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Abstract: Analysing longitudinal declarative data raises many difficulties, such as the processing of errors and
missingness in the outcome variable. Moreover, long-term monitored cohorts (commonly encountered in life-course
epidemiology) may reveal a problem of time heterogeneity, especially regarding the way subjects respond to the
investigator. We propose a Mixed Hidden Markov Model which considers several causes of randomness in response
and also enables the effect of a past health outcome to act on present responses through a memory state. Hence, we
take into account both errors and missing responses, time heterogeneity, and retrospective questions. We thus propose
a Stochastic Expectation Maximization algorithm (SEM), which is less time-consuming than usual EM algorithms to
perform the estimation of the parameters of our MHMM.
We carry out a simulation study to assess the performances of this algorithm in the context of cancer epidemiology
with the British NCDS 1958 cohort. Simulations show that the effect of covariates on the transitions probabilities is
estimated with moderate bias. At last, we investigate a brief real data application on the effect of early social class
on cancer through a smoking behaviour. It appears that in the female sample we used, the early social class does not
mainly act on smoking behaviours. Moreover, more information is needed to compensate for data missingness and
declarative errors in the view to improve our statistical analysis.

Résumé : L’analyse de données déclaratives longitudinales fait apparaître de nombreuses difficultés, comme le
traitement des erreurs et des données manquantes de la variable de sortie. En outre, les cohortes suivies sur le long
terme, telles que celles utilisées en épidémiologie "life-course" peuvent soulever un problème d’hétérogénéité du
temps, surtout en ce qui concerne la façon de répondre aux questions de l’enquêteur. Nous proposons dans cet article
l’introduction d’un modèle de Markov caché mixte qui comprend les possibilités d’erreur et de non-réponse, et permet
également de considérer que l’effet d’un résultat de santé passé peut agir sur les réponses actuelles à travers une
mémoire d’ état. En ce qui concerne les estimations, nous avons proposé d’utiliser un algorithme EM Stochastique
(SEM), qui est moins gourmand en temps de calcul que l’algorithme EM usuel utilisant une intégration sur les effets
aléatoires.
Nous avons effectué une étude par simulation afin d’évaluer les performances de cet algorithme dans le contexte de
l’épidémiologie du cancer avec les données de la cohorte britanniques "NCDS 1958". Les simulations ont montré
que l’effet des covariables sur les probabilités de transitions a été estimée avec un biais modéré. Enfin, nous avons
réalisé une application à des données réelles en étudiant l’effet de la classe sociale précoce sur le cancer à travers un
comportement tabagique. Il est apparu que, dans l’échantillon de femmes utilisé pour cette enquête, la classe sociale
précoce n’agit pas principalement sur l’usage du tabac. Cependant, plus d’information est nécessaire pour compenser
les données manquantes et les erreurs de déclaration et obtenir de meilleurs résultats statistiques.
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1. Introduction.

Analysing longitudinal data which comes from the declarations of a patient - usually referred
as longitudinal declarative data - raises many difficulties, such as the processing of errors and
missingness in the outcome variable. Extensive literature is available on the general issue of
measurement errors and missingness. Langeheine in Hagenaars and McCutcheon (2002) stresses
that latent classes models are a general solution to successfully cope with measurement errors. In
such a work, a true latent (or hidden) quantity is distinguished from the measured (or declared)
quantity. In a longitudinal framework, observations form a time series (also denoted process in
the sequel) and these observations depend on a second hidden process. Hidden Markov Models
(HMM) belong to such a type of longitudinal models.

Even if these models have been initially developed in the quite different situation of artificial
intelligence, there exist yet a lot of examples of application of HMM for the statistical analysis of
problems with measurement errors. For example, Satten and Longini (1996) use some HMM in an
analysis of HIV data to consider the CD4 count measurement error. Authors stress the fact that raw
observations are useless for the description of the HIV progression and prove that the introduction
of a true hidden CD4 count variable improves the estimations of the transition probabilities.
Jackson et al. (2003) use a continuous HMM in the context of misclassification in a chronic
disease stage diagnostic, with an application to screening for abdominal aortic aneurysms. This is
also the case in Bureau et al. (2003) who carry out applications to oral lesion hairy leukoplakia in
a cohort of HIV-infected men and to human papillomavirus infection in a cohort of young women.
In such an application, the real health condition is described through a continuous hidden Markov
process, and HMM allows to consider misclassification errors. Furthermore, HMM may help
to deal with Missing Non At Random (MNAR) data, which are another source of difficulty in
longitudinal studies. This issue has been addressed in Albert (2000). The corresponding model,
fitted to clinical trial data, includes two extended Markovian processes for the outcome (which is
partially hidden) and for the missingness indicator (which is completely observed), respectively,
the latter being related to the former. However, no measurement error is mentioned.

Up to our knowledge, HMM describing both data missingness and error measurement has not
been investigated yet. Lastly, monitored cohort over the long term (frequently encountered in
life-course epidemiology) may raise the problem of time heterogeneity in the response process as
well as in the health condition transition, or even in the outcome definition. The outcome variable
may concern present-day health conditions as well as certain past health-related events, which is
inconsistent with the usual Markov hypothesis. This is the case for example in the GAZEL cohort
Goldberg et al. (2007) or in the NCDS 1958 cohort Power and Elliott (2006). It seems interesting
to extend the usual Markov framework to take past events into account, thus allowing for "event
history analysis" Aalen et al. (2008) with HMM usual algorithms.

In the multi-state model, which includes HMM, Commenges (2002) notices that the assumption
of homogeneous state transitions was very stringent, while in most cases the study population is

Journal de la Société Française de Statistique, Vol. 155 No. 1 73-98
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238
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heterogeneous with regard to some relevant characteristics. Then, he defines a model for state
transitions involving observed covariates. Vermunt et al. (1999) propose a General Linear Model
(GLM) to describe the probabilities related either to the measurement or to the response model,
which could be covariate-dependant. However Commenges (1999) also observes that there may
remain an unexplained heterogeneity following the adjustment for available covariates. This re-
quires the introduction of random effects into the transition models. In this context, Altman (2007)
introduced MHMM (Mixed Hidden Markov Models) which are applied to multiple sclerosis data.
As this disease is very sensitive to individual differences, it is necessary to introduce individual
random effects into HMM, leading to MHMM. Another example is given in Detilleux (2008), who
used random effects within the transition model in a HMM describing the evolution of a biomarker.

Nevertheless, performing estimations for such mixed effects models is challenging, particu-
larly due to the impossibility of computing the expected likelihood in a closed form expression,
which generally implies expensive computational methods. Different approaches to the problem
of discrete-time MHMM parametric estimation have been developed recently. Altman (2007)
performs such estimations by the use of MCEM algorithm. She underlines the slowness of the
EM algorithms despite of the well-known good performance of the recursive forward/backward
method developed in Baum et al. (1970). She proposes to directly maximise the likelihood func-
tion. To this aim Celeux and Diebolt (1992) and Diebolt and Ip (1996); Gilks et al. (1996) develop,
on a general framework, a stochastic EM approach (SEM). Using a SEM algorithm instead of
performing, for example, a numerical integration as proposed in Zhang et al. (2010) is not only a
way of avoiding expensive computation. Indeed EM algorithms may be dependent on the choice
of initial values and, in Gilks et al. (1996), authors point out that SEM can be expected to detect
the most stable fixed point of EM by random exploration of the parameters’ space, which is a
great advantage. Lastly, if the SEM framework appears to be an interesting tool for MHMM
estimations, convergence and consistency are proved only for specific simple examples Celeux
and Diebolt (1992) or on assumptions which are difficult to validate Nielsen (2000). It appears
that the case of partial drawing for unobserved variables has not been theoretically explored.
Delattre (2010) makes use of SAEM algorithm a variant of SEM algorithm developed in Delyon
et al. (1999); Kuhn and Lavielle (2004); Panhard and Samson (2008). The convergence of SAEM
has been studied by many different authors Kuhn and Lavielle (2004) and references therein
and is established under some assumptions especially in the context of the exponential family.
These assumptions are valid for the MHMM emission model used by Delattre (which involves
a Poisson distribution) but no more in our multinomial logit setting. Then, in our context, we
prefer to perform a punctual SEM estimation by simply averaging on the stochastic estimations.
Moreover, Delattre proposes to simulate all "individual" transition parameters (missing covariates
and real health states). Here the Metropolis-Hastings sampler may have a heavy cost as regards
time computation (as it is an iterative procedure which must be performed for each subject). We
prefer to compute and exact integration over the real health state (their number is limited in our
model) and to use the simulation step of the SEM for the missing covariates.

