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Tail-behavior of estimators and of their one-step
versions. *

Jana Jurečková 1

Abstract: The finite-sample breakdown points and finite-sample tail behavior are studied for a class of equivariant
estimators in the linear regression model under a fixed design. The same is considered for the one-step and k-step
versions of the estimators, starting with an initial estimator. It is shown that the tail-behavior of the one- and k-step
versions of an estimator is determined mainly by that of the initial estimator.

Résumé : Les points de rupture et le comportement des queues sous des échantillons finis sont etudiés pour une classe
d’estimateurs equivariants dans le modèle linéaire avec un design fixe. Des résultats du même type sont obtenus pour
des itérations de type Newton-Raphson d’un estimateur initial. On démontre que le comportement des queues de ces
estimateurs itérés est principalemnt déterminé par celui de l’estimateur initial.
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1. Introduction

Consider the linear regression model

Y = Xβ +U (1.1)

with vector of observations Y = (Y1, . . . ,Yn)
>, matrix X =

∥∥∥x1, . . . ,xn

∥∥∥ of order n× p with the

full rank p, parameter β = (β1, ...,βp)
> and with the vector U = (U1, ...,Un)

> of i.i.d. errors,
distributed according to the distribution function F with density f , which is absolutely continuous
and has a non-vanishing characteristic function ϕ.

The problem is estimating β under the loss function L(b,β )= L(b−β ). The corresponding risk
R(T,β ) is invariant with respect to the group of transformations G = {Y+Xb, b ∈Rp}, and one
possible maximal invariant for G is the vector Z = Y− Ŷ with Ŷ = Xβ̂ and β̂ = (X>X)−1X>Y
being the LSE of β . Under the invariant risk, it is natural to restrict considerations to equivariant
estimators Tn satisfying Tn(Y+Xb) = Tn(Y)+b. Every equivariant estimator Tn we obtain
from an initial equivariant estimator T0

n with a finite risk, adding an invariant statistic, i.e. adding
any possible (vector) function of Z :

Tn = T0
n +v(Z).
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One-step version of estimators 45

For instance, the minimum risk equivariant estimator with respect to the quadratic loss ‖b−β‖2

is equal to T∗n = T0
n− IE0(T0

n|Z). To calculate it, we must know F, but even then its calculation is
rather technical. Possible approximations of T∗n were studied in [4].

Many robust estimators in the linear model, as M-, L- and R-estimators, correspond to an
invariant loss and so are regression equivariant. Also their calculation is often technical, and they
are often approximated by their one-step versions. These are the first Newton-Raphson iterations
of the estimating equation, starting with an initial estimator, even if the estimator itself is not
exactly the root. The k-step versions are also considered, and many results in the literature show
the asymptotic closeness of Tn and of its one-step version.

However, though the estimators are asymptotically normal, some of their properties are typically
finite-sample, despite of the widely accepted view that many properties are inherited by the
asymptotic normality. The admissibility of an estimator with respect a specified loss function is a
typical example. Generally accepted view was that, while the classical procedures are sensitive to
the heavy-tailed distributions, this problem is solved by using the robust procedures. This is true
only to some extent. It was shown in [5] that the distribution of an equivariant estimator of location
is heavy-tailed for any finite n provided the parent distribution is heavy tailed. Although the Pareto
index is increasing with n, it is always finite and the distribution never gets exponentially tailed.

We shall illustrate this problem, using the tail-behavior measure for regression estimators
proposed in [1]. Under some conditions, we derive the lower bound for the tail behavior of
M-estimators in model (1.1). Then we shall consider the one-step versions in model (1.1) and
show that the tail-behavior of the Newton-Raphson iteration is determined mainly by that of the
initial estimator, and this holds for the k-step version for any finite k ≥ 1.

