412 for
a > 0,c > 0, one can show that nb'/ zf,f 1/ ZTn3 is bounded above by

~—1/2 A 1/2 ~—1/2A1/251/2
2 215 2| Ty — GV 2T 4 20 2T, PP T
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From (6.7), one can see that the first term is 0, (nbl/ 2). Note that C‘n — 0 in probability, in fact,
one can show that C, = O, (1/(nb)). So the second term is also o, (nb'/?). Therefore,

nb1/2f71/2|T (dnaﬁm An) _én|
= ub' 2LV (T — C,) + b 2L, / [ha(v: Bo) — h(v; 64, Bo)|2dW (v) + 0, (nb"/?).

Hence the theorem.

Proof of Theorem 4.2: Let
Dy(v:,6) = /Kb(v—u)D(u;ﬁ,G)du, Dy(v /Kb v — u)D(ut; Bo, 60)du

nb(Vi B, 0) == hy(v; B,0) — 8,Dp(v; B,6), hnb( ) := Ry (v Bo, 60)-

Adding and subtracting 6,Dj(v; ﬁn, én) from fzn( )—hp(v; Bn, ) in the integrand of 7, (&, ﬁn, ,,)
one can rewrite it as the sum of the following three terms

T = [ ) =2, )W (),
T = i [ DiBu )W)
‘\% Jn6) = T (43 B, 80) 1D (2 B, )W ().

Adding and subtracting /,,(v), fis(v), T,1 can be written as the sum of the following six terms:
Tur = [ ) =) Paw (v),
Tuz = [In() = Fup ()W (),
Tus = [l (v3Bus ) — hun ()W (),
Tus = 2 [ ) = ha(0)] () = s (V)W (),
Tus = =2 [lhalv) = ha()]ons) = (v B, B)1AW (1),
Ts = =2 () = B ()] o (4) ~ Ty (v B, B, ()

One can show that nbl/zTnlj =o0,(1) for j=1,3,4,5,6. The details are similar to those of the
proof of Theorem 3.1, only differences are stated here. For example, by assuming d = 1 and
Taylor expansion, 7;,;; can be written as the sum of ten terms, one of these terms is

[ % (G 520 0) i

which is bounded above by the sum

XK

i=1

2a

] 2d2

5 kv
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While the integral in the first term is bounded above by

2/ () —EKD (v )D2dW(v)+2/ [EKZSP(v)rdW(v).
But,
E(, L (K00~ BRI 0]) < el )
Moreover,
2 1 V—1u\12 1 v—u\12
E[Klg)(v)} - /[bK(l)( b )} ho(u)du 5”/[19K(l)< b ﬂ D(u)du
= o),
EKD() = /BK“)(V ”)}ho(u)du—sn/[;K“)(Vb”)}mu)du
— 0(b)
Therefore,

1 & (1) :|2 1 1 2
=Y K 0] W) = —50,|—+1?].
[nb ; v ) ) nb? nb +
Similarly, one can show that

3 [ [ mi o] avo = o0 v

which implies nb!'/2T,,11 = 0,(1).
Suppose Dy (v; B,0) also satisfies condition (h4), then nb' 2T, 5 = 0,(1) follows from (h2),
\/n-consistency of 6., By, and the following

A

A A 2 A
T3 < 2/[hb(v;ﬁn,6n) — hy(V)]2dW (v) + W/[Db(v;en,ﬁn) —Dy(v)]2dW (v).
In the following, we shall prove
nb!/2T, = —2\/nb1/2/ (v B B) 1D (v B, )W (v) = 0,(1).

Adding and subtracting f,(v), i (v) from A, (v), and Dy (v) from Dy (v; 6,, By ), nb"/?T;3 can be
written as the sum of the following six terms:

i = 2Vl [fh Dy(v)dW (v),
Ip = 2\/nb1/2/hn V) =y, (v)] Dy (v)dW (v),
In = 2vnb2 / i ( (v By 6)] D (V)W (),
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ha = 2Vab172 [ [ (6) = b)) (D (33 B, B0) — Do (v))aW (),
hs = 2Vub172 [ [hy(6) = hup(v)) (D (v: B 80) = Do (v)}aW (),
he = 2Vnb172 [ (on(v) = (v Bus )] D153 Bus 6,) — Dy(v)]dW ().

By the Cauchy-Schwarz inequality, I, is bounded above by

2 nbl/Z(/[fzn(v)—h,,(v)]ZdW(v))l/2 (/Dﬁ(v;ﬁo,eo)dW(v)y.

The previous discussion on 7,11 and the square integrability of D(v) with respect to W imply

Iy = V/nb' /2 (i 0, [% +?]) Yo, 1).

nb?

Similar to the proof of (6.1), we have I,, = 0,,(1). By the \/n-consistency of ﬁn and 0,, one can
also show that 1,3 = 0, (1). Finally, by Cauchy-Schwarz inequality, one can show that ,,; = 0,(1)
for j =4,5,6. Thus, nb'/>T,5 = 0,(1).

Using consistency of B, and 6,, one verifies nb'/2T;, — [ D?(v)dW (v). We can also show
that [, and C,, have the same asymptotic properties as the ones in Section 4. The proofs are also
similar, hence omitted here for the sake of brevity. This concludes the proof of Theorem 4.2.
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