The paper organizes as follow. In section 2, we develop a MHMM for longitudinal declarative
data. It allows both declaration errors and non-response. The hidden process corresponds to the
true health state, and cannot be observed for various potential reasons. We propose to use an
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extension of a state memory which allows each response to be based either on the true health state
on the current date or on the existence of some past health-related event. In Section 3, we describe
the EM framework for the MHMM parameters estimation and propose to use a Stochastic EM
(SEM) algorithm. In Section 4, we consider the example of the use of such a model to deal with
a cancer study from the NCDS 1958 cohort Power and Elliott (2006). We briefly analyse on a
novel database the effect of early social class on cancer at adulthood and the possible contribution
of smoking as a mediator based NCDS data. Section 5 is devoted to a simulation study with
different scenarios. First we aim to investigate the quality of the estimation procedure. Second we
investigate a sensitivity analysis of the model.

2. The model

We are interested in the time evolution of a particular disease and its associated health state. This
health state is thus related to the presence or not of such a disease. Each subject is described by a
stochastic process (St)t≥0 indexed by the time parameter t and this process quantifies the health
state of the subject. Of course, (St)t≥0 is not directly observed and is only known through the
subject’s declarations, which is represented in our paper using another stochastic process (Yt)t≥0.
The process (Yt)t≥0 is obviously related to the real hidden health state (St)t≥0. Some notations are
provided in the following sections.

2.1. Longitudinal structure

We consider the evolution of N independent subjects, each of them is then referred to with
an integer 1 ≤ n ≤ N. We assume that the time 0 ≤ t ≤ T is discretely sampled into a finite
set of intervals ]td ; td+1], with 1 ≤ d ≤ D such that t0 = 0 and tD+1 = T . The intervals are
assumed to be known at the beginning of the study. Hence, we denote by (Sn,d)1≤n≤N,1≤d≤D (resp.
(Yn,d)1≤n≤N,1≤d≤D) the real health state (resp. the observed declarations) of subject n at "time" d.

The real health state Sn,d is then described according to three possible states {0,1,2} which
code the situation of subject n at time d:

– if the disease is absent and the subject is alive in ]td ; td+1], then Sn,d = 0,
– if the disease is present at any time of ]td ; td+1], then Sn,d = 1,
– if the subject dies in ]td ; td+1], Sn,d = 2.

Remark 1. We should remark that up to these rules, when both "disease" and "death" events
occur in the same time interval ]td ; td+1], we decide that Sn,d+1 = 2. As a result, there is a
slight imprecision concerning the date of the subject’s death. However, we only aim to study the
incidence of the disease and thus accept this loss of information.

The process (Yn,d)1≤n≤N,1≤d≤D is slightly more complex than (Sn,d)1≤n≤N,1≤d≤D since it is
described according to four possible states {0,1,2,3}. Each of these states depends of course of
the declaration of the subject n:

– Yn,d = 0 if no disease is signalled along ]td ; td+1],
– Yn,d = 1 if the disease has been stated during ]td ; td+1],
– Yn,d = 2 if no response is obtained in ]td ; td+1],
– Yn,d = 3 if the subject dies during ]td ; td+1].
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For any subject n and any time d, the response Yn,d randomly depends on covariates. The
observed ones are denoted (Xn,d)1≤d≤D, 1≤n≤N and the unobserved ones (Wn)1≤n≤N since there
are supposed homogeneous (independent on d) for the sake of simplicity. It is then natural to
assume the following filtration properties

– Sn,d is independent of {Sn,d−k, 1 < k ≤ d−1} conditionally to (Sn,d−1,Xn,d−1,Wn),
– Yn,k is independent of {Yn,d , d 6= k} conditionally to (Sn,k,Xn,k,Wn).
According to these several assumptions, we then obtain N Markov processes (Sn,d)d=1,...,D

which form, along with the (Yn,d)d=1,...,D processes, a MHMM. In the next paragraph, we define a
model for the state transitions and response emissions. We will omit in the sequel the conditioning
for covariates Xn,1, . . . ,Xn,D for clarity purposes.

2.2. Real state transitions model

These transitions concern the evolution of the true health state (Sn,d)1≤n≤N,1≤d≤D and are embed-
ded in a Markov dynamic. Our model implies a time heterogeneity on stochastic behaviours for
each of the subject. Such an heterogeneity is introduced through the use of some covariates Xn,d
(observed) and Wn (unobserved) and these covariates directly influence the formal transition:

fd(s,q,Xn,d ,Wn,θ
trans) = Pθ trans(Sn,d+1 = q |Sn,d = s,Xn,d ,Wn). (1)

Covariates Xn,d and Wn are taken into account by the use of a General Linear Model (GLM).
More precisely, let us denote θ

trans a the set of parameters θ trans = (θ trans,X,θ trans,0) which stands
for the influence of covariates X as well as the random effects that do not depend on the covariates.
Remark that all transitions may occur between {0,1} and {0,1,2} but 2 is a fixed point of the
dynamic thus we need to describe seven transitions in our model.

Hence, for each admissible transition s 7→ q, θ
trans,X
s,q is an unknown matrix which acts on the

observed covariates Xn,d at time d on subject n. Second, the set of parameters (θ trans,0
s,q,d )s,q,d stands

for the natural transition from state s to state q at time d. At last, the covariates (Wn)1≤n≤N model
the individual randomness from one subject to another and each Wn is also a vector of R7.

A linear predictor ηs,q,d is defined as

∀(s,q) ∈ {0,1}×{0,1,2},∀d ≥ 0, ηs,q,d(Xn,d ,Wn) = θ
trans,0
s,q,d +X′n,dθ

trans,X
s,q +(Wn)s,q , (2)

and the transitions probabilities are defined by a multinomial logit model with η :

∀(s,q) ∈ {0,1}×{0,1,2},∀d ≥ 0, fd(s,q,Xn,d ,Wn,θ
trans) =

exp(ηs,q,d(Xn,d ,Wn))

∑i exp(ηs,i,d(Xi,d ,Wi))
. (3)

Since Sn,d = 2 is a cemetery state, we have of course

fd(2,q,Xn,d ,Wn,θ
trans) = 1I2(q).

where 1I2(q) = 1 if q = 2 and otherwise 1I2(q) = 0.
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2.3. Response model

We describe here the probability to obtain response Yn,d = q from a real state Sn,d = s. The
transition probabilities mainly rely on an emission parameter θ

em. From any state of {0,1}, four
responses are possible, each of them being related with an emission (or response) probability.
Each emission has a specific interpretation :

– Response Yn,d = 1 (disease) from a state Sn,d = 0 (no disease) is considered as an error.
– Response Yn,d = 0 from a state Sn,d = 1 has several interpretations :

i) Subject n may not be ill when the question was asked and became sick just after while the
collecting of the data. If the question being asked concerns only the current health state,
as it could apply to long-term observational cohorts, the information is lost.

ii) The diagnostic has not been told to the subject.
iii) The subject may present a denial behaviour.

– Non-response Yn,d = 2 is only possible from Sn,d ∈ {0,1}
– Of course, Yn,d = 3 if and only if Sn,d = 2.

The parameter θ
em quantify exactly the randomness in the response emission :

gd(s,y,θ em) := P(Yn,d = y |Sn,d = s) = θ
em
s,y,d . (4)

Remark 2. In the former expression, note that the emission may depend on the time d and a
more simple model would assume the transitions independent on the time evolution. It would
also be possible to describe a more general emission process which may involve the unobserved
covariates Wn through a GLM following the same strategy already used for the definition of the
functions fd and ηs,q,d introduced above. This allows more flexibility, including the use of random
effects to describe individual non-response behaviours. However, even if the proposed approach
is less flexible, estimations are easier and a direct description of the emission response through
θ

em is therefore quite easy to interpret.

2.4. Initial state and unobserved covariates

We end the model statement by the description of the initial values of (Sn,1)1≤n≤N . In this view,
we assume without loss of generality that for any subject n, Sn,1 belongs to {0,1} (initially dead
subject won’t be considered!). We then define θ

ini as

θ
ini,0 = P(Sn,1 = 0) θ

ini,1 = P(Sn,1 = 1) = 1−θ
ini,0.