2. Tail behavior of equivariant estimators

A possible measure of tail performance of estimator Tn in the location model with Y1, . . . ,Yn

independent and identically distributed according a symmetric F(y−θ) is

B(a,Tn) =
− log Pθ (Tn−θ > a)
− log (1−F(a))

for fixed n as a→ ∞ (2.1)

(see [2]). Then 1≤ liminfa→∞ B(a,Tn)≤ limsupa→∞ B(a,Tn)≤ n for any equivariant Tn satisfying
weak conditions, and both bounds are attainable by the sample mean Tn = X̄n; the upper one for
the exponentially tailed, the lower one for heavy tailed distributions.

Remind a close link between the tail performance and the breakdown point for a large class of
location estimators, proved in [1]:

Theorem 2.1. (He et al. (1990)). Let T (Y1, . . . ,Yn) be a location equivariant estimator of θ ,
nondecreasing in each argument Yi. Then Tn has a universal breakdown point m∗ and

m∗ ≤ liminf
a→∞

B(a,Tn)≤ limsup
a→∞

B(a,Tn)≤ n−m∗+1 (2.2)

is valid for any symmetric, absolutely continuous F of Y1 satisfying

lim
z→∞

log(1−F(z+ c))
log(1−F(z))

= 1 for any fixed c > 0. (2.3)
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46 Jana Jurečková

Theorem 2.1 holds both for exponential and algebraic tails of F. For example, the median Tn has
breakdown m∗ = n

2 and for n odd Pθ (Tn−θ > a) tends to zero as a→ ∞ just n+1
2 -times faster

than the tails of the underlying error distribution.
The measure of tail performance (2.1) was extended in [1] to the linear model (1.1) in the

following way:

B(a,Tn) =
− lnPβ

{
max1≤i≤n |x>i (Tn−β )|> a

}
− ln(1−F(a))

for a� 0. (2.4)

He at al. (1990) showed that limsupa→∞ B(Tn,a) ≤ n for a regression equivariant estimator
under a weak condition, and showed that limsupa→∞ B(β̂ n,a)≤ n/p for the LSE and the normal
distribution. However, this upper bound holds only under a balanced design, while generally we
have

lim
a→∞

B(β̂ n,a) = 1/ĥn for the normal F

lim
a→∞

B(β̂ n,a) = 1 for the heavy-tailed F

where ĥn is the maximal diagonal element of the hat matrix H = Xn(X>n Xn)
−1X>n . It indicates

that the matrix Xn seriously affects the tail behavior of an estimator in model (1.1). A bad message
for an estimator is the low value of B(Tn,a), which hints that the estimator utilizes only a small
proportion of the data. He at al. (1990) derived the lower bound of the tail behavior for the
L1-estimator and for some M-estimators of β with the criterion function ρ(x) close to |x|.

We shall derive the lower bounds of the tail behavior for a more general class of M-estimators,
including the Huber-type estimators and some redescending M-estimators, defined as

Tn = arg min
b∈Rp

{ n

∑
i=1

ρ(Yi−x>i b)
}

(2.5)

We shall show that the tail behavior of such estimators has a lower bound > 1 for both heavy-tailed
and light-tailed F, satisfying

0 < F(z)< 1, F(z)+F(−z) = 1, z ∈ R1

and (2.6)

lim
a→∞

− ln(1−F(a+ c))
− ln(1−F(a))

= 1 for ∀c > 0.

Following Mizera and Müller (1999), we shall impose the following conditions on the criterion
function ρ, discussed in [8] in detail:

(i) ρ is absolutely continuous, nondecreasing on [0,∞) and ρ(z)≥ 0, ρ(z) = ρ(−z), z ∈ R1.

(ii) ρ(z) is unbounded and its derivative ψ(z) is bounded for z ∈ R1.

(iii) ρ is subadditive in the sense that there exists L > 0 such that ρ(z1+ z2)≤ ρ(z1)+ρ(z2)+L
for z1,z2 ≥ 0.
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Given ρ satisfying (i)–(iii), define

m∗ = m∗(n,X,ρ) = min

{
card M : ∑

i∈M
ρ(x>i b)≥ ∑

i/∈M
ρ(x>i b) for some b 6= 0

}
(2.7)

where M runs over the subsets of N = {1,2, . . . ,n}. The following theorem shows that m∗ is the
lower bound for the tail behavior of M-estimator generated by ρ :

Theorem 2.2. Under F satisfying (2.6) and ρ satisfying (i)–(iii), the tail behavior of M-estimator
defined in (2.5) satisfies

liminf
a→∞

B(Tn,a)≥ m∗ (2.8)

with m∗ defined in (2.7).

Proof. Regarding the equivariance of the M-estimators in (2.5), we can assume β = 0 without
loss of generality. L will be a generic constant. By (i)–(iii),

∑
N

ρ(yi−x>i b) ≥ ∑
N\M

ρ(x>i b)− ∑
N\M

ρ(yi)−

(
∑
M

ρ(x>i b)−∑
M

ρ(yi)

)
−L

= ∑
N\M

ρ(x>i b)−∑
M

ρ(x>i b)+∑
N

ρ(yi)−2 ∑
N\M

ρ(yi)−L.

By the definition of m∗, there exists ε > 0 such that

∑
M

ρ(x>i b)≤ (1− ε) ∑
N\M

ρ(x>i b) (2.9)

for every M ⊂ N of size m = m∗−1 and every b ∈ Rp. Assume that all but m = m∗−1 of the
ρ(yi)’s are uniformly bounded. Because (2.9) implies

∑
N

ρ(yi−x>i b)−∑
N

ρ(yi)≥ ε ∑
N\M

ρ(x>i b)−2 ∑
N\M

ρ(yi)−L,

we deduce that there exists C > 0 such that if ‖b‖>C then ∑N ρ(yi−x>i b)−∑N ρ(yi)> 0 and b
cannot be a minimizer of ∑N ρ(yi−x>i t). Hence, for

[
maxi ρ(x>i Tn)� 1

]
we need to have the

ρ(yi) unbounded for i ∈ N \M and maxi ρ(x>i Tn) ≤ Kρ(|y|n:n−m∗+1), where |y|n:n−m∗+1 is the
(n−m∗+1)-th order statistic of |y1|, . . . , |yn|. Thus,

P
{

max
i
|x>i Tn|> a

}
≤ P

{
|y|n:n−m∗+1 ≥ K′a

}
.

Using the distribution of order statistics of |Y1|, . . . , |Yn| for F satisfying (2.6), we conclude that
liminfa→∞ B(Tn)≥ m∗. 2

Remark 2.1. The lower bound in (2.8) coincides with the lower bound derived by Mizera and
Müller (1999) for the finite-sample breakdown point of the M-estimator Tn. Moreover, if ρ is
regularly varying at infinity with an exponent r ≥ 0, the lower bound in [8] is further modified to
a form depending on r.
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3. One-step version of Tn

A broad class of estimators Tn of β admit a representation

Tn(Y) = β +
1
γ
(X>n Xn)

−1
n

∑
i=1

xiψ(Yi−x>i β )+Rn, ‖Rn‖= op(‖X>n Xn‖−1/2) (3.1)

with a suitable function ψ and a functional γ = γ(ψ,F). The representation (3.1) is valid e.g.
for an M-estimator (2.5). The representation (3.1) holds as an identity if Tn is the least squares
estimator β̂ n and ψ is linear. By Kagan et al. (1973), the admissibility of β̂ n with respect to the
quadratic loss implies that IE0(β̂ n|Zn) = 0 and this in turn implies the normality of the distribution.

The one-step version of Tn with representation (3.1) is defined as the one-step Newton-Raphson
iteration of the system of equations

n

∑
i=1

xiψ(Yi−x>i b) = 0 (3.2)

even when the global minimum of (2.5) is not a root of (3.2), as in the case of L1-estimator or of
other M-estimators with discontinuous ψ.