In the sequel, we then use the definition

h(s,θ ini) = θ
ini,01I0(s)+θ

ini,11I1(s). (5)

Furthermore, covariates (Wn)1≤n≤N are assumed to be an i.i.d. sample of centered Gaussian
laws N (0,Σrand) where the covariance matrix is supposed diagonal with a diagonal equals to
θ

rand . As already the size of the vector Wn corresponds to the total number A of random effects
(A = 7 in our model). The density function γ

θ
rand of each Wn is given by

∀u ∈ RA
γ

θ
rand (u) = (2π)−A/2 det(Σrand)−1e−

1
2 u′(Σrand)−1u. (6)
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Let us briefly comment the structure of the unobserved covariates (Wn)1≤n≤N . It is of course
quite natural to assume Wn to be independent to Wn′ when n 6= n′ since we consider that in our
study, the subjects cannot interact each others. Moreover, covariates (Wn)1≤n≤N are assumed to
be stationary (independent of time d), there is almost no loss of generality in this assumption since
time heterogeneity is already considered in our model in the parameter θ

trans,0 which depends on
d. The last hypothesis concerns the diagonal structure of Σrand . It implicitly imposes that each
transitions s 7→ q are independent from any couple of transition to another one. This assumption is
natural for the transitions (0 7→ 0),(0 7→ 1) and (0 7→ 2) (the disease is initially absent). Such an
independence assumption is also natural for the couple of transitions (0 7→ q) and (1 7→ q). The
most questionable fact is the independence between (1 7→ 1) and (1 7→ 2) since the absence of
healing certainly influences (ans is positively correlated to) the death occurrence. A more general
model could take this last point into account.

2.5. Extension to retrospective data.

In some longitudinal studies, the subjects may be asked questions concerning both their present
health state and their past health state. In this section, one presents an adaptation to the MHMM
described in the previous section in order to analyse such data. We assume that at a certain (but
not necessarily any) date t the subjects are asked two questions : "are you ill now ?" and "have
you ever been ill ?".

Let fix n ∈ {1, . . . ,N} a subject. We denote Y ∗n,d the random response variable in the date
interval d, with vR(d) possible values. We assume that Y ∗n,d may only stand for the first question,
or only for the second question, or may gather the response to both questions. In this latter case,
we assume that the "non-response" level stands for both, and then we obtain vR(d) = 6 levels
((0,0), (0,1), (1,0), (1,1), the non-response levels (.,2) and (2,.) corresponds, by assumption, to
one level and level 3 (death)). In the two former cases we had vR(d) = 4. The Markov hypothesis
does no longer stand as Y ∗n,d depends not only on the current state Sn,d but on the complete state
history (Sn,1, ...,Sn,d). Let us assume that Y ∗n,d is independent from Y ∗n,k (k 6= d) conditionally to
S∗n,d = (Sn,d ,S′n,d−1), with S′n,d−1 adopting value 1 if there exists some k < d with Sn,k = 1 (with
in addition Sn,l 6= 2 for all l < d). To provide a more accurate definition of S′ it is convenient to
define a composition law • by:

– s•q = 0 if s and q equal 0,
– s•q = 1 if s or q equals 1 with s and q different from 2 and 3,
– s•q = 2 if s or q equals 2 or 3.

Then we obtain S′n,d−1 = Sn,1 • Sn,2 • · · · • Sn,d−1. With Sn,d being the current health state at the
date td+1, we consider S′n,d−1 as a state memory. The independence assumption can be interpreted
as an absence of causal dependence between Y ∗n,d1

and Y ∗n,d2
though, due to a retrospective data

collection, Y ∗n,d1
may give information on Y ∗n,d2

(d1 < d2). The only causal link lies between
the current health state Sn,d , the state memory S′n,d , and the response Y ∗n,d in the same date
interval. We prove in Appendix A that the processes (S∗n,d)d=1,...,D and (Y ∗n,d)d=1,...,D form a HMM.
It is then possible to consider (S∗n,d)d=1,...,D as a five-states Markov process taking values in
{(0,0),(0,1),(1,0),(1,1),(2,0)}. Notice that, due to the definition of the state memory, some
state transitions are deterministic. Indeed, the transitions (0,0)→ (·,1) and (0,1)→ (·,0) are not

Journal de la Société Française de Statistique, Vol. 155 No. 1 73-98
http://www.sfds.asso.fr/journal

© Société Française de Statistique et Société Mathématique de France (2014) ISSN: 2102-6238



80 D. Dedieu, C. Delpierre, S. Gadat, T. Lang, B. Lepage and N. Savy

possible.
We could use the state memory in the transition model and define different incidence parameters

for subjects which never had the disease and subjects who have had it. However we decide to
favour a more parsimonious approach by assuming that we have, for any q′ ∈ {0;1} and s′ ∈ {0;1},

P(S∗n,d+1 = (q,q′) |S∗n,d = (s,s′),Xn,d ,Wn;θ
trans) = P(Sn,d+1 = q, |Sn,d = s,Xn,d ,Wn;θ

trans).

Based on this assumption, the parameters vector has the same dimension as in the three-levels
state model.

3. Parameters estimation.

3.1. The EM framework

We aim to estimate the several parameters introduced above (θ := (θ trans,θ em,θ ini,θ rand)) using
the maximisation of the observed likelihood. The complete log-likelihood ` is a random function
due to its dependence on the unobserved state variables (Sn,d)1≤n≤N,1≤d≤D and the unobserved
random effects variables (Wn)1≤n≤N .

3.1.1. Reminders on EM algorithms

We provide here a short summary of the EM principle for sake of completeness. We consider a
statistical model parametrised by a family of laws (Pθ )θ∈Θ. Each law Pθ produces a couple of
variables (U,V ) where U is observed and V is a missing unobserved variable. We assume that
a close analytic formula is available to compute `(U,V,θ) := logPθ [(U,V )]. Such a formula is
known in our case of MHMM described in Section 2. Given i.i.d. observations (Ui)1≤i≤N , we are
looking for an optimal parameter θ

∗ which maximises the likelihood of the observed variables
when (Vi)1≤i≤N are unknown. In the view to maximise θ 7−→ logPθ (U), the EM algorithm
produces a sequence of parameters (θ k)k≥0 which converges under some mild conditions to a
local maxima of such a function (see Dempster et al. (1977)). The sequence is defined as follows.

– E Step Let be given θk ∈Θ, we define the application

Qk(θ) := EV∼PU
θk
[`(U,V,θ)]

where the unobserved variables V follows the conditional law Pθk [.|U ] also denoted PU
θk

in
the sequel. Such an expectation must be computed for each value of θ and generally requires
heavy MCMC computations.

– M Step The next value θk+1 is then obtained through the maximisation step:

θk+1 := argmax
θ∈Θ

Qk(θ).

This maximisation procedure is sometimes possible up to the knowledge of some analytic
formulas.

Such an algorithm was applied to HMM by Baum and Welch (see for example Baum et al. (1970);
Bartolucci et al. (2007); Zhang et al. (2010)).
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3.1.2. Application of the EM method to our setting

Likelihood decomposition Owing to the Markov dynamic of the process (Sn,d)1≤n≤N,1≤d≤D,
the transitions (Sn,d ,Wn,Xn,d) 7−→ Yn,d and the independence of the N subjects each others, it
clearly appears that ` can be split into 4 terms, linked to the initial states parameters, transition
parameters, emission parameters, and random effects parameters, respectively:

`(θ) =
N

∑
n=1

D−1

∑
d=1

ln fd(Sn,d ,Sn,d+1,Xn,d ,Wn,θ
trans)+

N

∑
n=1

D

∑
d=1

lngd(Sn,d ,Yn,d ,θ
em)

+
N

∑
n=1

lnh(Sn,1,θ
ini)+

N

∑
n=1

lnγ
θ

rand (Wn). (7)

Transition parameters Each set of parameter is estimated independently by maximising the
corresponding term of the log-likelihood `. We first consider the transition parameters θ

trans.
Let us assume that at iteration k we have a certain estimation θ̂ k of the parameters vector
θ = (θ ini,θ trans,θ em,θ rand)′. In the expectation (E) step of the EM algorithm, we define the
objective function

Qtrans
k (θ trans) = E

θ̂ k

[
∑
n,d

ln fd(Sn,d ,Sn,d+1,Xn,d ,Wn,θ
trans) | Yn,1, . . . ,Yn,D

]
.

If we now decompose our randomness structure, we have

Qtrans
k (θ trans)

= ∑
n,d

∑
s,q

∫
RA

Ptrans
d (s,q|Yn,1, . . . ,Yn,D; θ̂ k,w,Xn,d)γθ̂ rand

k
(w) ln fd(s,q,Xn,d ,w,θ trans)dw̃. (8)

The computation of Ptrans
d (s,q|Yn,1, . . . ,Yn,D; θ̂ k,w,Xn,d) may be performed using the well-known

forward / backward algorithm (see Appendix B). However, unfortunately no closed-form expres-
sion exists for the integration over γ

θ̂ rand
k

(w)dw̃. This raises some practical issues. Zhang et al.
(2010) performed a numeric integration through a Gaussian quadrature method, but this approach
may be expensive. The integration through Monte Carlo approximation does not prove to be less
expensive. We therefore propose a stochastic approach, according to the framework described in
Gilks et al. (1996), which will be detailed further in this paper.

Emission parameters We now focus on the estimation of emission parameters. The objective
function has a similar form given by

Qem
k (θ em)

= ∑
n,d

∑
s,y

∫
RA

Pem
d (s,y|Yn,1, . . . ,Yn,D,w; θ̂ k,Xn,d)γθ̂ rand

k
(w) lngd(s,y,θ em)dw̃. (9)
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Let us remark that if the response model does not include any random effect, the integration
disappears, the computation of such an objective function is easier and the maximisation step
can be performed numerically. It is also the case when the response model does not include any
random effects or covariates effects, according to the standard HMM method (see Appendix C).
Now, if the response model includes some random effects, we propose a stochastic approach, such
as the one we will develop for the transition model.

Other parameters Finally, we have to estimate the initial state parameter θ
ini and the random

effect parameters θ
rand . Regarding the former θ

ini, we use the standard HMM method (see
Appendix C). As for the latter, the objective function is given by

Qrand
k (θ rand) = ∑

n

∫
RA

γ
θ̂ rand

k
(w) lnγ

θ
rand (w)dw̃. (10)

Let us recall that γθ rand is a Gaussian law whose covariance matrix is diagonal and described
by θ rand . Denoting σ̂i,k the i-th component of estimated parameter vector θ̂

rand
at iteration k,

cancellation of the gradient of Qrand
k leads to

σ
2
i,k+1 = σ

2
i,k.

1
N
.∑

n

1
P(Yn,1, . . . ,Yn,D; θ̂ k)

∫
RA

w2
i P(Yn,1, . . . ,Yn,D|w;θ k)dw̃. (11)

with σ̂i,0 = 1 for instance. Once more, we use a stochastic approach (detailed in the following
section) rather than performing a numeric integration.

3.2. Stochastic EM algorithm

Reminders on SEM In order to avoid a difficult integration step in the E step of the EM
algorithm described in Subsection 3.1.1, we have applied the Stochastic EM (SEM) method. Such
an improvement of the initial EM is described for instance in Gilks et al. (1996) or in Nielsen
(2000) in the context of MHMM.

We keep the simple notations of Subsection 3.1.1, the algorithm produce a sequence of
parameters (θ k)k. Such an enhancement concerns the situation when there is no close formula
to compute at step k the function θ 7−→ Qk(θ) = EV∼PU

θ̂k

[`(U,V,θ)]. Instead of using a costly

integration over the whole space of unobserved data V , the idea is to use a stochastic draw with
respect to a suitable probability distribution. The SEM algorithm then exploits this idea and
produces at step k a single realisation of a missing variable Vk ∼ P

θ̂U
k

. We then compute the
estimate function SQk(θ) as

SQk(θ) := `(U,Vk,θ). (12)

Hence, the E step is replaced by a Stochastic Expectation SE step.

Application to MHMM We here manage the SEM algorithm as follows: we make a single
drawing of the random effects at each step of the SEM algorithm. Note that unlike the general
SEM approach, we do not randomly draw all the missing data, which include the hidden states
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(Sn,d)1≤n≤N,1≤d≤D. Given any current value of the parameter θ̂ k, we then sample some possible
values of the unobserved covariates (Wn)1≤n≤N . We denote W̃k := (W̃k,n)1≤n≤N i.i.d. samples of
the conditional law γ

θ̃ rand
k

given realisations (Yn,d)1≤n≤N,1≤d≤D. Then, we compute

SQtrans
k (θ trans,W̃k) = ∑

n,d
∑
s,q

Ptrans
d (s,q|Yn,1, . . . ,Yn,D;W̃k,n; θ̂ k,Xn,d) ln fd(s,q,Xn,d ,W̃k,n,θ

trans),

(13)

SQem
k (θ em,W̃k) = ∑

n,d
∑
s,y

Pem
d (s,y|Yn,1, . . . ,Yn,D;W̃k,n; θ̂ k,Xn,d) lngd(s,y,θ em), (14)

SQrand
k (θ rand ,W̃k) = ∑

n
lnγθ rand (W̃k,n). (15)

For the simulation of W̃k, we use the Metropolis-Hastings algorithm (see Chib and Greenberg
(1995) and Appendix D). It consists of constructing a Markov chain (Zp)p≥0 with a succession of
acceptances or rejections from random proposals and then choose W̃k as a realization of Zp for
large values of p once the Markov chain has reached its steady regime. Given any value of Zp, we
simulate the Markov dynamic as follows: sample first a new proposition z from the distribution
γ

θ̂ rand
k

and compute the ratio

qp =
P(Yn,1, . . . ,Yn,D|z, θ̂ k)γθ̂ k

(z)

P(Yn,1, . . . ,Yn,D|Zp, θ̂ k)γθ̂ k
(Zp)

.

The next state Zp+1 is then chosen as Zp+1 = z with a probability 1∧ qp. Remark that in the
former acceptance ratio, the computation of P(Yn,1, . . . ,Yn,D; θ̂ k) is not necessary, which is a
great advantage. The Metropolis-Hastings Markov chain converges exponentially fast provided
that the acceptance rate is suitably chosen. In practice, we have stopped the iterations of the
Metropolis-Hastings Markov chain algorithm when the acceptance rate becomes close to, say, 0.3
Chib and Greenberg (1995).

Once we draw W̃k with a value of Zp for a large value of p, the computations and maximizations
of the objective functions is possible. For the transition and the emission score functions, we
perform a numeric maximization, and denote

θ̂
trans
k+1 = argmax

θ
trans

[
SQtrans

k (θ trans,W̃k)
]

and θ̂
em
k+1 = argmax

θ
em

[
SQem

k (θ em,W̃k)
]
.

For the random effects objective function, it can be easily seen that vanishing the gradient of the
score functions leads to

σ̂
2
i,k =

1
N ∑

n
W̃2

i,k,

and the updated random effect parameters appear to be a simple average of observed variances.
It is to be noted that unlike the usual EM estimator θ̂ k, the stochastic EM estimator θ̂ k =

(θ̂
ini
k , θ̂

trans
k , θ̂

em
k , θ̂

rand
k ) is no longer consistent since SEM involves a variability of the simulation

step (we draw at each iteration k a new realisation of W̃k). Figure 3 displays some examples of
fluctuations of θ̂ k components with 1≤ k ≤ 700. We thus consider an average of such estimators
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and use 1
K ∑

K
k=1 θ̂ k. Ergodic results (Cesaro convergence) on Markov chains imply the converge

when K→ ∞ and we denote

θ̂ = lim
K→+∞

K−1
K

∑
k=1

θ̂ k.

Then we use θ̂ as an estimator of θ (see Gilks et al. (1996)). In practice, we compute an
approximation of θ̂ with a finite number of successive iterations of the SEM algorithm after a
burn-in period.

Remark 3. Note that in the implementation of the SEM method, we do not have use a complete
stochastic strategy since we only draw an unobserved state for the missing covariates but still use
a global summation over the hidden states of (Sn,d)n,d . This is reasonable in our case because the
state space for (Sn,d)n,d is not so large: three times of observations and three health states. In a
more complex setting of large N and D and large number of possible states, a complete SEM on
unobserved variables should be better but remark that convergence of SEM towards its stationary
distribution becomes slower when the number of unobserved simulated data increase.

3.3. Standard errors

Classical approach The observed information matrix Jobs(θ) is usually used to derive standard
errors of the SEM estimators Diebolt and Ip (1996). This matrix is given by the opposite of the
second derivative of the observed log-likelihood. A classical result Louis (1982) states that, `
being the log-likelihood of the complete data and `obs being the observed log-likelihood, we have

∂`obs

∂θ
=

∂Eθ [`(θ)|Y ]
∂θ

.