For simplicity, standardize the sequence {Xn} so that

lim
n→∞

Q∗n = Q∗, Q∗n = n−1X>n Xn, (3.3)

and assume that Q∗ is a positively definite p× p matrix.
Start with an initial estimator T(0)

n of β satisfying n1/2(T(0)
n −β ) = Op(1). Assume that γ 6= 0

and let γ̂n be a consistent estimator of γ such that 1− (γ/γ̂n) = Op(n−1/2). Then the one-step
version of Tn is defined as

T(1)
n =

 T(0)
n +(nγ̂n)

−1(Q∗n)−1
∑

n
i=1 xiψ(Yi−x>i T(0)

n ) . . . if γ̂n 6= 0

T(0)
n . . . otherwise

(3.4)

The two-step or the k-step versions of Tn are defined analogously for k = 2,3, . . .. For a studentized
M-estimator Mn of β defined as

Tn = argmin

{
n

∑
i=1

ρ

(
Yi−X>i b

Sn

)
, b ∈ Rp

}
,

its one-step version is the one-step Newton-Raphson iteration of the system of equations

n

∑
i=1

xiψ

(
Yi−x>i b

Sn

)
= 0, b ∈ Rp (3.5)

where Sn(Yn) is a studentizing scale statistic such that

Sn(y)> 0, Sn(c(y+Xb)) = cSn(y), c > 0, y ∈ Rn, b ∈ Rp,
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One-step version of estimators 49

and to which exists a functional S = S(F) > 0 such that n1/2(Sn− S(F)) = Op(1) as n→ ∞.

Under some conditions on ψ and on F, the one-step version of Tn was modified in [6] so that T(1)
n

inherited the breakdown point of the initial estimator T(0)
n and the asymptotic efficiency of Tn.

Namely, under F symmetric and ψ = ρ ′ skew-symmetric, absolutely continuous, non-decreasing
and bounded, and under some other smoothness conditions, we define the one-step version in the
following way:

T(1)
n =

 T(0)
n + γ̂−1

n Wn . . .
∥∥γ̂−1

n Wn
∥∥≤ c, 0 < c < ∞

T(0)
n . . . otherwise

(3.6)

where Wn = n−1Q∗−1
n ∑

n
i=1 xiψ

(
Yi−x>i T(0)

n
Sn

)
and

γ̂n =
1

2
√

n

n

∑
i=1

xi1

[
ψ(Yi−x>i T(0)

n +n−1/2x>i q(1)
n )

Sn
− ψ(Yi−x>i T(0)

n −n−1/2x>i q(1)
n )

Sn

]
(3.7)

where q(1)
n is the first column of Q∗−1

n . Then

Theorem 3.1. (Jurečková and Portnoy 1987). Under the above conditions,

(i) ‖T(1)
n −Tn‖= Op(n−1).

(ii) If T(0)
n has finite sample breakdown point mn, then T(1)

n has the same breakdown point mn.

(iii) If T(0)
n is affine equivariant, then P

{
T(1)

n (XnA) 6= A−1T(1)
n (Xn)

}
→ 0 as n→ ∞ for any

regular p× p matrix A.

Remark 3.1. The results are true even for the initial estimator satisfying ‖T(0)
n −β‖= Op(n−τ)

for τ satisfying 1
4 < τ ≤ 1

2 .

Remark 3.2. Starting with an estimator with a low rate of consistency needs many observations
to achieve a desired precision. In a model with a scalar parameter, it was proved in [7] that
|Tn−T (1)

n |= op(n−1) only in a symmetric location model (F symmetric and ψ skew-symmetric) or
generally only if the initial T (0)

n has the same influence function as Tn. The rate of approximation
of the k-step version T (k)

n , k ≥ 2, to Tn depends on the smoothness of ψ : while |Tn−T (k)
n | =

Op(n−
1
2−

k
2 ) for an absolutely continuous ψ, it is only |Tn−T (k)

n | = Op

(
n−1+2−k−1

)
for ψ with

jump-discontinuities (see [3]).

We shall show that in the location model not only the breakdown point but also the tail-behavior
of the one-step version is determined by that of the initial estimate. It all leads to a conjecture
that the finite-sample properties of T (1)

n depend on the properties of T (0)
n , while the asymptotic

properties depend on those of the non-iterated estimator Tn.