For example, if we assume that derivation under the integration sign is possible, the estimated
covariance matrix for the transition parameters is given by:

Σ
trans =−

[
∑
n,d

∑
s,q

∫
RA

Pn,d(s,q|Yn,1, . . . ,Yn,D; w̃; θ̂ ,Xn,d)

∇
2 ln f (s,q,Xn,d ,Yn, w̃,θ trans)

γ
θ̂

rand (w̃))

P(Yn,1, . . . ,Yn,D; θ̂)
dw̃

]−1

. (16)

Since the Hessian ∇2 ln f can be computed in a closed form expression, we can perform a
numerical integration over the random effects. Although computationally intense, this operation
is only performed once the parameter θ̃ is estimated by our SEM. Such a method is known to
underestimate the standard errors as pointed in our simulation studies and a bootstrap approach
may also be possible Efron and Tibshirani (1994) but this option generally yields also important
computational costs.

Stochastic strategy It is possible to improve our initial SEM algorithm to obtain on-line
estimation of the Fisher matrix. Such an improvement is very similar to the stochastic modification
of the initial EM algorithm to the SEM one following the initial strategy of Louis (1982). We
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still use the notations of Subsection 3.1.1 and remind that the model (Pθ )θ∈Θ yields a couple of
random variables (U,V ) where U is observed and V is hidden. We are interested in the Fisher
matrix associated to the observed variable U . As pointed by Louis (1982), if we denote the
log-likelihood of complete data by `(U,V,θ) and of observed data by `(U,θ), such a matrix may
be written as

Jobs(θ) = EV∼PU
θ

[
−∇

2`(U,V,θ)−∇`(U,V,θ)∇`(U,V,θ)′
]
+∇(`(U,θ))∇(`(U,θ))′ (17)

Now, remark that when θ is close to the maximum likelihood estimator of observed values, the
third term of (17) is close to zero. Hence, if θ is near the ML of observed values, it is enough to
approximate the two first terms of (17).

We can now improve our SEM to obtain in a clear and simple way an estimator of Jobs(θ̂).
– SE Step: consider the initial sequence of parameters θ̂ k built by the SEM procedure and

consider at step k the current estimator θ̂ k. At step k, draw a simulation of the unobserved
random variable Vk according to the conditional law PU

θ̌k
. This can be obtained using again

an acceptance/rejection algorithm described in the paragraph above.
– M Step: Compute the new parameter θ̂ k+1 as a maximum of the estimated complete log

likelihood Q̂k(.), as well as the average of estimates at step k:

θ̃ k :=
1
k

k

∑
j=1

θ̂ j.

The estimated Fisher information matrix is then approached using

J̃k :=−∇
2`(U,Vk, θ̃ k)−∇`(U,Vk, θ̃ k)∇`(U,Vk, θ̃ k)

′.

Using again ergodic convergence results on Markov chain to steady regime, a suitable estimator
of the observed information matrix using

J̃ = lim
k 7−→+∞

k−1
k

∑
j=1

J̃ j.

Such an improvement of the algorithm may be included in a very simple way in our initial algo-
rithm by using at iteration k both a stochastic drawing of the unobserved covariates (Wk,n)1≤n≤N

and of unobserved real state (Ŝn,d,k)1≤n≤N,1≤d≤D, each of them being simulated with respect to
the suitable conditional law.

4. Application to real data.

4.1. Study of cancer in the NCDS cohort.

Kelly-Irving et al. (2012) use the British NCDS 1958 cohort Power and Elliott (2006) to study the
relationship between cancer and adversity at an early life stage. However, analysing these data
raises many statistical difficulties, especially due to time heterogeneity.

– It seems impossible to assume that the behaviour of the subjects with regards to self-reports
does not vary in a 30-years time gap.
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– We have to face with the presence of different types of outcomes: the cohort members
may be asked questions concerning their current health state as well as about certain past
health-related event.

– There is also data missingness and declarative errors (due for instance to a possible recovery
at the date of interview, denial, or wrong health representations ; Manjer et al. , Navarro et
al., Cho et al. stress that in the field of cancer epidemiology, under- and over-reporting are
quite frequent Manjer et al. (2004); Navarro et al. (2006); Cho et al. (2009).

In this section we describe a model according to the NCDS 1958 design, which integrates all
those aspects.

In the NCDS 1958 study, the subjects are aged of 23 (t1), 33 (t2), 42 (t3), 47 (t4) and 51 years
old (t5) and are questioned bout cancer. They must answer to the question "Do you have cancer ?"
on dates t1, t4, t5. On date t2 they also answer to the question "have you ever had cancer ?". Lastly
on date t3 they only answer to the question "have you ever had cancer", including the possibility
to be ill at the very date on which the question is asked. Then we assume that on dates t1, t3, t4, t5
the outcome has four levels ("yes", "no", non-response, or dead). On date t2 we assume that the
outcome has six levels (the non-response being common to both questions) depending on the
state on the current date and also on the state memory. We illustrate in Figure 1 the corresponding
longitudinal scheme.

d = 1 d = 2 d = 3 d = 4 d = 5

Age (year) 23 33 42 47 51

Sn,1 S∗
n,2 Sn,3 Sn,4 Sn,5

Y ∗
n,1 Y ∗

n,2 Y ∗
n,3 Y ∗

n,4 Y ∗
n,5

FIGURE 1. Study of cancer with the NCDS 1958 cohort. Y ∗n,d: response of the subject n at date d and Sn,d or S∗n,d: true
health state of the subject n on each time interval.

We aim to estimate the effect of the early social class of cohort members on cancer during
adulthood.

Social epidemiologists pinpoint an association between social class and cancer. However little
is known about the mechanisms which lead from early life context to a future health event. We
propose to use a MHMM to test the hypothesis of a pathway leading from a given early life
context to cancer and involving smoking behaviour.

For computational reasons, we only use a sub-sample of 1,000 subjects from the 8,959 female
NCDS cohort members: we only consider females since one of the most early frequent cancer
events are breast cancer. It is also a simple way to reduce heterogeneity especially in the response
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behaviours.

A binary variable X1 is derived from the NCDS six level "social class" variable which describe
the parental social class at birth. We get 5,158 subjects with X1 = 0 (social class from I to III-
manual levels) and 1,760 subjects with X1 = 1 (social class from III- non manual to V levels).
We exclude the 2,041 subjects with missing values for X1. We derive a quantitative variable X2
by considering the cumulative number of cigarettes smoked from the age of 23 years old. For
smoking subjects with no more precision, we impute the median level. Moreover, we impute
values for people with missing X2 on a certain date, by using the previous or next declaration
when it exists. Then we obtain 7,289 subjects with data at ages 23, 33, 42 47 and 51 years old. As
regards cancer, we have 39 events declared at age 23 years old (with 2,689 missing data), 135 at
age of 33 years old (with 3,243 missing data), 202 at age 42 years old (with 3,186 missing data),
61 at age 47 years old (with 4,071 missing data ) and 67 at age 51 years old (with 4,003 missing
data). The missingness patterns is non-monotonous, and we consider missingness as a response
level. At last, we make estimations with sub-samples from 5,704 subjects.

4.2. The MHMM of interest.

In order to investigate the possibility of a mediated effect of an early social class on cancer through
a smoking behaviour, we estimate parameters from two models : a univariate model explaining
cancer from X1 and a bivariate model explaining cancer from X1 and X2. The evolution of the
coefficient associated with X1 will give an indication on the mediation hypothesis.
We propose a model (M) taking into account time heterogeneity in transitions by the use of
as many intercepts as different dates (Table 1). We use covariates Xn,d only for the transition
(0, .)→ (1, .) which is the transition of interest, and we assume that the covariate effect on the
disease is time homogeneous.

TABLE 1. Structure of the GLM transition model.

Transition Linear predictor η

(0, ·)→ (0, ·) 0 (reference)
(0, ·)→ (1, ·), d = 1 θ trans

7 +θ trans
4 X1 +θ trans

5 X2 +θ trans
6 X3 +W1

(0, ·)→ (1, ·), d = 2 θ trans
8 +θ trans

4 X1 +θ trans
5 X2 +θ trans

6 X3 +W2
(0, ·)→ (1, ·), d = 3 θ trans

9 +θ trans
4 X1 +θ trans

5 X2 +θ trans
6 X3 +W3

(0, ·)→ (1, ·), d = 4 θ trans
10 +θ trans

4 X1 +θ trans
5 X2 +θ trans

6 X3 +W4
(0, ·)→ (2, ·) θ trans

3
(1, ·)→ (0, ·) 0 (reference)
(1, ·)→ (1, ·) θ trans

2
(1, ·)→ (2, ·) θ trans

1

We assume that emission probabilities are time-dependent, but homogeneous regarding indi-
viduals, and we use an identity link multinomial emission model with 28 parameters θ em

i (Table
2).
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TABLE 2. Structure of the multinomial emission model. On the left : the emission, on the right, the parameter.

date 1 date 2 date 3 date 4 or 5
(0, ·) → 0 − (0,0) → (0,0) − (0,0) → 0 − (0, ·) → 0 −
(0, ·) → 1 θ em

1 (0,0) → (0,1) θ em
5 (0,0) → 1 θ em

25 (0, ·) → 1 θ em
21

(0, ·) → 2 θ em
2 (0,0) → (1,0) θ em

6 (0,0) → 2 θ em
26 (0, ·) → 2 θ em

22
(1, ·) → 0 θ em

3 (0,0) → (1,1) θ em
7 (1, ·) → 0 θ em

27 (1, ·) → 0 θ em
23

(1, ·) → 1 − (0,0) → (2,0) θ em
8 (·,1) → 0 θ em

27 (1, ·) → 2 θ em
24

(1, ·) → 2 θ em
4 (0,1) → (0,0) θ em

9 (1, ·) → 1 − (1, ·) → 1 −
(0,1) → (0,1) − (·,1) → 1 −
(0,1) → (1,0) θ em

10 (1, ·) → 2 θ em
28

(0,1) → (1,1) θ em
11 (·,1) → 2 θ em

28
(0,1) → (2,0) θ em

12
(1,0) → (0,0) θ em

13
(1,0) → (0,1) θ em

14
(1,0) → (1,0) −
(1,0) → (1,1) θ em

15
(1,0) → (2,0) θ em

16
(1,1) → (0,0) θ em

17
(1,1) → (0,1) θ em

18
(1,1) → (1,0) θ em

19
(1,1) → (1,1) −
(1,1) → (2,0) θ em

20

4.3. Implementation issues.

Implementation carries out in C language (with GNU GCC compilator, using the MT19937
random number generator). The maximization of the objective function in a high dimension
appears to be a critical part of the algorithm. We adopt a three-step approach. First, a local
exploration of the parameters’ space is made by randomly drawing a few maximization directions.
Then, we use the analytical expression of the Hessian and perform a Newton-Raphson algorithm
limited to a few number of iterations. On this occasion, problems of local identification may
arise. So we compute the condition number of the Hessian matrix at each step. If it appears to
be too large, we remove a certain critical parameter before the inversion of the matrix and this
parameter cannot be identified at this step. At last, if the Newton-Raphson algorithm fails to
converge towards a zero-gradient point, we carry out a simple maximization in the direction of
the gradient.

4.4. Results and discussion.

The univariate analysis with 100 sub-samples of 1,000 female subjects suggests the initial social
level has an effect on cancer, with a protection effect for upper social classes (see Figure 2).
Unfortunately, the empirical distribution does not allow us to conclude to a 95 % meaningful
effect. An interesting result is that, when a second variable (cumulated number of cigarettes) is
introduced, no noticeable modification is observed concerning the effect of social class, while
the number of cigarettes smoked appears to have an effect as expected (though the empirical
distribution does not allow to conclude to a 95% meaningful effect). This result leads to the idea
that social class has an influence on cancer which is not necessarily directly related to health
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behaviours. This should be confirmed with further epidemiological investigations, especially with
other types of behaviour, such as alcohol consumption.

−
2

0
2

4
6

8

4 : uni− and bivariate
−

2
0

2
4

6
8

5 : bivariate

FIGURE 2. Uni- and bivariate models for mediation investigation (NCDS data, 100 sub-samples with 1000 subjects ;
4: parameters for early social level ; 5: parameter for cumulative number of smoked cigarettes).

We are fully aware of the methodological limits of our statistical interpretation : estimations are
not enough meaningful regarding the empirical distribution; the number of sub-sample is low, and
re-sampling is not made with the same number of subjects as in the initial data (as it should be in
a bootstrap approach), which could lead to an underestimation of the variability of the estimates.
A solution for improving such shortcomings would be to improve the compensation for errors and
missing data in the cancer outcome by introducing information about the disease incidence. Such
an information is available in the cancer registers held in Great Britain. However, although the
idea appears to be simple, such an improvement is difficult to implement, essentially for practical
reasons, and requires further investigation.

Although not the aim of this work, goodness-of-fit indications would be interesting in this
section. However, assessing goodness-of- fit of MHMM is difficult (as noticed in Altman (2004)).
This topic is addressed in Lystig (2001), or in Titman and Sharples (2008). For lack of being able
to rigorously test the model goodness of fit, visual predictive checks (VPCs) could be used (see
Holford (2005); Post et al. (2006) for a concise presentation of VPCs and Delattre and Lavielle
(2012) for its application in MHMM setting).

5. Simulation study.

In this section, we perform a simulation study in order to assess, first the estimation procedure
and second the robustness of the model (M). We keep the design of the NCDS 1958 cohort and
we still work with the MHMM of Figure 1.
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5.1. Data generation and model assessment.

In order to empirically assess the properties of the estimation algorithm, we generate 100 sim-
ulated samples from (M) with 1000 subjects. We use three covariates in the transition model,
among which two have an effect on the disease incidence. We set the disease incidence parameters
so that we have enough subjects in each sample (arbitrarily around 200 to be coherent with real
data). The true values of the response parameters are set so that the individual response behaviour
could be considered as realistic. For instance, we fix θ em

22 = 0.20 which corresponds to 10 % of
non-response among people who are not affected by the disease on dates d = 4 or d = 5. We
generate a first data set based on a "reliable response" assumption (with low errors probabilities
and low non-response rates) and another dataset based on a "non-reliable response" assumption
(with raised error and non-response probabilities). The true values of the parameters for each
scenario are pointed in Table 4.

In order to empirically assess the robustness of (M) as regards misspecification on the response
model, we generate samples from a model denoted (Mσ ) with individual fluctuations in response
probabilities. The transition part of (Mσ ) is the same as the one of M and thus we know the
true value of the parameters and could estimate biases. The emission part is a GLM model
with individual random error terms Vi,n,d (i being a parameter index, n a subject index and d a
time index). We denote σ2 = var(Vi,n,d) and we make σ vary within the set {0.5,1,2,4,8}. This
emission model includes an additive error assumption, which is described in detail in Table 3.

TABLE 3. Structure of the simulation GLM emission model (with error additivity assumption). On the left : the
emission, on the right, the parameters.

Date 1 Date 2 Date 3 Date 4 or 5
(0, ·)→ 0 0 (0,0)→ (0,0) 0 (0,0)→ 0 0 (0, ·)→ 0 0
(0, ·)→ 1 θ em

1 +V1 (0,0)→ (0,1) θ em
9 +V5 (0,0)→ 1 θ em

15 +V21 (0, ·)→ 1 θ em
11 +V25

(0, ·)→ 2 θ em
2 +V2 (0,0)→ (1,0) θ em

5 +V6 (0,0)→ 2 θ em
16 +V22 (0, ·)→ 2 θ em

12 +V26
(1, ·)→ 0 θ em

3 +V3 (0,0)→ (1,1) θ em
5 +θ em

9 +V7 (1, ·)→ 0 θ em
17 +V23 (1, ·)→ 0 θ em

13 +V27
(1, ·)→ 1 0 (0,0)→ (2,0) θ em

6 +V8 (·,1)→ 0 θ em
17 +V23 (1, ·)→ 1 0

(1, ·)→ 2 θ em
4 +V4 (0,1)→ (0,0) θ em

10 +V9 (1, ·)→ 1 0 (1, ·)→ 2 θ em
14 +V28

(0,1)→ (0,1) 0 (·,1)→ 1 0
(0,1)→ (1,0) θ em

5 +θ em
10 +V10 (1, ·)→ 2 θ em

18 +V24
(0,1)→ (1,1) θ em

5 +V11 (·,1)→ 2 θ em
18 +V24

(0,1)→ (2,0) θ em
6 +V12

(1,0)→ (0,0) θ em
7 +V13

(1,0)→ (0,1) θ em
7 +θ em

9 +V14
(1,0)→ (1,0) 0
(1,0)→ (1,1) θ em

1 +θ em
9 +V15

(1,0)→ (2,0) θ em
8 +V16

(1,1)→ (0,0) θ em
7 +θ em

10 +V17
(1,1)→ (0,1) θ em

7 +V18
(1,1)→ (1,0) θ em

10 +V19
(1,1)→ (1,1) 0
(1,1)→ (2,0) θ em

8 +V20

Since we aim to compare the estimation efficiency with different level of σ , we adapt the true
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values of the parameters so that frequencies of observed responses are approximatively identical
for all possible values of σ . We empirically manage to obtain around 30 false cancers, 10 false
non-cancer, and 600 non-response for the reliable response scenario and around 130 false cancers,
60 false non-cancer, and 1000 non-response for the non-reliable response scenario. We perform
700 SEM iterations for each of the 100 samples of 1000 subjects.