Journal de la Société Française de Statistique, Vol. 153 No. 1 44-51
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2012) ISSN: 2102-6238



50 Jana Jurečková

3.1. Tail behavior of one-step and k-step versions in the location model

Let us now consider the equivariant estimator Tn of location parameter, satisfying the representa-
tion (3.1), and its modified one-step version with an equivariant initial estimator T (0)

n :

T (1)
n =

{
T (0)

n + γ̂−1
n Wn . . . if |γ̂−1

n Wn| ≤ c, 0 < c < ∞

T (0)
n . . . otherwise

(3.8)

where Wn = n−1
∑

n
i=1 ψ(Yi−T (0)

n ) =Op(n−1/2) and with γ̂n of type (3.7). Define the k-step version
of Tn analogously. Then Pθ (Tn 6= T (0)

n + γ̂−1
n Wn)→ 0 as n→ ∞, hence T (1)

n −Tn = op(n−1/2). If
T (0)

n is equivariant, so is T (1)
n , because both γ̂n and Wn are invariant. Surprisingly, the tail behavior

of T (1)
n and of T (k)

n depends more on that of T (0)
n than on the tail-behavior of non-iterative Tn. This

situation is described in the following theorem:

Theorem 3.2. Let Y1, . . . ,Yn be a sample from a population with d.f. F(y−θ), F symmetric and
satisfying (2.3). Let Tn be an equivariant estimator of θ admitting the representation (3.1) with a
bounded skew-symmetric non-decreasing ψ. Then

liminf
a→∞

B(T (0)
n ,a)≤ liminf

a→∞
B(T (k)

n ,a)≤ limsup
a→∞

B(T (k)
n ,a)≤ limsup

a→∞

B(T (0)
n ,a)

for k = 1,2, . . ..

Proof: Let us prove the proposition for k = 1; the case k > 1 is analogous. The tail behavior
measure of T (1)

n satisfies, for 0 < δ < 1 and sufficiently large a,

P0(T
(1)

n > a) ≤ P0(T
(0)

n > (1−δ )a)+P0(γ̂
−1
n Wn > (1−δ )a)+P0([T

(0)
n > δa]∩ [γ̂−1

n Wn > δa])

= P0(T
(0)

n > (1−δ )a).

Letting δ ↓ 0, we obtain P0(T
(1)

n > a)≤ P0(T
(0)

n > a) for sufficiently large a. On the other hand,

P0(T
(1)

n > a)≥ P0(T
(0)

n > a+ c, γ̂
−1
n Wn >−c) = P0(T

(0)
n > a+ c).

Hence,
− lnP0(T

(0)
n > a)

− ln(1−F(a))
≤ − lnP0(T

(1)
n > a)

− ln(1−F(a))
≤ − lnP0(T

(0)
n > a+ c)

− ln(1−F(a))

for sufficiently large a; it proves the theorem. 2

Corollary 3.1. (i) Let T (0)
n = X̃n be the sample median, n odd. Let Tn be an equivariant estimator

and T (k)
n its k-step version starting with X̃n. Then, under the conditions of Theorem 3.2,

lim
a→∞

B(T (k)
n ,a) =

n+1
2

for k = 1,2, . . . .
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(ii) Let T (0)
n = X̄n be the sample mean. Let Tn be an equivariant estimator and T (k)

n its k-step
version starting with X̄n. Then, under the conditions of Theorem 3.2, for k = 1,2, . . . ,

lim
a→∞

B(T (k)
n ,a) =

{
1 if F is exponentially tailed

0 if F is heavy tailed.

where the exponentially and heavy tailed F satisfy

lim
a→∞

− ln(1−F(a))
bar = 1, b > 0, r ≥ 1

lim
a→∞

− ln(1−F(a))
m lna

= 1, m > 0,

respectively (see [2] for more details).
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[3] J. Jurečková and M. Malý. The asymptotics for studentized k-step M-estimators of location. Sequential Analysis,

14:229–245, (1995).
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