5.2. Results.

The pointwise estimation for each sample derives from average on the last 150 stochastic estima-
tions. Our results are represented as box-plots for transition parameters. We represent in Figure 3
the SEM iterations of stochastic estimates for standardized parameters θ4, θ5 and θ6 which are
the parameters of interest in the direct causal inference approach. The stochastic estimator for θ6
has a high variability, due to the fact that this parameter has no effect on the outcome (θ6 has a
null true value).
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FIGURE 3. Examples of SEM iterations for one sample (standardized parameters, reliable response simulated data).

Estimations of the parameters and their 95% confidence intervals from 100 simulated pop-
ulation samples are collected in Table 4. The computational time is long (a few days). The θ6
estimation appears to have a very large confidence interval including zero, and to be meaningless.
Convergence for θ4 and θ5 seems to be achieved in a few iterations. We can notice that the biases
are low. Estimations for the response model for parameters θ em

3 , θ em
4 , θ em

9 , θ em
10 , θ em

11 , θ em
12 , θ em

17 ,
θ em

19 , θ em
20 has a confidence interval from 0 to 1, which make the estimations unreliable. However,

note that θ em
3 and θ em

4 correspond to responses from state 1 for d = 1, and at this time most
subject are not affected by the disease as we fix low initial probabilities θ ini. This explains the
bad estimations of the initial emission parameters. Moreover, θ em

9 , θ em
10 , θ em

11 , θ em
12 , θ em

17 , θ em
19 , θ em

20
correspond to responses for d = 2 from states with a memory of some past disease. For the same
reason, this only concerns a few subjects. This also explains the bad estimations obtained for
these parameters.
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TABLE 4. Real values, estimations and 95 % percentile-based confidence interval (I95) from simulated data (100
samples).

M1 (reliable responses data) M1 (non reliable responses data)
param. true value estim. I95 true value estim. I95

θ ini
1 0.0001 0.0040 (0.0000,0.0620) 0.0098 (0.0009,0.0598)

θ ini
2 0.0002 0.0000 (0.0000,0.0015) 0.0000 (0.0000,0.0015)

θ trans
1 −1.0 −0.8 (−1.3,2.9) −0.7 (−1.6,2.9)

θ trans
2 −1.0 −0.8 (−1.5,4.7) −0.1 (2.0,4.9)

θ trans
3 −3.8 −3.9 (−4.2,−3.6) −3.9 (−4.4,−3.6)

θ trans
4 −1.0 −0.8 (−1.6,−0.3) −0.7 (−1.4,−0.2)

θ trans
5 1.15 1.00 (0.44,1.62) 0.85 (0.29,1.51)

θ trans
6 0 −0.3 (−2.4,1.7) −0.1 (−2.3,2.3)

θ trans
7 −4.1 −3.1 (−4.4,−1.8) −2.6 (−3.8,−1.4)

θ trans
8 −4.2 −3.5 (−8.4,−2.7) −3.3 (−7.3,−2.0)

θ trans
9 −4.3 −3.1 (−3.9,−1.9) −3.0 (−6.7,−2.0)

θ trans
10 −4.4 −3.3 (−4.8,−2.2) −3.0 (−7.2,−2.0)

θ rand
1 2.5 1.9 (0.6,2.8) 0.9 (0.6,2.2)
θ em

1 0.005 0.004 (0.000,0.010) 0.005 0.004 (0.000,0.008)
θ em

2 0.15 0.149 (0.126,0.169) 0.200 0.198 (0.169,0.223)
θ em

3 0.01 0.000 (0.000,1.000) 0.001 0.000 (0.000,1.000)
θ em

4 0.1 0.3 (0.0,1.0) 0.10 0.33 (0.00,1.00)
θ em

5 0.005 0.0047 (0.0000,0.0102) 0.0500 0.0503 (0.0318,0.0653)
θ em

6 0.005 0.0039 (0.0000,0.0115) 0.060 0.057 (0.028,0.075)
θ em

7 0.005 0.004 (0.001,0.010) 0.003 0.001 (0.000,0.007)
θ em

8 0.2 0.203 (0.177,0.230) 0.2500 0.2507 (0.2199,0.2798)
θ em

9 0.01 0.00 (0.00,1.00) 0.10 0.00 (0.00,1.00)
θ em

10 0.01 0.00 (0.00,1.00) 0.04 0.00 (0.00,1.00)
θ em

11 0.005 0.000 (0.000,1.000) 0.03 0.00 (0.00,0.99)
θ em

12 0.1 0.00 (0.00,1.00) 0.30 0.00 (0.00,1.00)
θ em

13 0.05 0.088 (0.000,0.281) 0.15 0.23 (0.00,0.42)
θ em

14 0.01 0.004 (0.00,0.037) 0.03 0.02 (0.00,0.09)
θ em

15 0.005 0.000 (0.000,0.026) 0.08 0.06 (0.00,0.20
θ em

16 0.2 0.186 (0.022,0.331) 0.35 0.33 (0.16,0.49)
θ em

17 0.01 0.00 (0.00,1.00) 0.03 0.00 (0.00,1.00)
θ em

18 0.015 0.000 (0.000,0.040) 0.20 0.00 (0.00,1.00)
θ em

19 0.005 0.000 (0.000,1.000) 0.01 0.00 (0.00,1.00)
θ em

20 0.1 0.00 (0.00,1.00) 0.30 0.00 (0.00,1.00)
θ em

21 0.005 0.00 (0.000,0.003) 0.010 0.007 (0.000,0.29)
θ em

22 0.1 0.101 (0.085,0.116) 0.200 0.202 (0.177,0.228)
θ em

23 0.02 0.06 (0.00,0.57) 0.20 0.30 (0.00,0.54)
θ em

24 0.05 0.066 (0.000,0.140) 0.25 0.24 (0.02,0.45)
θ em

25 0.005 0.000 (0.000,0.260) 0.01 0.00 (0.00,0.03)
θ em

26 0.1 0.09 (0.08,0.11) 0.200 0.198 (0.165,0.237)
θ em

27 0.03 0.033 (0.000,0.153) 0.20 0.25 (0.00,0.45)
θ em

28 0.05 0.048 (0.000,0.107) 0.25 0.23 (0.05,0.40)
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FIGURE 4. Box-plots of the transition parameters estimations from 100 simulated samples and different scenarios:
(heterogeneity in response probabilities (no misspec., misspec. and its intensity (sigma=0.5; 1; 2) and reliability or not
of the response). The true value of the parameter is indicated by the coloured horizontal bar.
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Box-plots (Figure 4) illustrate to which extend misspecification (shaped as individual random
terms with variance σ2 in a GLM response model) and reliability of the responses has an effect
on estimations. It appears that the variations of σ have a very little effect on the transition
probabilities estimations. It is important to recall that for each value of σ we adapt the true value
of the response parameters so as to achieve the same proportions of errors and non-responses as
in the M simulated data (which is necessary in order to make meaningful comparisons). Then σ

only introduces heterogeneity in the response probabilities. We conclude that (M) is robust as
regards this type of heterogeneity. Concerning the effect of response reliability, as expected, we
observe that raised rates of error and non-response have an impact on the quality of transition
parameters estimations. However, even with rates such as 13 % of "false negatives" (subjects
declaring they have no cancer at t4 or t5 though they actually have had cancer) estimations for
transition parameters remain acceptable.

5.3. Discussion.

We present some simulations with a model (M) designed to fit the longitudinal structure of the
NCDS 1958 study. Completing the objective function maximization appears to be a difficult task
due to the high dimension of the parameters’ space. As the Quasi-Newton algorithm fails, we
propose a three-step algorithm which appears to be robust. However, its execution is somewhat
expensive from a computational viewpoint. That is why we avoid using a GLM model for emis-
sions.

A solution for improving estimations would be to inject some information about the disease
incidence on the general population (assumed to be known by external ways). We observe (through
simulations which are not described in this paper) that if intercepts of the GLM transition model
are known, then the biases and dispersions of the estimation can be drastically reduced as ex-
pected. If we assume (without loss of generality ) that the observed and unobserved covariates
Xn,d and Wn have a null population mean value, and if we assume that for each individual n,
fd(s,q,Xn,d ,Wnθ

trans) is close to its population mean value f̄d(s,q,θ trans), then the intercept
term is close (with respect to a first order approximation) to ln f̄d(s,q,θ trans)

f̄d(s,q0,θ
trans)

(where q0 is some
reference value). Then if the population incidence is known, and if the individual probabilities of
illness are close to the population incidence, we directly inject this additional information into the
model. However, outside the context of such a (questionable) approximation it seems difficult to
link these intercepts with incidence indicators, due to the non-linearity of the multinomial logit. A
constrained maximization of the objective function could be imagined, but it would involve major
practical difficulties. The use of a linear transition additive model inspired from the additive Aalen
model (see Aalen et al. (2008)) could be used, but adaptations are needed to integrate individual
random effects. Further research is needed on this topic.

Our approach is based on the assumption of the Mixed Markov Hidden Model. The dynamic
described by this model may be a rough first approximation of the real dynamic of the system. In
fact, the assumptions of Markov transitions as well as the independence of the covariates may
be violated. Nevertheless the results obtained on a real case study are relevant at least for the
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estimation of the transition parameters.

At this stage we want to draw attention to the poor results (not presented here) provided by the
asymptotic estimations of the standard errors given in our estimated information matrix, although
it is the standard way of deriving confidence intervals for MHMM estimations. Indeed, most
of the estimators in our model present an asymptotic computed variance around 10−2 or even
10−3, which is critically underestimated as shown by the empirical confidence intervals obtained
with 100 samples. We cannot recommend strongly enough to use an alternative approach such as
bootstrap. It may also be possible to use an online computation of the estimation of the Fisher
matrices in the SEM algorithm as mention in Paragraph 3.3.
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Appendix A. Validation of HMM hypotheses for the state memory model.

Fix n∈{1, . . . ,N} a subject. We are to prove that the two processes (S∗n,d)d=1,...,D and (Y ∗n,d)d=1,...,D
form a HMM. First, (Sn,d)d=1,...,D is a Markov process, and then Sn,d is independent from
Sn,d−k(1< k≤ d−1) given Sn,d−1. Secondly, as we have S′n,d−1 = S′n,d−2•Sn,d−1, the state memory
S′n,d−1 depends on S∗n,d−1 in a deterministic way. Then it is made clear that S∗n,d = (Sn,d ,S′n,d−1) is
independent from S∗n,d−k = (Sn,d−k,S′n,d−(k+1)) for any k = 1, . . . ,d given S∗n,d−1 = (Sn,d−1,S′n,d−2).
So we have proved that (S∗n,d)d=1,...,D is a Markov process. Moreover given the previous assump-
tion on Y ∗n,d , the two processes (S∗n,d)d=1,...,D and (Y ∗n,d)d=1,...,D form a HMM. Lastly, it is to be
observed that whenever S′n,d−1 = 2 we have Sn,d = 2. It is then possible to consider (S∗n,d)d=1,...,D
as a five states Markov process taking values in {(0,0),(0,1),(1,0),(1,1),2}.

Appendix B. Baum - Welch Forward and Backward algorithms.

Fix n∈{1, . . . ,N} a subject. Let us recall that the following probabilities are implicitly conditioned
on covariates Xn,1, . . . ,Xn,D. We denote αn,d(s) = P(Sn,d = s,Yn,1, . . . ,Yn,d |Wn;θ) and βn,d(s) =
P(Yn,d+1, . . . ,Yn,D|Sd = s,Wn;θ), with βn,D(s) = 1. Using the local independence property, we
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have

αn,d(s) = P(Yn,d |Sn,d = s,Wn;θ)∑
q

αn,d−1(q)P(Sn,d = s|Sn,d−1 = q,Wn;θ),

βn,d(s) = ∑
q
P(Sn,d+1 = q|Sn,d = s,Wn;θ)P(Yn,d+1|Sn,d+1 = q,Wn;θ)βn,d+1(q),

which makes possible to perform a recursive computation. We can now provide the joint probabil-
ities which appear in the definition of the objective functions :

Ptrans
n,d (s,q|Yn,1, . . . ,Yn,D,Wn; θ̂)

=
αn,d(s) fd(s,q,Xn,d ,Wn, θ̂

trans)gd(q,Yn,d+1, θ̂
em)βn,d+1(q)

P(Yn,1, . . . ,Yn,D|Wn; θ̂)
,

Pem
n,d(s,y|Yn,1, . . . ,Yn,D,Wn; θ̂) = δy(Yn,d)

αn,d(s)βn,d(s)
P(Yn,1, . . . ,Yn,D|Wn; θ̂)

,

with P(Yn,1, . . . ,Yn,D|Wn; θ̂) = ∑k αn,d(k)βn,d(k) for any d (and then P(Yn,1, . . . ,Yn,D|Wn; θ̂) =

∑k αn,D(k)).

Appendix C. Parameters re-estimation Rabiner (1989).

Recall that θ em
s,y,d0

is the probability of emission s→ y at date d0. With D being a set of time
indexes including d0 for which the s→ y emissions are homogeneous, and N being the set of
subjects indexes, the reestimation of θ em

s,y,d0
from θ̂ is given by :

θ
em
s,y,d0

=
∑d∈D ∑n∈N Pem

n,d(s,y|Yn,1, . . . ,Yn,D,Wn; θ̂)

∑d∈D ∑n∈N P(Sn,d = s|Yn,1, . . . ,Yn,D;Wn; θ̂)
.

This quantity is computed using the forward and backward quantities:

P(Sn,d = s|Yn,1, . . . ,Yn,D;Wn; θ̂) =
αn,d(s)βn,d(s)

∑k αn,d(k)βn,d(k)
,

and Pem
n,d(s,y|Yn,1, . . . ,Yn,D,Wn; θ̂) = 1Iy(Yn,d)

αn,d(s)βn,d(s)
∑k αn,d(k)βn,d(k)

.

As for the initial probabilities, we denote θ ini
s the probability of state s on date d = 1 . The

re-estimation of θ ini
s from θ̂ is given by :

θ
ini
s =

1
card(N ) ∑

n∈N
P(Sn,1 = s|Yn,1, . . . ,Yn,D,Wn; θ̂) =

1
card(N ) ∑

n∈N

αn,1(s)βn,1(s)
∑k αn,1(k)βn,1(k)

.
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Appendix D. The Metropolis-Hastings (MH) algorithm.

The MH algorithm is applied to each subject n so as to draw a random effect vector W̃k,n (k
being the index of SEM iterations) from the conditional law P(W̃k,n|Yn,1, . . . ,Yn,D; θ̂ k). We denote
R j,n the vector drawn at the jth iteration of the MH algorithm. At step j+ 1, we first draw a
random effects vector R∗j+1,n from a Gaussian "proposal" density with 0 mean and some fixed
variance. Then we compare the proposition R∗j+1,n with R j,n using the following quotient (r being
the multinormal density) :

a =
P(Yn,1, . . . ,Yn,D|R∗j+1,n; θ̂ k)r(R∗j+1,n, θ̂

rand
k )

P(Yn,1, . . . ,Yn,D|R j+1,n; θ̂ k)r(R j+1,n, θ̂
rand
k )

We compare a with a drawing α from the uniform density over [0;1]. If a > α then we
accept the proposition R∗j+1,n and we have R j+1,n = R∗j+1,n. In the contrary (a < α) we reject the
proposition and we have R j+1,n = R j,n. The recursion may be initialized with a null vector R0,n.
After a certain burn-in period of B iterations, we consider RB+1,n as a drawing of W̃k,n. We define
B so that the acceptance rate of the algorithm be around 0.3 for example Chib and Greenberg
(1995).
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